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CellScope: high-performance cell atlas
workflow with tree-structured
representation

Bingjie Li1,2,9, Runyu Lin1,9, Tianhao Ni1,3,9, Guanao Yan 4,5, Mannix Burns 6,
Jingyi Jessica Li 7,8 & Zhigang Yao 1

Single-cell sequencing enables comprehensive profiling of individual cells,
revealing cellular heterogeneity and function with unprecedented resolution.
However, current analysis frameworks lack the ability to simultaneously
explore and visualize cellular hierarchies at multiple biological levels. To
address these limitations, we present CellScope, a promising framework for
constructing high-resolution cell atlases at multiple clustering levels. Cell-
Scope employs a two-stage manifold fitting process for gene selection and
noise reduction, followed by agglomerative clustering, and integrates UMAP
visualization with hierarchical clustering to intuitively represent cellular rela-
tionships simultaneously at multiple levels—such as cell lineage, cell type, and
cell subtype levels. Compared to established pipelines such as Seurat and
Scanpy, CellScope comprehensively improves clustering performance, visua-
lization clarity, computational efficiency, and algorithm interpretability, while
reducing dependence on hyperparameters across a multitude of single-cell
datasets. Most importantly, it can reveal biological insights that other con-
temporary methods are unable to detect, thereby deepening our under-
standing of cellular heterogeneity and function, and potentially informing
disease research.

The advent of single-cell sequencing has fundamentally changed our
understanding ofbiology byproviding an unprecedented look into the
heterogeneity of biological systems at the individual cell level.Over the
past decade, the increasing accessibility of single-cell technologies has
led to a rise in the generation of large, comprehensive single-cell
datasets—collectively known as cell atlases. By providing comprehen-
sive high-resolution maps that identify, characterize, and spatially
locate every cell type within an organism or tissue, cell atlases offer
invaluable insights into cellular heterogeneity, interactions, and
functions1. These detailedmaps have the potential to revolutionizeour

understanding of normal development, aging, and disease pathogen-
esis, paving the way for new diagnostic, prognostic, and therapeutic
strategies2,3. Consequently, many specialized atlases have emerged,
including those focusing on neurodegenerative diseases-mapping
cellular changes in Alzheimer’s and Parkinson’s disease tissues4–6.
Others have focused on developmental biology, creating time-
resolved atlases that track cellular differentiation during organ
formation7–9. Cancer-specific atlases have also gained prominence,
helping to delineate tumor micro-environments and identify new
therapeutic targets10,11. With this increasing availability of cell atlases,
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the ability to extract biologically meaningful information from these
datasets is paramount to the progression of our knowledge of system-
specific cellular dynamics and disease mechanisms.

Despite remarkable progress in the single-cell field, existing
computationalmethodologies face several limitations thathinder their
ability to fully capture the complexity of single-cell data. Commonly
used pipelines, such as Seurat12, Scanpy13, and SnapATAC14, rely on
conventional unsupervised learning techniques that may not ade-
quately handle the high-dimensionality, sparsity, and noise inherent in
single-cell datasets. Thehighly variablegenes (HVG) selectionmethods
employed by both Seurat and Scanpy, as unsupervised approaches
based on variance-to-mean ratio calculations, rely purely on statistical
dispersion without considering the biological relevance of gene
expression patterns across different cell types, and thus cannot con-
sistently identify genes that are truly informative for characterizing
cellular heterogeneity15. Similarly, clustering algorithms like Louvain16

and Leiden17, which optimize community detection through mod-
ularity maximization, lack hierarchical structure to capture nested
relationships between cell types and cannot effectively use resolution
changes to control the merging and further subdivision of cell types18.
Moreover, popular visualization techniques like t-SNE19 and UMAP20

have limitations in representing the global structure and hierarchical
organization of cells, often emphasizing local similarities at the
expense of preserving the overall topology21.

Recent advances in single-cell genomics have led to growing
recognition of the low-dimensional nature of single-cell data22,23. This
characteristic can be understood from two perspectives. Firstly,
despite the vast number of genesmeasured in single-cell experiments,
only a small subset is typically informative for distinguishing cell types.
The majority of genes are housekeeping genes, which maintain basic
cellular functions and exhibit relatively constant expression across cell
types. Studies such as15 have demonstrated that focusing on fewer,
highly informative genes can lead to improved visualization and ana-
lysis outcomes24. Secondly, due to the interconnected nature of genes,
single-cell data tends to occupy a low-dimensional manifold within the
high-dimensional gene expression space25. As such, many state-of-the-
art single-cell clustering frameworks have begun incorporating this
concept ofmanifolds26,27. In particular,manifoldfitting28,29 represents a
conceptual framework that aims to preserve data structure while
offering high interpretability and theoretical backing, thus emerging
as an innovative approach for dimensionality reduction. Building on
their previous work29, Yao et al. developed scAMF30—the first frame-
work to implement this manifold fitting concept for single-cell
analysis.

Here, we introduce CellScope, a promising method for con-
structing multi-level, high-resolution cellular atlases. By leveraging
manifold fitting and neighborhood graph-based aggregative cluster-
ing, CellScope addresses three key challenges in single-cell analysis:
(1) inadequate gene selection and single-level marker gene char-

acterization that fails to capture genes dynamically across cell
type subdivisions;

(2) limited clustering resolution and hierarchical structure that
cannot support nested organization;

(3) inability to generate tree-structured visualizations that integrate
cellular trees with cellular atlases.

To overcome these limitations, CellScope integrates four core
innovations: intelligent gene selection that separates signal from noise
spaces, precise delineation of similar cell subpopulations through
manifold-based denoising, dynamic characterization of cellular land-
scapes at multiple resolutions, and multi-level functional analysis
through dynamic “molecular identity” classification.

We conducted extensive validation across 36 datasets covering
various species, organs, and sequencing modalities, demonstrating

CellScope’s exceptional performance. Notable achievements include
the identification of Oligodendrocyte subpopulations and the simul-
taneous characterization of cell types and health status in COVID-19
patients—discoveries that existing methods like Seurat and Scanpy
were unable to detect. Importantly, CellScope achieves these results
with exceptional speed, parameter-free operation, and high inter-
pretability, thereby opening new avenues for understanding cellular
diversity in complex biological systems.

Results
Overview of cellScope workflow
CellScope uses manifold fitting to model single-cell data, addressing
intrinsic complexity and noise to derive crucial biological insights.
CellScope assumes that the true biological structure of single-cell data
lies on a low-dimensional manifold31. This manifold represents the
intrinsic, lower-dimensional structureof gene expression that captures
the genuine relationships between cells, including cellular states and
subtypes. However, the observed single-cell data does not directly
reflect this manifold due to two types of noise. The first type of noise
refers to the expression of housekeeping genes, which are crucial for
basic cellular functions but, due to their ubiquitous expression, do not
contribute to distinguishing cell populations. We thus define “noise
space” to denote the space of housekeeping genes and “signal space”
to represent the remaining gene expression profiles that reflect cell
type differences. The second type of noise lies in this signal space and
represents technical noise due to mRNA loss, inefficient molecular
capture, and sequencing errors32. This stochastic noisemay distort the
true expression patterns of the marker genes that are key to distin-
guishing between cell types and states. Together, these two types of
noise combine with the underlying biologically meaningful manifold
to constitute the observable single-cell gene expression
matrix (Fig. 1a).

To recover the essential low-dimensional manifold and improve
the quality of downstream analyses, CellScope employs a two-stage
manifold fitting process (Fig. 1b). The first stage in our manifold fitting
approach aims to mitigate the noise introduced by ubiquitous
housekeeping genes, which are irrelevant to cell classification, while
preserving critical genes for further analysis (Methods A). We base this
process on a widely accepted assumption in manifold learning and
translate it to a biological context: low-dimensional representations of
individual cells that belong to different cell types lie on distinct
submanifolds33. These cell type submanifolds are characterized by a
high density of cells and are separated from one another by regions of
low cell density34.

Leveraging this principle, CellScope selects multiple sets of dis-
tant high-density cells, termed “manifold seeds”, along with their
neighboring cells, designated as “highly reliable cliques” (Fig. 1c).
These cliques originate from multiple separate cell types and help
distinguish between noise and signal spaces. Features in the signal
space exhibit low variance within the same clique but high variance
between different cliques, while features in the noise space lack this
property. By exploiting this distinction, CellScope filters out most
noise while preserving key genes for determining cell identity.

The second stage ensures proper stratification of different cell
types by assigning cells residing in low-density regions, which may
represent transitional cell states or have higher levels of technical
noise, to the nearest cell type submanifold (MethodsB). This denoising
stage refines the representation of eachcell type, emphasizing genuine
biological signals over technical artifacts, and better reflects the
underlying cellular heterogeneity.

After manifold fitting, CellScope constructs a cell-to-cell neigh-
borhood similarity graph, where cells with more similar gene expres-
sion profiles are assigned higher similarity. Based on this graph,
CellScope then performs agglomerative clustering (Methods C).
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Starting with each cell as a cluster, the algorithm iterativelymerges the
most similar clusters until no two clusters exhibit significant similarity,
yielding precise and biologically meaningful classifications.

An innovative aspect of CellScope is its ability to generate an
informative tree-structured visualization (Methods D) that integrates
UMAP20 and hierarchical clustering. In addition to an initial UMAP
visualization of the manifold-fitted data that provides an intuitive
representation of complex cellular relationships, CellScope provides
the tree-structured visualization that depicts the hierarchical rela-
tionships between cell types, illustrating how different populations

emerge, branch, and specialize. By annotating the gene expression
differences that drive the emergence of each cell cluster, researchers
can gain insight into key regulatory genes and pathways involved in
cell fate decisions, development, and functional specialization. Based
on the tree-structured visualization, CellScope introduces an innova-
tivemultilevel gene identity system, referred to as dynamic “molecular
identity”. By analyzing the expression differences of genes
among different cell clusters within the hierarchical levels of cluster-
ing, CellScope classifies genes into distinct identities, including
housekeeping genes, moderately cell-type-related genes, and strongly
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Fig. 1 | CellScope workflow and its underlying manifold modeling strategy.
aMathematical modeling of noise in single-cell data. b The two stages of manifold
fitting and their purpose. c Overview of CellScope workflow. CellScope enhances
cellular data analysis through a two-stagemanifold fitting process. First, it identifies
“manifold seeds” and “highly reliable cliques” in the PCA-reduced space to effec-
tively distinguish signal from noise, thereby filtering out housekeeping gene
effects. Next, it reduces technical noise by projecting low-density cells onto high-
density regions. Subsequently, CellScope constructs a neighborhood similarity
graph and performs agglomerative clustering, iteratively merging similar clusters
for precise hierarchical classification. Finally, the method generates two key
visualizations: a UMAP representation of the manifold-fitted data and a tree-
structured visualization combining UMAP with hierarchical clustering. In the

“Manifold fitting stage 1” panel, color intensity in the “Raw data'', “PCA data'', “Data
in signal space'', and “Fitted data” represents matrix values. Black dots on the
manifolds represent individual cells. In the “Manifold fitting stage 2” panel, the blue
line represents the fitted manifold, red dots indicate cells to be fitted, green dots
show the fitted cell positions, and the gray shaded region denotes the neighbor-
hood of cells used for fitting. In the hierarchical clustering dendrograms and tree-
structured visualization, colors distinguish different cell clusters. d Each cluster
division in the tree-structured visualization produces three unique types of genes:
housekeeping genes with minimal variance between classes, moderately cell-type-
related genes with partially significant differences, and strongly cell-type-related
genes with high variance between classes.
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cell-type-related genes (Fig. 1d and Methods E). By evaluating changes
in gene identities across these clustering hierarchies, CellScope
transcends the traditional binary classification of genes as either
marker or non-marker genes.

CellScope differs fundamentally from existing frameworks
through its comprehensive mathematical approach. While Seurat
employs variance-mean relationship models for gene selection, linear
PCA for dimensionality reduction, and flat Louvain clustering, and
Scanpy uses standardized variance-based HVG selection with similar
linear PCA and Leiden clustering, CellScope introduces a manifold-
based framework with three key innovations. First, it adaptively iden-
tifies signal genes through manifold seeds detection rather than
parameter-dependent selection. Second, it preserves both local and
global cellular relationships via manifold fitting instead of linear sub-
space assumptions. Third, it constructs multi-level hierarchical struc-
tures through agglomerative clustering rather than single-level
partitioning. Detailed mathematical comparisons between CellScope,
Seurat, and Scanpy are provided in Supplementary Note 1.1 and Sup-
plementary Table 1.While CellScope and scAMF30 share the conceptual
foundation of manifold fitting, their specific mathematical imple-
mentations and biological applications are fundamentally distinct.
scAMF focuses on general technical noise reduction through a uniform
manifold hypothesis, whereas CellScope introduces a biology-driven
dual-noise model. Specifically, CellScope explicitly distinguishes
housekeeping gene noise from technical noise, implements cell-type-
aware submanifold detection using composite metrics, and incorpo-
rates ANOVA-based statistical gene selection from biologically reliable
cliques. These innovations transform manifold fitting from a general
clustering enhancement technique into a specialized biological dis-
covery platform capable of hierarchical validation and dynamic
molecular characterization across multiple levels of cellular organiza-
tion. Detailed comparisons between CellScope and scAMF are pro-
vided in Supplementary Note 1.2.

CellScope demonstrates superior performance in cell clustering
and gene selection
We evaluated CellScope’s performance in cell clustering using 36 dis-
tinct scRNA-seq datasets with known cell types (Methods G and Sup-
plementary Tables 2–3). These datasets cover various human and
mouse tissues—including brain, pancreas, embryos, and immune cells
—and range widely in size (90 to 265,767 cells) and complexity (3 to 20
cell types). Each dataset includes gold-standard cell type labels
determined through methods like cell morphology and marker gene
expression. We compared CellScope against two widely used single-
cell analysismethods (Seurat35 andScanpy13) and three recentmethods
(scLEGA36, scDCCA37, andCellBRF38)withdetails inMethods F. True cell
type labels were used only for post-hoc evaluation. All clustering
results shown below are based on analyses performed on the Google
Colab platform (44-core CPU, 150 GB RAM) to ensure consistency
(Methods H).

CellScope achieves the best cell clustering performance across all
datasets regarding accuracy, robustness, and computational effi-
ciency. To quantify clustering performance, we used multiple clus-
tering evaluation metrics: adjusted rand index (ARI)39, the clustering
accuracy (ACC)40, the normalized mutual information (NMI)41, and
jaccard index (JI)42, where higher values indicate better clustering
performance (Definitions of these metrics are provided in the Sup-
plementary Note 1.3). Among the six methods tested, CellScope,
Seurat, and Scanpy successfully completed clustering across all 36
datasets. In contrast, due to computational limitations, scLEGA,
scDCCA, and CellBRF could only be executed on datasets containing
up to 50,000, 75,000, and 25,000 cells, respectively. As shown in
Fig. 2a, CellScope achieved the highest overall averageARI of 0.88with
the lowest standard deviation, ranking first on 32 out of the 36datasets
and second on 3 others, significantly outperforming all other methods

(Fig. 2b). Seurat and Scanpy attained lower average ARIs of 0.65 and
0.68, respectively. Among the recent methods, scLEGA, scDCCA, and
CellBRF achieved average ARIs of 0.54, 0.74, and 0.49 on datasets
where they could be successfully applied. Wilcoxon signed-rank tests
further confirmed CellScope’s statistically significant superiority, with
all p-values against the other five methods being less than 10−5. Similar
advantages were observed across other clustering evaluation metrics
(see Supplementary Fig. 7 and Tables 4–7). Beyond its accuracy, Cell-
Scope also demonstrated competitive computational efficiency across
three dataset-size regimes (Fig. 2c, Supplementary Table 8). Among
the three methods that could handle all dataset sizes (CellScope,
Scanpy, and Seurat), CellScope consistently achieved the fastest or
among the fastest runtimes across small (<3000 cells), medium
(3000–50,000 cells), and large (>50,000 cells) datasets. The other
threemethods (scLEGA, scDCCA, and CellBRF) showed computational
limitations, with scLEGA and CellBRF failing on large datasets and
scDCCA exhibiting prohibitively long runtimes.

To assess CellScope’s stability across different computing envir-
onments, we conducted additional tests on two memory-constrained
personal computers—aMacBook (8-core CPU, 16GB RAM) and an iMac
(10-coreCPU, 16GBRAM) (MethodsH). Since othermethods could not
complete all datasets on theseplatforms, we compared only CellScope
and Scanpy. Results show that CellScope typically achieved faster
runtimes than Scanpy, demonstratedmemory advantages onmemory-
constrained platforms while performing comparably on high-memory
platforms (never exceeding twice Scanpy’s memory usage), and
exhibited significantly more stable clustering performance than
Scanpy (Supplementary Fig. 15 and Tables 23–25).

Gene selection is crucial for clustering results. CellScope exhibits
superior performance in this area compared to other methods,
including Disp (Seurat)43, VST (Seurat)35, HVG (Scanpy)13, mixHVG44,
FEAST45, and HRG46. We usedmultiple evaluationmetrics to assess the
effectiveness of gene selectionmethods, including Average Silhouette
Width (ASW)47, Variance Ratio, Cell-type Local Inverse Simpson
Index48, KNN Classification Accuracy, and Neighborhood Purity (defi-
nitions provided in Supplementary Note 1.5). CellScope consistently
achieved higher ASW values on themajority of datasets (Fig. 2d), while
other metrics further confirmed its superiority in gene selection
effectiveness (Supplementary Tables 9–14). One-sided Wilcoxon
signed-rank tests on thesegene selectionmetrics validatedCellScope’s
superiority in gene selection with all p-values < 0.01 (Supplementary
Table 15).

To further validate the effectiveness of CellScope’s gene selection
strategy beyond direct metric comparisons and statistical tests, we
combined the gene selection outputs from Seurat and Scanpy with
CellScope’s graph-based clustering module and compared the results
to those of the CellScope pipeline. The complete CellScope workflow
achieved the highest average ARI of 0.88, outperforming the hybrid
versions using Scanpy (average ARI = 0.75) and Seurat (average ARI =
0.77) gene selection, which themselves performed better than the
original Scanpy (average ARI = 0.68) and Seurat (average ARI = 0.65)
pipelines (Supplementary Fig. 8a, b). These results confirm that Cell-
Scope’s gene selection strategy contributes significantly to its superior
clustering performance.

Figure 2f compares the visualizations produced by CellScope and
Seurat using human pancreatic cells fromWang et al.49. Seurat’s results
incorrectly suggest that the three cell types—Alpha, Duct, and Beta—
are interconnected and indistinguishable, whereas CellScope accu-
rately achieves clear separation among the cell types. This difference is
largely attributed to CellScope’s manifold fitting-based gene selection
strategy. As shown in Fig. 2e, only 125 genes overlap between Seurat’s
2000 and CellScope’s 500 selected genes, with 63% of these shared
genes exhibiting significant variation (Variance Ratio > 1, defined as
the ratio between a gene’s inter-cell-type and intra-cell-type expression
variance, indicating its power to distinguish cell types). More notably,
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30% of CellScope-specific genes showed strong differential expression
(Variance Ratio > 1) between cell classes, whereas only 3% of Seurat-
specific genes exhibited such pronounced differences. This indicates
that CellScope captures high-quality marker genes and discovers
meaningful high-variance genes that Seurat overlooked. For instance,
the expression patterns of Seurat-selected genes (e.g., SST, REG1A)
showminimal cell type specificity, resulting in poor cluster separation.
In contrast, CellScope uniquely identifies genes (e.g.,CRH) that are not
selected by Seurat and exhibit highly specific expression patterns,
facilitating more accurate cell type differentiation (Fig. 2g, h). A com-
parison between CellScope and Scanpy gene selection can be seen in

Supplementary Fig. 8c–f, and results for all other benchmark datasets
are available in Supplementary Tables 20–22.

CellScope enhances the ability to distinguish similar cell types,
detect rare cell types, and perform multi-level clustering
CellScope demonstrates superior performance in distinguishing simi-
lar cell types and detecting rare cell populations. This was exemplified
using the human brain cell dataset from NHGRI50 and the mouse
pancreatic cell dataset from Keller (P)51. CellScope’s visualization
results show clearer separation of cell types compared to popular
methods such as Scanpy and Seurat (Fig. 3a, b). For instance, in the
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Fig. 2 | Performance of CellScope on 36 benchmark datasets. a Clustering per-
formance evaluation of CellScope, Scanpy, Seurat, scLEGA, scDCCA, and CellBRF
using the Adjusted Rand Index (ARI). The left 36 panels display ARI values for
individual datasets, while the top-right panel summarizes the mean ARI with stan-
dard errors indicated by vertical bars (CellScope = 0.88 ± 0.014, Scanpy= 0.68
± 0.038, Seurat = 0.65 ± 0.038, scLEGA =0.54 ± 0.060, scDCCA=0.74 ± 0.041,
CellBRF = 0.49 ± 0.042). Each point represents the ARI for a specific dataset. b The
rank distribution based on clustering performance using ARI. c Execution time
comparison across benchmark datasets of varying sizes. Box-plots display the
runtime (in seconds) for six methods across datasets stratified by cell number: less
than 3000 cells (small datasets), 3000 to 50,000 cells (medium datasets), and
more than 50,000 cells (large datasets). Boxplots display the 25%, 50% (median),
and 75% percentiles, where whiskers denote 1.5 times the interquartile range. Each
dot represents the runtime on a specific dataset. The sample sizes used for the
boxplots are as follows: small datasets (n = [11, 11, 11, 11, 11, 11]), medium datasets

(n = [12, 12, 12, 10, 11, 8]), and large datasets (n = [13, 13, 13, 0, 2, 0]). Missing boxes
indicate method failure or timeout. d Gene selection performance of CellScope
compared to six gene selection methods across benchmark datasets. The X-axis
depicts theAverageSilhouetteWidthRatio (ASWR),withCellScope’sASWset as the
baseline of 1 (red dashed line). Other methods' ASWs are expressed asmultiples of
CellScope’s. ASWR > 1 indicates superior performance to CellScope; ASWR < 1
indicates inferior performance. Absent bars indicate method failure or timeout.
e Gene selection performance comparison of CellScope and Seurat evaluated by
Variance Ratio on the Wang dataset. f Visualizations produced by CellScope (Bot-
tom) and Seurat (Top) of human pancreatic cells fromWang et al.49, colored by the
true cell types. g Visualization of the distribution of marker genes selected by
Seurat. Darker colors represent higher gene expression. h Visualization of the
distribution of marker genes selected by CellScope. Darker colors represent higher
gene expression.
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Fig. 3 | The performance of CellScope in distinguishing similar cell types,
detecting rare types, and performing multi-level clustering. a UMAP visualiza-
tions of human brain cells (NHGRI dataset) generated by CellScope, Seurat, and
Scanpy. Colors represent different brain regions. b UMAP visualizations of mouse
pancreatic cells (Keller (P) dataset) generated by CellScope, Seurat, and Scanpy.
Colors represent different cell types. c Comparison of visualization quality using
Silhouette coefficients for all cell types across 36 benchmark datasets. One-sided
Wilcoxon signed-rank test (alternative: greater) comparing CellScope versus
Scanpy, p = 9.60 × 10−8. d Silhouette coefficients for rare cell types (defined as < 5%
of total population) comparingCellScopeandScanpy across 36datasets (one-sided
Wilcoxon signed-rank test, alternative: greater, p = 4.26 × 10−5). e Silhouette coef-
ficients for non-rare cell types (≥5% of total population) comparing CellScope and

Scanpy across 36 datasets (one-sided Wilcoxon signed-rank test, alternative:
greater, p = 8.82 × 10−6). c–e The sample size for each boxplot is n = 36. Boxplots
display the 25%, 50% (median), and 75% percentiles, where the whiskers extend to
themost extreme data points within 1.5 times the interquartile range. fHierarchical
clustering visualization of mouse lumbar sensory neurons (Usoskin dataset)
showingmajor cell types at resolution level 2. g Extended hierarchical clustering of
the same dataset showing cell subtypes at resolution level 5. h Confusion matrix
comparing CellScope’s level-2 clustering results with annotated major cell types.
Perfect classification shown by diagonal values. i Confusion matrix comparing
CellScope’s level-5 clustering results with annotated cell subtypes. j Expression
heatmap of key marker genes identified by CellScope for different cell types and
subtypes in the Usoskin dataset.
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NHGRI dataset, Scanpy and Seurat could only distinguish the Cere-
bellum from other brain regions, while the remaining cell types
exhibited mixed clustering without clear boundaries. In contrast,
CellScope’s results successfully separated Basal Ganglia, Cerebellum,
and Cortex from other cell types. Furthermore, Amygdala and Hip-
pocampus clustered together asone cluster, andHypothalamus, spinal
cord, and Substantia nigra formed another, with clear boundaries
maintained between each cell type within these clusters. Quantitative
analysis revealed that CellScope achieved significantly higher Silhou-
ette Scores for nearly all cell types in the NHGRI dataset compared to
Scanpy or Seurat (Supplementary Fig. 9a). The analysis of the Keller (P)
dataset further demonstrated CellScope’s robust ability to recognize
both non-rare and rare cell types. For instance, non-rare cell types such
as type B pancreatic cells, comprising approximately 40% of the total
population, formed distinct clusters. Meanwhile, rare cell types,
including leukocytes, pancreatic PP cells, and pancreatic stellate cells,
representing 3.6%, 2.1%, and 1.4% of the population, respectively, were
distinctly separated (Supplementary Fig. 9b).

Through systematic analysis of all 36 datasets, CellScope
demonstrated significant superiority over Scanpy for visualization
Silhouette Scores (Fig. 3c), with the difference statistically confirmed
by Wilcoxon signed-rank test (p = 9.6 × 10−8). To further quantify its
effectiveness in identifying both non-rare and rare cell types, we
defined rare cell types as those comprising less than 5% of the total
population and non-rare types as those comprising 5% or more. We
then calculated their respective visualization Silhouette Scores (see
SupplementaryNote 1.4 for detailed calculation). The analysis revealed
that CellScope achievedhigh and stable visualization Silhouette Scores
for rare cell types (Fig. 3d, p = 4.26 × 10−5), while demonstrating greater
advantages for non-rare cell types (Fig. 3e, p = 8.82 × 10−6). To validate
the robustness of these findings, we performed comprehensive sen-
sitivity analyses using multiple thresholds (2%, 10%, 15%). Across all
threshold conditions, CellScope maintained consistently superior
performance in identifying rare cell populations, while performing as
well as or better than Scanpy for non-rare cell identification (Supple-
mentary Fig. 10). These results collectively highlight CellScope’s
unique capability to resolve low-abundance and high-abundance cell
populations with high efficacy.

Additionally, CellScope demonstrated advanced multi-level clus-
tering capabilities by analyzing the mouse lumbar cells from Usoskin
dataset52, which contains four major cell types and a total of eight
subtypes. Using our hierarchical clustering, we firstmappedmajor cell
types at the second clustering level (Fig. 3f, h), successfully separating
tyrosine hydroxylase containing (TH), neurofilament containing (NF),
peptidergic nociceptors (PEP), and non-peptidergic nociceptors (NP)
cell types. For subtypes without clear boundaries, we extended the
clustering process (Fig. 3g, i) to accurately identify NP and NF sub-
types. This superior performance can be attributed to CellScope’s
gene selection strategy, which identifies genes with subtype-specific
expression patterns (Fig. 3j). For instance, CellScope selects Tac1 and
Th asdistinctivemarkers basedon their specific expression in PEP1 and
TH cells, respectively. Additionally, CellScope identified Agtr1a based
on its preferential expression in NP1 neurons. This gene selection
approach, combined with multi-level clustering, enables accurate
identification of cell types and subtypeswhilepreserving thebiological
relationships between cell populations. This level of precision could
not be achieved by Seurat and Scanpy (Supplementary Fig. 11).

CellScope’s tree-structured visualizations refine characteriza-
tion of brain cell atlases
CellScope’s tree-structured visualization effectively displays the hier-
archical relationships between cell types and their subtypes. To
demonstrate, we implemented CellScope with a dataset from the red
nucleus within the human midbrain53, designated Siletti-1. First, Cell-
Scope’s tree-structured visualization identifies the majority of

previously annotated cell types in the Siletti-1 dataset. Specifically,
CellScope categorized cells into nine distinct classes and identified
nearly all superclusters previously reported in ref. 53. Notably, Cell-
Scope successfully identified Fibroblasts comprising only 26
cells (Fig. 4a).

Second, our analysis revealed that Oligodendrocytes (OLs) were
further differentiated into two subtypes, designated as Oligoden-
drocyte1 (OL1) and Oligodendrocyte2 (OL2), containing 541 and 1592
cells, respectively. To elucidate the hierarchical expression patterns of
key marker genes distinguishing these two subtypes, Fig. 4b, c high-
lights the expression distributions of five differentially expressed
genes across three clustering levels: Cluster, SubCluster, and Sub-
SubCluster. Specifically, the high expression of the OL1 marker gene
RBFOX1 indicates that these cells have reached a terminally
differentiated53. In contrast, the high expression of the OL2 marker
gene OPALIN reflects active myelination, suggesting that OL2 cells are
undergoing active differentiation. Meanwhile, the low expression of
OPALIN in OL1 further supports the notion that OL1 cells have reached
terminal differentiation54. Additionally,CTNND255 plays a critical role in
cell adhesion and synapse formation, while Laminin-2, encoded by
LAMA256, regulates the spreading of OLs andmyelination in the central
nervous system via the integrin signaling pathway. Therefore, the cell
population with high expression of these genes (OL2) exhibits
enhanced interaction with axons, further indicating activemyelination
processes57.

Third, CellScope’s multi-layer cell clustering provides an innova-
tive perspective to study the dynamic role of marker genes. In other
words, CellScope assigns each gene a new dynamic “molecular iden-
tity” depending onwhether it is solely unique to one layer of clustering
or continues to function as a marker across all layers of clustering. In
Siletti-1, CellScope implements a three-level hierarchical clustering
system, referred to as Clusters, Subclusters, and SubSubclusters,
which progressively identify homogeneous cell groups with increasing
resolution (Fig. 4a). By categorizing genes into three dynamic iden-
tities—housekeeping genes (HG), moderately cell-type-related genes
(MCTRG), and strongly cell-type-related genes (SCTRG)—based on
their significance across clustering levels (see Methods E for details),
we visualized the relationships between these gene identities using a
Sankey diagram (Fig. 4d). Additionally, the overlaps and transitions of
these gene identities across the three clustering levels were analyzed
(Fig. 4e). As the clustering resolution increases, the number of
housekeeping genes gradually increases, while the number of SCTRGs
and MCTRGs gradually decreases. This phenomenon reflects the
changing roles of genes at different clustering levels. Specifically, as
the resolution increases, many genes transition from SCTRGs or
MCTRGs to housekeeping genes. During cell differentiation, SCTRGs
and MCTRGs are typically involved in establishing cell-specific func-
tions or characteristics, especially during the early and middle stages
of development. As cells progress into maturity, more housekeeping
genes are activated, indicating that the cells have entered a phase
focused onmaintaining stable functions, such as protein synthesis and
metabolism, which are essential for basic cell maintenance and biolo-
gical processes.

We used three flow patterns as examples (Flow 6 HG-SCTRG-
SCTRG, Flow 4 HG-MCTRG-HG, and Flow 19 SCTRG-HG-HG) and
identified genes RBFOX1 in Flow 6, PPM1H in Flow 4, and PRANCR in
Flow 19, which serve asmarker genes exclusively at the SubSubCluster,
SubCluster, and Cluster levels, respectively (see Fig. 4f, g). Specifically,
in Flow 6, RBFOX1 is widely expressed in the nervous system and
regulates various alternative splicing events related to neural devel-
opment and maturation, including transcription factors, splicing fac-
tors, and synaptic proteins58. RBFOX1 shows high expression levels in
both Oligodendrocytes (OLs) and Splatter-type cells, while showing
minimal expression differences between Oligodendrocyte precursor
cells (OPCs) and Oligodendrocytes. This is likely because OPCs are the
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directprecursor cells ofOLs, andduring this developmental transition,
RBFOX1 primarily supports basic cell development, differentiation,
and gene regulation59, maintaining developmental continuity. As
mentioned earlier, there is a significant expression difference between
the two OL subtypes, OL1 and OL2, due to their distinct differentiation
states.

In Flow 4, gene enrichment analysis using ClusterProfiler60 reveals
that PPM1H is enriched in functions related to dephosphorylation and
protein regulation. DuringOLdifferentiation, PPM1H regulates specific
protein dephosphorylation events, contributing to myelin protein
synthesis. Interestingly, the expression differences of PPM1H between
different OL subtypes are minimal, likely because mature OLs need to
maintain a stable signaling environment for myelin formation, which
results in consistent expression of PPM1H across different OL

subtypes. In Flow 19, PRANCR, a long non-coding RNA known to reg-
ulate keratinocyte proliferation and cell cycle progression61, shows low
expression in Cluster 5, particularly in OPCs andOLs. This is consistent
with its established role in cell proliferation rather thandifferentiation.
Since myelinating cells are specialized and post-mitotic, the low
expression of PRANCR in these cells aligns with their specialized
function in myelination62.

To further validate CellScope’s capability in identifying cellular
subtypes within brain cell datasets, we applied it to two distinct data-
sets: a human thalamic dataset from the same study as Siletti-153 and a
mouse primary motor cortex dataset63. For the human thalamic data-
set, CellScope not only successfully resolved nearly all superclusters
but also precisely identified two distinct subtypes of Oligoden-
drocytes. Notably, these subtypes exhibited marker genes similar to
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Fig. 4 | Tree-structured analysis of human midbrain red nucleus cells reveals
hierarchical gene expression patterns. a CellScope hierarchical clustering tree of
human midbrain red nucleus dataset (Siletti-1) showing three resolution levels:
Clusters, SubClusters, and SubSubClusters. The number in parentheses indicates
the cell count within each cell category. b UMAP visualization of the same dataset
with cells colored by cluster assignments from a by CellScope. c Expression heat-
maps of five marker genes across three hierarchical levels, demonstrating level-
specific expression patterns. d Sankey diagram showing transitions of gene clas-
sifications (strongly cell-type-related, moderately cell-type-related, and house-
keeping genes) across the three clustering levels. Numbers indicate gene counts in

each category. e Distribution of genes across 27 possible classification transition
patterns between clustering levels. f Violin plots comparing expression levels of
three representative genes across clustering levels: RBFOX1 (transition pattern 6),
PRANCR (pattern 19), and PPM1H (pattern 4). Boxplots display the 25%, 50%
(median), and 75%percentiles, where thewhiskers extend to themost extremedata
points within 1.5 times the interquartile range. gWasserstein distances quantifying
expression differences between selected cluster pairs for the three representative
genes. Lower values indicate more similar expression distributions. Comparisons
shown for:Cluster 5 vs. other clusters, andpairwise comparisonswithinSubclusters
and SubSubClusters.
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those of Oligodendrocyte populations in the midbrain red nucleus,
suggesting conserved maturation pathways across different brain
regions. For the mouse primary motor cortex dataset, in addition to
successfully identifying nine canonical cell types, our analysis revealed
two L5 IT neuronal subtypes (designated L5 IT1 and L5 IT2). Marker
gene profiling demonstrated that L5 IT2 is involved in long-range
information transmission, while L5 IT1 primarily contributes to local
circuit modulation. Detailed analyses are provided in the Supplemen-
tary Note 1.8.

CellScope improves analysis of disease-control cell atlases
Disease-control cell atlases are invaluable inmodernmedical research,
offering critical insights into disease mechanisms, potential ther-
apeutic targets, and innovative diagnostic approaches by comparing
the cellular composition and functional states of healthy and diseased
individuals. In complex diseases like COVID-19, these atlases provide
opportunities to help uncover cellular changes during disease pro-
gression, track immune responses, and identify cell subtypes asso-
ciated with disease severity. While existing analysis pipelines64 have
made significant contributions, there remains room for improvement
in detecting such signals, particularly in distinguishing cell populations
associated with disease states.

To better analyze the disease-control atlas, we developed a
CellScope-based analytical pipeline (Supplementary Fig. 12) and
applied it to peripheral blood mononuclear cell (PBMC) data from
healthy individuals and COVID-19 patients with varying disease
severities64. Focusing on the monocyte-dendritic cell system, we suc-
cessfully identified and isolated this system in step 10 of the CellScope
analysis (Fig. 5a and Supplementary Fig. 13). CellScope clearly dis-
tinguished classical monocytes, non-classical monocytes, and con-
ventional dendritic cells (middle, left, and right clusters),
outperforming traditionalUMAP (Fig. 5b). It also revealed a continuous
differentiation trajectory from classical monocytes to conventional
dendritic cells and non-classical monocytes.

Moreover, compared to Seurat, CellScope provides a clearer dis-
tinction between the three disease states—severe, moderate, and
healthy. Specifically, in step 11, CellScope further refined the separa-
tion of COVID-19-associated cells, demonstrating its exceptional cap-
ability in identifying disease states. Figure 5c illustrates the expression
of eight marker genes in Cluster 1 (mostly COVID-19) and Cluster 2
(mostly healthy). Among them, sevenmarker genes—IFIT1,OAS2,OAS3,
RNASE2, SIGLEC1, IFI44, and IFI27—exhibit significantly higher expres-
sion in Cluster 1, whileHLA-DRB5 shows elevated expression in Cluster
2, providing key molecular markers for distinguishing disease states.
The expression levels of these genes in the monocyte-dendritic cell
system increase progressively with disease severity (Fig. 5d), high-
lighting the marked differential expression between COVID-19 and
healthy states. Notably, such differences were not observed in other
cell types (Fig. 5c). This likely underscores the critical role of the
monocyte-dendritic cell system in viral recognition, antiviral respon-
ses, and immune regulation. The upregulation of Cluster 1 genes
highlights a robust immune defense against SARS-CoV-2, particularly
interferon-mediated antiviral responses, which are crucial compo-
nents of the innate immune system’s defense against viral pathogens65.
This gene expression pattern not only indicates active viral infection
but also reveals the complex interactions between the virus and the
host immune system.

SARS-CoV-2 appears to impair dendritic cell function by down-
regulating HLA-DRB5 expression, leading to a loss of antigen-
presentation capacity in infected monocytes and dendritic cells,
facilitating viral evasion of T cell-mediated immune responses66.
Additionally, ClusterProfiler60 enrichment analysis of the seven genes
highly expressed in Cluster 1 (Fig. 5e) revealed their key roles in anti-
viral immune responses. IFIT1 and IFI27 are strongly linked to inter-
feron responses, whileOAS2 and SIGLEC1 activate interferon signaling,

triggering antiviral defenses and inhibiting viral replication. These
genes also regulate viral RNA replication, halting virus proliferation.
The enrichment analysis further uncovered their roles in multiple
stages of the viral life-cycle, from recognition to response and clear-
ance, highlighting their importance in antiviral immunity.

CellScope demonstrates interpretability and robustness
CellScope demonstrates significant advantages in algorithm inter-
pretability, robustness, and user-friendliness. It efficiently identifies
biologically meaningful key genes, adapts seamlessly to diverse data-
sets, and offers intuitive and informative visualization. In contrast,
existing tools such as Seurat and Scanpy primarily focus on HVG for
gene selection, which have limitations in distinguishing between
housekeeping genes and key genes. These tools also often require
careful parameter adjustment to achieve optimal results.

First, CellScope enhances algorithm interpretability through its
innovative gene selection approach. It selects samples with high den-
sity and large distances from each other as “manifold seeds” to effec-
tively distinguishbetweennoise andmeaningful signals. This approach
is grounded in a fundamental principle of unsupervised learning and
cluster analysis—the relationship between local density and distance
on manifolds67. The intuition behind this strategy is that high-density
points have a greater probability of residing at the centers of manifold
clusters, where their local neighborhoods typically exhibit higher class
purity. Analysis of the Mouse Cerebral Cortex cells from the Zeisel
dataset68 revealed a strong negative correlation between local density
and distance from true cluster centers (Fig. 6a), where high-density
points consistently exhibited improved neighborhood purity (Fig. 6b),
supporting our density-distance based manifold seeds identification
method. We also compared the differences between selected and
unselected genes within and between clusters (Fig. 6c, d). Relative to
the unselected genes, the genes selected by CellScope exhibit sig-
nificantly larger inter-class differences and smaller intra-class differ-
ences (p = 3.8 × 10−38). In contrast, the unselected genes show that
intra-class variance is significantly greater than inter-class variance.
This enhanced distinction facilitates better cluster separation,
demonstrating that our gene selection process effectively captures the
most informative genes for distinguishing different cell types.

Second, CellScope demonstrates exceptional robustness and
adaptability by minimizing manual parameter tuning and maintaining
consistent performance across various datasets. Unlike existing algo-
rithms that often require meticulous manual parameter tuning, Cell-
Scope achieves robust performance with minimal user intervention.
We performed comprehensive robustness analyses to evaluate key
parameters in our gene selection process, including the number of
PCA dimensions, the number of selected manifold seeds, and the
number of selected genes. First, we assessed how varying the number
of PCA dimensions affects clustering performance. The ARI remained
stable across different numbers of PCA dimensions (Fig. 6e and Sup-
plementary Table 18), with optimal performance observed at around
100 dimensions. Second, we compared our adaptive method for
manifold seeds selection with fixed-number approaches. Our adaptive
method consistently outperformed fixed-number methods across
different dataset sizes (Fig. 6f and Supplementary Table 17). This
adaptability allows CellScope to automatically adjust to the char-
acteristics of each dataset without manual intervention. Third, we
investigated the impact of the number of genes selected during gene
selection. The clusteringperformance remained consistent over awide
range of gene counts (Fig. 6g and Supplementary Table 16), with
optimal results achieved around 500 genes. However, selecting too
fewgenes (e.g., 50genes) led to insufficient clustering information due
to the omission of key genes that determine cell identity, resulting in
poor cluster separation. Conversely, selecting too many genes (e.g.,
10,000 genes) introduced redundant information, which masked cell
type-specific signals and hindered effective separation of different cell
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types. This phenomenon was evident in the analysis of human oral
cavity cells from the Tirosh dataset69 (Fig. 6h). These results emphasize
the importance of judicious gene selection in single-cell analysis and
highlight CellScope’s robustness and adaptability in handling this cri-
tical parameter.

To evaluate the importance and necessity of each design com-
ponent, we conducted a comprehensive evaluation combining tar-
geted component analysis and systematic ablation studies, with all
quantitative results provided in SupplementaryTable 19. Following the

CellScope analysis pipeline, we first validated the necessity of the
normalization step through ablation experiments.Normalization helps
mitigate technical variability and standardizes data scales across cells,
thereby enhancing the reliability of clustering. The results showed that
applying normalization improved clustering performance, with an
average ARI increase of 0.09. Next, we evaluated the importanceof the
initial dimensionality reduction via PCA, which serves as a critical step
in the first stage of manifold fitting. This step extracts the most
informative features from the high-dimensional expressionmatrix and
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generated by CellScope. The colors inside the circle represent different cell types,
while the outer ring colors indicate disease status. b UMAP visualization compar-
ison of themonocyte-dendritic cell system provided by CellScope and Seurat, with
colors representing cell type and disease severity. c Violin plots illustrate the
expression levels of 8 marker genes, arranged from top to bottom as Cluster 1,

Cluster 2, and cells outside Cluster 1 and Cluster 2, categorized by healthy state,
COVID-19 moderate, and COVID-19 severe. d Violin plots showing the expression
levels of 8marker genes in themonocyte-dendritic cell system across three disease
states. e GO enrichment comparison of gene clusters uniquely upregulated in
Cluster 1. The p-values after Benjamini-Hochberg (BH) correction (Hypergeometric
Test) for these functions from top to bottom are: 1.24 × 10−7, 7.16 × 10−7, 7.16 × 10−7,
7.16 × 10−7, 1.91 × 10−6, 6.56 × 10−7, 6.56 × 10−7, 1.91 × 10−6, 1.11 × 10−5, 3.36 × 10−5.

Article https://doi.org/10.1038/s41467-025-67890-3

Nature Communications |         (2026) 17:1130 10

www.nature.com/naturecommunications


0.1 0.2 0.3 0.4 0.5

D
is

ta
nc

e 
to

 th
e 

cl
us

te
r c

en
te

r

0.0

0.5

1.0

0.1 0.2 0.3 0.4 0.5
Density

N
ei

gh
bo

rh
oo

d 
P

ur
ity

Intra-class Inter-class

a dcb

Fibroblast
Unknown
B Cell
Dendritic
Endothelial
Fibroblast
Macrophage
Mast
T cell
myocyte

Number of genes: 50 

Silhouette Score: 0.26

Number of genes: 100 

Silhouette Score: 0.28

Number of genes: 500 

Silhouette Score: 0.45

Number of genes: 1000 

Silhouette Score: 0.25

Number of genes: 5000 

Silhouette Score: 0.22

Number of genes: 10000 

Silhouette Score: 0.09

Number of manifold seedsPCA dimensions

e f g

h

V
ar

ia
nc

e 

Density

V
ar

ia
nc

e 

Selected genes Unselected genes

Intra-class Inter-class
0

5

10

15

0

5

10

Number of selected genes

ARI ARIARI
N

on-Fitting better
Fitting better

Tied

i

Fitting
Non-Fitting

0.0 0.5 1.0
ARI

D
istance better

G
raph better

Tied

Graph
DistanceYan

Goolam
Pollen
Wang

Darmanis
Usoskin

Xin
Keller(I)
Muraro
NHGRI

Klein
Zeisel
Lake

Keller(P)
Han(B)

Siletti−1
Tirosh

Siletti−2
Baron(H)
Siletti−3
Siletti−4
Siletti−5
Siletti−6

Ulrich(H)
Li

Li(H)
Qiu(L)
Ulrich

Qiu(E)
Ayhan

Posner
Li(M)

Yu

Yao
Li(HA)

0.0 0.5 1.0
ARI

90
124
249
457
466
622

1600
1887
2126
2642
2717
3005
3042
3384
4038
4713
5902
6877
8569

23349
27111
28724
47416
59738
67996
72788
76732
77536
93695

129905
130908
147523
155232
158978
159738
265767
#CellsData Name

0.0

0.5

1.0

50 100 200 300 400 500
0.0

0.5

1.0

50 100 500 1000 5000 10000
0.0

0.5

1.0

Adaptive 3 5 7 9

0.0

0.5

1.0

Hoo

U
M

A
P

2
U

M
A

P
2

U
M

A
P

2

UMAP1 UMAP1

Fig. 6 | CellScope demonstrates interim results and optimal parameter choices
with a strong theoretical foundation. a Scatter plot of Density vs Distance for
Zeisel dataset. The X-axis shows the local density of every cell. The Y-axis shows the
distance from the cell to its nearest true class center. b Scatter plot of Density vs
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in the NHGRI dataset. d Violin plot comparing intra-class and inter-class gene var-
iance for unselected genes using the CellScopemethod in theNHGRI dataset. eBox
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enables the identificationofmore reliablemanifold seeds.The ablation
results demonstrated that applying PCA prior to manifold fitting
improved clustering accuracy by approximately 0.16 in ARI, compared
to skipping this step. We further investigated the impact of the mani-
fold fitting process on CellScope’s performance. Figure 6i (left) illus-
trates that, in 31 out of 36 datasets, the application of manifold fitting
yielded superior results compared to those without manifold fitting.
We then compared the performance of the graph-based hierarchical
clustering method adopted in CellScope with traditional distance-
based hierarchical clustering. The ARI values showed that our graph-
based clustering achieved equal or better performance than distance-
based clustering in 33 out of 36 datasets (Fig. 6i (right)). This can be
attributed to the ability of graph-based algorithms to more effectively
capture local structures and nonlinear relationships in the data by
constructing nodes and edges. This is particularly beneficial in high-
dimensional datasets and clusters with complex morphologies, where
traditional distance-based algorithms may struggle due to their
inability to capture intricate structural properties. To further optimize
CellScope, we implemented an adaptive distance metric based on
dataset size: Euclidean distance for smaller datasets and Jaccard dis-
tance for larger datasets. The results (SupplementaryTable 19) confirm
the reliability of this adaptive strategy. The effectiveness of this
approach stems from the fact that Euclidean distance can introduce
dimensional artifacts in large datasets, a phenomenon known as the
“curse of dimensionality”70. In contrast, the Jaccard distance metric
effectively alleviates this issue by focusing on the presence or absence
of features rather than their magnitude, making it more suitable for
high-dimensional data.

Discussion
To address fundamental challenges in single-cell RNA sequencing
analysis, including biased gene selection, oversimplified cellular
visualization, and limited capability in discovering and interpreting
complex biological phenomena, we present CellScope, a comprehen-
sive computational frameworkbuilt uponmanifold learningprinciples.
CellScope introduces three key innovations: a rapid and accurate gene
selection method that minimizes bias while maintaining biological
relevance, a tree-structured visualization framework that compre-
hensively represents cellular hierarchies, and a multi-level character-
ization system that provides dynamic gene classifications across
different resolutions. Based on these innovations, CellScope demon-
strates significant advantages: achieving exceptional accuracy, com-
putational efficiency, and interpretability across diverse datasets,
while also exhibiting powerful capabilities in discovering cell sub-
populations and identifying disease-specific clusters.

A particularly powerful aspect of CellScope is its gene selection
methodology, which demonstrates marked improvements over exist-
ing approaches. Current single-cell gene selection frameworks exist in
two extreme states: overly simplistic or excessively complex. Simplis-
tic algorithms such as HVG, implemented in Seurat or Scanpy, directly
select HVG without distinguishing whether the variations arise from
biological signals or noise. In contrast, complex algorithms typically
employ pre-clustering or consensus approaches, which although per-
forming better than HVG, are computationally intensive and can
introduce biases from poor separation in the pre-clustering step.
CellScope bridges this gap by introducing a balanced and efficient
approach. By constructing reference clusters using only a small subset
of trustworthy cells from the centers of high density regions, Cell-
Scope is able to identify biologically informative genes with higher
reliability and efficiency than other established methods.

Popular visualization techniques like UMAP and t-SNE prioritize
global structure preservation at the expense of local relationships,
leading to a loss of fine-grained information about cell states and
developmental trajectories. CellScope addresses this limitation
through its innovative tree-structured visualization framework, which

provides a hierarchical representation of cellular relationships across
multiple resolutions. Unlike traditional dimensionality reduction
methods that compress all information into a single view, our tree
structure preserves both broad cellular categories and subtle cell
states, enabling researchers to explore cellular hierarchies at different
levels of granularity. This multi-resolution visualization approach is
particularly powerful when analyzing complex tissues or disease pro-
gressions, where cellular states exist along continuous spectrums
rather than discrete categories.

An important innovation of CellScope is its introduction of a
multi-level identity system for genes, extending beyond traditional
binary classifications of marker versus non-marker genes. By char-
acterizing genes through their roles across multiple clustering layers—
as housekeeping genes (HG), moderately cell-type-related genes
(MCTRG), or strongly cell-type-related genes (SCTRG)—we establish a
dynamic “molecular identity” for each gene. This hierarchical gene
identity system reveals how genes can play different roles at different
levels of cellular organization, providing crucial insights into the
context-dependent nature of gene function. This understanding is
particularly valuable for disease studies, where genesmay acquire new
functions in pathological states, and for developmental biology, where
genes often switch roles during different stages of cellular
differentiation.

Furthermore, CellScope demonstrates several compelling
advantages in the analysis of single-cell data through its robust, user-
friendly, and interpretable framework. The tool’s interpretability is
grounded in its theoretically sound approach to manifold fitting71,
allowing it to effectively distinguish signal from noise. In addition,
unlike othermethods, CellScopedoes not require extensive parameter
tuning, as evidenced by its stability across various parameter settings,
including PCA dimensions, gene selection counts, and manifold seeds
detection methods. Collectively, CellScope’s analytical rigor and
practical usability position it as a reliable and accessible tool for single-
cell analysis.

Benefiting from these technical advances, CellScope enables sig-
nificant biological discoveries across diverse applications. For
instance, our analysis of the Human Brain Cell Atlas uncovered two
previously unrecognized Oligodendrocyte subtypes which exhibit
distinct molecular signatures characterized by RBFOX1 and OPALIN
expression, respectively, revealing insights intomyelinationprocesses.
CellScope’s capabilities also extend to disease research, as demon-
strated in our COVID-19 study. Through analysis of PBMCs from
patients with varying disease severities, we successfully distinguished
traditional immune cell typeswhile simultaneously identifyingdisease-
specific states. The method revealed eight marker genes showing
progressive expression changes with disease severity, specifically
within the monocyte-dendritic cell system, providing crucial insights
into antiviral immune responses. These discoveries in both steady-
state and disease contexts demonstrate CellScope’s unique power in
revealing both subtle cellular states and disease-associated transitions
that are often missed by conventional analysis methods. Overall,
CellScope provides a user-friendly, technically sound tool for advan-
cing the field of single-cell omics in an era of increasing availability of
large and complex single-cell datasets.

While CellScope addresses key limitations of established frame-
works like Seurat and Scanpy through its manifold-based gene selec-
tion and hierarchical clustering approach, we acknowledge that these
established methods possess valuable features, including mature
ecosystems, extensive documentation, and broad data type support
that are currently beyondCellScope’s scope. Seurat’smodular R-based
architecture and Scanpy’s Python integration offer computational
accessibility and workflow flexibility that have made them community
standards. Recent methods such as scCRT72 represent another crucial
approach to single-cell analysis, which innovatively combines cell-level
pairwise modules with cluster-level contrastive learning to preserve
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cellular relationships for trajectory inference applications. While both
scCRT and CellScope learn highly informative low-dimensional
representations and leverage clustering information, they differ in
their design focus: scCRT emphasizes continuous processes and tra-
jectory analysis, whereas CellScope is optimized for discrete clustering
tasks and multi-resolution cellular characterization. However, Cell-
Scope’s theoretical foundations—particularly its ability to distinguish
biological signal from noise and capture cellular hierarchies—position
it as a promising framework for single-cell analysis. As datasets grow
larger and more complex, CellScope’s parameter-free operation,
superior clustering performance, and discovery-oriented design
address critical needs that existing methods struggle to meet. Moving
forward, we plan to continuously maintain and enhance the CellScope
package, including expanding its compatibility with emerging data
modalities such as spatial transcriptomics and multimodal omics
integration. Additionally, we envision systematic reanalysis of large-
scale public databases using CellScope’s framework, which could
reveal previously undetected cellular subtypes and biological insights
across diverse tissues and disease contexts. Through sustained
development, community engagement, and comprehensive reanalysis
efforts, CellScope aims to advance single-cell analysis by enabling
researchers to push the boundaries of cellular biology beyond tradi-
tional cell type identification toward comprehensive functional char-
acterization and promising biological discovery.

Methods
CellScope aims to analyze single-cell data through manifold fitting,
enabling precise identification of differences between cell types and
subtypes. By identifying highly reliable cliques, the method effectively
selects type-determined genes with class-specific differences while
leveraging manifold fitting to mitigate the impact of technical noise.
CellScope then constructs a cell-to-cell similarity graph and performs
agglomerative clustering based on this graph to generate a hier-
archical structure of cells. A tree-structured visualization intuitively
represents the hierarchical relationships and reveals differentiation
pathways among cells. Furthermore, CellScope analyzes gene expres-
sion changes along differentiation pathways and expression differ-
ences within the same hierarchy, providing functional insights
into genes.

The CellScope workflow consists of five main steps, as explained
in detail below: (A) Manifold fitting stage 1, (B) Manifold fitting stage 2,
(C) Graph-based agglomerative clustering, (D) Tree-structured visua-
lization, and (E) Characterization of genes from different categories.
The pseudocode and flowchart of the algorithm can be found in
Supplementary Note 1.7 and the tutorial website https://cellscope.
readthedocs.io/en/latest/, respectively.

We summarize the main notations used in the description of the
method as follows: suppose we have a expression counts matrix
X = fxigNi = 1, where each vector xi corresponds to the expression values
½xð1Þ

i , . . . ,xðDÞ
i � of the i-th cell across D genes. We also let G= fgigDi= 1,

whereG represents the collection of genes related toX . Aftermanifold
fitting stage 1, we obtainY = fyigNi = 1, where Y represents the scRNA-seq
data after manifold fitting stage 1. Each vector yi corresponds to the
expression values ½yð1Þi , . . . , yðD1Þ

i � of the i-th cell across D1 selected
genes, whereD1≪D. The set of selected genes is denoted as bG= fbgig

D1
i = 1,

where bG � G. Subsequently, after manifold fitting stage 2, we obtain
Z = fzigNi = 1, where Z represents the fitted scRNA-seq data for sub-
sequent downstream analysis.

Manifold fitting stage 1
Data preprocessing. We applied consistent preprocessing to all
single-cell RNA sequencing datasets. First, log normalization (base 2)
was applied to the raw data X . Then, we normalized each cell’s
expression profile, which is a standardprocedure prior to downstream

analyses. This stage is essential for eliminating differences in total
expression levels between cells, which may arise from technical or
biological factors. It ensures that highly expressed genes in cells with
elevated overall expression do not dominate the dimensionality
reduction process, thereby preventing bias in subsequent analyses. Let

XP = fexigNi= 1 denote the preprocessed data, where each vectorexi = ½exð1Þ
i , � � � , exðDÞ

i � represents the expression values of the i-th cell after
preprocessing. The set of genes after preprocessing is denoted

as eG= fegig
D
i= 1.

Find highly reliable cliques. We begin this process with Principal
ComponentAnalysis (PCA)73, aiming to reducenoise and complexity in
the data while retaining the primary sources of variation, thereby
clarifying the manifold structure of the data and providing a solid
foundation for subsequent manifold exploration. In PCA, we set the
target dimensionality to n1 (defaulting to 100) and apply it to the
preprocessed data XP . This results in a collection of cells represented
in a low-dimensional space, denoted as P = fpigNi= 1, where pi 2 Rn1 .

We aim to identify highly reliable cliques associated with distinct
submanifolds, beginning with the identification of the centers of these
submanifolds, referred to as manifold seeds. Inspired by ref. 67, local
density reflects the compactness of a cell’s surrounding distribution,
while relative distance measures the separation of a cell from other
cells with higher density. Manifold seeds tend to exhibit significantly
higher values in both metrics. Therefore, we evaluate the potential of
each cell pi to serve as a manifold seed by calculating its local density
ρ(pi) and relative distance δ(pi), defined as:

ρðpiÞ=
1P

j2N i
dðpi,pjÞ

, δðpiÞ=minj2N i ,ρðpj Þ>ρðpiÞdðpi,pjÞ, ð1Þ

where N i is the set of k nearest neighbors of cell pi (with k = 20 by
default), and d( ⋅ , ⋅ ) denotes the distance between two cells, defaulting
to Euclidean distance. Next, we compute the composite metric:

γðpiÞ= ρðpiÞδðpiÞ, ð2Þ

and select the cells with the highest γ(pi) values as manifold seeds.
Specifically, we choose the top m cells with the largest γ(pi) values as
manifold seeds, with m being a predefined hyperparameter which
refers to the number of submanifolds hypothesized in advance.

However, since m is related to the number of cell types, an intel-
ligent approach is required to determine the number of manifold
seeds m when the number of cell types is unknown. We first address
the issue of scale differences between ρ and δ in the calculation of γ.
Both ρ and δ are normalized as

ρ0ðpiÞ=
ρðpiÞ �minðρÞ

maxðρÞ �minðρÞ , δ
0ðpiÞ=

δðpiÞ �minðδÞ
maxðδÞ �minðδÞ , ð3Þ

where ρ= fρðpiÞgNi= 1 and δ = fδðpiÞgNi = 1. Next, we compute a scaleless
index by multiplying the two normalized metrics:

γ0ðpiÞ= δ0ðpiÞ � ρ0ðpiÞ: ð4Þ

We then sort γ0 = fγ0ðpiÞgNi = 1 in descending order, with γ00j representing
the j-th value in the sorted list. To further refine the selection of
manifold seeds, we introduce the relative rate of change in γ″:

Rj =

γ00j + 1�γ00j�1

2 if 2 ≤ j ≤ N � 1,

γ002 � γ001 if j = 1,

0 if j =N:

8><>: ð5Þ
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Finally, we select the manifold seeds that satisfy the following condi-
tions:

C = fpijρ0ðpiÞ>ρ0,δ0ðpiÞ>δ0, γ0ðpiÞ> γ0,RIðpiÞ <Rg, ð6Þ

where � denotes the mean value of the respective set and R= fRjgNj = 1.
The index I(pi) refers to the position of γ0ðpiÞ in γ″ after sorting γ0. The
combined metric-based strategy ensures that the selected manifold
seeds possess both high local density and relative distance. The
introduction of the relative rate of change further optimizes this
selection process, intelligently selecting all high-confidencemanifold
seeds.Ultimately,wedenotethesetofselectedseedsasC={c1,⋯ ,cm},
where m represents the number of seeds selected.

Given that the identifiedmanifold seeds are highly likely to reside
at the centers of their respective submanifolds, the cells in the
immediate neighborhood of each seed are assumed to belong to the
same class as the seed. Therefore, for each seed ci, we select its k1
nearest neighboring cells (with k1 = 5 by default), denoted as N ci

. To
ensure a high-confidence classification of the sets fN c1

, � � � ,N cm
g, we

combine the concept of connected components in graphs, and define
the following partition:

Nci
andNcj

belong todifferent groups; ifNci
\N cj

=ϕ,

Nci
andNcj

belong to the samegroup; otherwise,

(
ð7Þ

for 1 ≤ i ≠ j≤m. The resulting partition of high reliable cliques
fN c1

, � � � ,N cm
g is recorded as ℓ1.

Signal space identification. Due to the significant variance differ-
ences of genes in the signal space, both within and between cell clus-
ters, our goal was to identify genes that exhibit notable expression
differences, particularly between different cell types, within highly
reliable cliques. To achieve this, we leveraged the high-confidence
labels ℓ1 obtained from these reliable cliques and performed a one-way
analysis of variance (ANOVA74) on each preprocessed gene egk 2 eG. For
each gene, the corresponding p-value was computed based on its
expression across different cell clusters. We then selected the top D1

genes with the lowest p-values (default: D1 = 500), denoted as bG, as the
result of gene selection. Furthermore, we retained the genes from the
signal space in XP , denoted as Y.

These selected genes represent those with the most significant
expression differences between submanifolds and are considered key
to capturing the biological distinctions between different cell types.
The set of genes in signal space, bG, provides a group of genes that best
distinguish the identified cell clusters, facilitating more efficient and
biologically meaningful downstream analyses.

Manifold fitting stage 2
To further highlight the true biological signals and better reflect the
underlying cellular heterogeneity, we project cells located between
submanifolds or near manifold boundaries closer to the centers of
their respective submanifolds. This process ensures that the bound-
aries between submanifolds become clearer after projection. We
assume that the density of data points decreases as the distance from
the manifold center increases. Therefore, our fitting process focuses
on low-density points, as they aremore likely to be influencedbynoise.

First, we calculate the local density ρ(yi) for each cell yi to assess
its position within the manifold, using the following formula:

ρðyiÞ=
1P

yj2N k ðyiÞdðyi,yjÞ
: ð8Þ

We then select the 5% of cells with the lowest densities to form the set
of manifold outliers O.

We assume that the closest high-density point to each outlier
belongs to the same class and is closer to the center of its respective
manifold. To achieve this, we adopt the projection estimation method
from our previous work30. For each outlier yi 2 O, the nearest high-
density point byi is defined as:

byi = argminby2Y dðby, yiÞ, with ρðbyÞ>ρðeyÞ, 8ey 2 O: ð9Þ

Subsequently, while preserving the relative position between the
outlier yi and byi, we project yi closer to the center of the manifold, as
given by:

zi = tbyi + ð1� tÞyi, ð10Þ

where t is 0.9 by default. For regular points not identified as outliers,
we define their projection as zi = yi, if yi=2O. The final dataset after the
second stage of manifold fitting is represented as Z = fzigNi= 1.

Graph-based agglomerative clustering
In the field of unsupervised learning, distance matrix-based agglom-
erative clustering methods have been extensively studied and
applied75,76, whereas graph-based clustering aggregation techniques
remain relatively under-explored. A similarity graph can capture the
local neighborhood relationships between points within a submani-
fold, reflecting the manifold’s local geometric properties. At the same
time, through the construction of neighborhood relationships, the
graph can represent the connectivity between different submanifolds.
Therefore, after obtaining a clear manifold structure, we begin by
using the Uniform Manifold Approximation and Projection (UMAP)
algorithm20 to construct the similarity matrix S= fsijgNi, j = 1. Specifically,
for each cell xi, we determine its k = dlog2ðNÞe nearest neighboring
cells. We first set the similarity between the cell and cells outside its k
nearest neighbors to 0. Next, using a Gaussian kernel function, we
compute the local similarity sij between two cells zi and zj:

sij = exp �k zi � zjk2
σ2
i

 !
, ð11Þ

where zj is in the k nearest neighbors of zi and ∥zi − zj∥ denotes the
Euclidean distance, and σi is a locally adaptive scale parameter satis-
fying:

Xk

j = 1
exp �k zi � zjk2

σ2
i

 !
= log2ðkÞ: ð12Þ

To construct a symmetric similarity graph, we define the edge simi-
larity wij as:

wij = sij + sji � sij � sji: ð13Þ

The corresponding symmetric similarity matrix is denoted as
W= fwijgNi, j = 1. Finally, using the average linkage method based on
pairwise similarities, we systematicallymerge data points starting with
each cell as a separate cluster, and denote the clustering results after K
steps as TK. TK+1 merges the two clusters with the highest average
similarity, i.e., clusters Aℓ and Bℓ that maximize:

½A‘,B‘�= argmaxA,B2TK

1
jAjjBj

X
a2A
X

b2Bwab: ð14Þ

For exceptionally large datasets (with over 30,000 data points),
we employ the following optimization strategy: First, we randomly
select a representative subset of 30,000 points from the complete
dataset to form subset S1, while the remaining cells constitute subset
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S2. After performing hierarchical clustering on S1 using the average
linkage method to obtain clustering result T 0

K , we analyze the dis-
tribution of clusters within the k nearest neighbors (default k = 5) of
each cell z ∈ S2 in S1 and assign z to the cluster with the highest cell
count in its k nearest neighbors.

Tree-structured visualization
To comprehensively and systematically explore cell types and their
subtypes, we developed a tree-structured visualization method. First,
we applied the UMAP algorithm20 to visualize all cells as the root node.
Then, eachcluster fromTN−1 was visualized individually to generate the
first layer of child nodes. By comparing the clustering results of TN−2
and TN−1, we identified two new subtypes within the cells of the first-
layer child nodes and visualized them as the second layer of child
nodes. This iterative process was repeated in the same manner,
advancing layer by layer.

To clearly illustrate the distribution of each pair of subtypes
within their parent nodes, we applied a color-coding scheme to the
tree-structured visualization. Specifically, each branch’s outermost
nodes were colored first, and the colors of the child nodes were then
propagated back to their respective parent nodes. This core visuali-
zation method effectively reveals the hierarchical relationships
between cell types, illustrating how different cell populations
emerge, differentiate, and specialize over time. The tree-structured
visualization automatically generated by CellScope is shown in
Supplementary Note 1.9 and the tutorial at https://cellscope.
readthedocs.io/en/latest/.

Characterization of genes from different categories
After generating the Tree-structured visualization, we quantified the
gene expression differences between sibling nodes (sharing the same
direct parent node) using the Wasserstein distance. This metric mea-
sures theminimal transport cost required to transformone probability
distribution into another, providing a robust comparison between
gene expression profiles from sibling nodes.

For gene g1, assume its expression in two sibling nodes is repre-
sented by P = {p1, …, pn} and Q = {q1, …, qm}, respectively. First, both
expression vectors are sorted in ascending order, yielding the ordered
vectors P0 = fp0

1, . . . ,p
0
ng and Q0 = fq01, . . . , q0mg. We then compute the

cumulative distribution functions (CDFs) for the sorted vectors P0 and
Q0, as defined by the following equations

FPðp0
iÞ=

i
n
, i= 1, 2, . . . ,n, ð15Þ

FQðq0jÞ=
j
m

, j = 1, 2, . . . ,m: ð16Þ

We then use linear interpolation to align the two CDFs FP and FQ onto
the same probability space. For a given probability value x ∈ [0, 1], if
FPðp0

iÞ< x < FPðp0
i+ 1Þ, then F�1

P ðxÞ is calculated as

F�1
P ðxÞ=p0

i +
x � FPðp0

iÞ
FPðp0

i+ 1Þ � FPðp0
iÞ
� ðp0

i+ 1 � p0
iÞ: ð17Þ

Similarly, F�1
Q ðxÞ is computed in the same manner. Finally, the

Wasserstein distance77 is defined as the integral of the absolute
difference between the two inverse CDFs across the probability
space [0, 1]

W 1ðP,QÞ=
Z 1

0
jF�1

P ðxÞ � F�1
Q ðxÞjdx: ð18Þ

Finally, based on the Wasserstein distance calculated from the
expression differences of genes between sibling nodes, we classified

the genes into three categories

Housekeepinggene ifW 1ðP,QÞ<0:5,
Moderately cell� type� relatedgene if 0:5≤W 1ðP,QÞ< 1,
Strongly cell� type� relatedgene if 1≤W 1ðP,QÞ:

8><>:
ð19Þ

The threshold selection for Wasserstein distance is based on Supple-
mentary Fig. 14, using SubCluster1 and SubCluster2 in Siletti-1 (Fig. 4)
as an example to demonstrate its rationale. When the Wasserstein
distance is less than 0.5, the gene expression distributions are similar.
For distances between 0.5 and 1, there are notable differences in
means, though someoverlap remains, indicatingmoderate differences
in gene expression. When the distance exceeds 1, the first quartile for
the cluster with highermean expression surpasses the third quartile of
the other, indicating significant differences in gene expression. In
addition, we systematically reviewed three traditional differential gene
analysis methods in Supplementary Note 1.6.

Benchmark methods
Compared pipelines. We compared CellScope against two widely
used single-cell analysis methods (Seurat35 and Scanpy13) and three
recent methods (scLEGA36, scDCCA37, and CellBRF38). Scanpy was
implemented from its original source code repository (https://github.
com/scverse/Scanpy). HVG were identified based on specified thresh-
olds for mean expression and dispersion, and clustering was per-
formed using the Leiden algorithm across a range of resolutions. The
algorithm parameters were set according to the default parameter
settings in the tutorial(https://Scanpy-tutorials.readthedocs.io/en/
latest/pbmc3k.html).

Seurat was implemented from its source code (https://satijalab.
org/seurat) with a scale factor of 10,000. We identified 2000 variable
features using the vst selection method as mentioned in Seurat
tutorial(https://satijalab.org/seurat/articles/pbmc3k_tutorial). Neigh-
bors were identified using the first 10 principal components, and
clustering by Louvain algorithm was performed across a range of
resolutions.

scLEGA combines a denoising autoencoder with a graph auto-
encoder usingmulti-head attention to fuse expression and topological
information (https://github.com/Masonze/scLEGA-main). Following
the authors’ recommended settings, we used learning rate 0.001,
latent dimension 16, 8 attention heads, 2500 HVG, and 200 training
epochs.

scDCCA is a deep contrastive clustering method that integrates a
denoising autoencoderwithdual contrastive learning.We followed the
authors’ recommended configuration (https://github.com/WJ319/
scDCCA): 2000 HVG, zdim = 32, encoder layers [256, 64], and ran 70
pretraining epochs followed by 100 clustering epochs.

CellBRF is a random forest-based method for cell type identifi-
cation with class balancing strategy. We used the authors’ recom-
mended parameters (https://github.com/xuyp-csu/CellBRF): k = 15
nearest neighbors, npcs = 50 principal components, and enabled
redundancy removal with correlation threshold 0.8.

In our experiments, we considered a range of clustering resolutions
for both Scanpy and Seurat, specifically testing resolutions of 0.1, 0.15,
0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9,
and 2.0. For each method, we computed the Adjusted Rand Index (ARI)
between the predicted clusters and the true cell type labels at each
resolution. The final results for both methods were selected based on
the highest ARI observed across all tested resolutions, ensuring that the
best clustering performance was captured for each dataset.

Gene selection methods. We compared several common gene filter-
ing methods and the latest gene selection methods to identify the
most effective techniques for analyzing single-cell RNA sequencing
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data. Disp43 and VST35are widely used gene filtering methods. Disp,
introduced by Seurat, identifies genes with the largest variation after
controlling for mean expression variability by z-standardizing disper-
sion measures within expression bins. VST refines this approach by
fitting a loess curve to the log(variance) vs. log(mean) relationship.

In terms of gene selection methods, SAIC78 uses an iterative
k-means clustering method to thoroughly search for the best feature
genes. FEAST45 uses the F statistic to test feature significance and
summarize the variance differences between and within groups,
similar to the Fisher score. We also selected the ensemble learning-
based method, CellBRF38, which uses a random forest guided by pre-
dicted cell labels to identify the most important genes for distin-
guishing cell types. Finally, we considered the graph-based method,
HRG46, which finds informative genes by optimizing expression pat-
terns in a similarity network between cells, ensuring that these genes
exhibit regional expression patterns. Each method provides a unique
approach to gene selection.

Benchmark data
Weselected 36benchmarkdatasetswith cell numbers ranging from90
to 265,767, covering various tissues of humans and mice, including
pancreas, brain, intestine, spleen, liver, bonemarrow, retina, etc. These
datasets also involve a variety of diseases and health conditions, such
as human islet cells, mouse cerebral cortex, human cervical cancer,
and mouse motor cortex. The number of genes in these datasets
ranges from 14,717 to 59,357, and the number of cell types ranges from
3 to 20, covering a wide range of biodiversity to measure the perfor-
mance of CellScope. The detailed information of all datasets is listed in
Supplementary Table 2.

Computational environments
All computational analyses, including the execution of CellScope and
comparative algorithms (Scanpy, Seurat, scLEGA, scDCCA, and
CellBRF), were performed on the Google Colab platform equipped
with 44 CPU cores and 150 GB RAM. To further validate performance
metrics, additional benchmarking experiments—focusing on cluster-
ing accuracy, runtime efficiency, and memory utilization—were con-
ductedonpersonal computers. These included anAppleMacBook (M2
chip, 8-core CPU, 16GB RAM) and an Apple iMac (M4 chip, 10-core
CPU, 16GB RAM). CellScope was executed in a Python environment,
with its Python version and required library dependencies detailed in
Supplementary Table 26. All comparative algorithms utilized the latest
publicly available versions, with Scanpy version 1.10.3 and Seurat
version 5.2.0.

Statistics and reproducibility
In the implementation of CellScope, no statistical method was used to
predetermine sample size. No data were excluded from the analyses;
the experiments were not randomized; the investigators were not
blinded to allocation during experiments and outcome assessment.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Publicly available datasets used in this study can be accessed from the
National Center for Biotechnology Information Gene Expression
Omnibus (GSE36552, GSE83139, GSE67835, GSE59739, GSE81608,
GSE85241, GSE65525, GSE60361, GSE132042, GSE108097, GSE103322,
GSE84133, GSE178101, GSE228590, GSE160189, and GSE243413), the
NCBI Sequence Read Archive (SRP041736), the European Nucleotide
Archive (E-MTAB-3321, E-MTAB-13382, E-MTAB-12795, and E-MTAB-
10187), the Database of Genotypes and Phenotypes (PHS000833 and
PHS000424V9P2), and the BRAIN Initiative Cell Census Network

(RRID:SCR_015820) available for download from the Neuroscience
Multi-omics Archive (RRID:SCR_016152). Human retina datasets (Li(H)
and Li(HA)) are from the Human Retina Cell Atlas (HRCA) project and
can be accessed through the HCA Data Portal (https://data.
humancellatlas.org/). The specific download links for all datasets can
be found in Supplementary Table 3. We deposit the gene expression
matrices and their corresponding labels of the benchmark datasets in
the Zenodo database, accessible via https://doi.org/10.5281/zenodo.
1763650379. The source data generated in this study underlying all
reported figures are provided in the Supplementary and Source Data
files. Source data are provided with this paper.

Code availability
CellScope is implemented inPython and available onGitHub at https://
github.com/zhigang-yao/CellScopeand on Zenodo at https://doi.org/
10.5281/zenodo.1763650379. Detailed tutorials, code instructions and
notebooks to reproduce the results of this study are available at
https://cellscope.readthedocs.io/en/latest/.
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