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Gene expression is modulated jointly by transcriptional regulation and
messenger RNA stability, yet the latter is often overlooked in studies
ongenetic variants. Here, leveraging metabolic labeling data (Bru/
BruChase-seq) and a new computational pipeline, RNAtracker, we
categorize genes as allele-specific RNA stability (asRS) or allele-specific RNA
transcription events. We identify more than 5,000 asRS variants among

665 genes across a panel of 11 human cell lines. These variants directly
overlap conserved microRNA target regions and allele-specific RNA-binding
proteinsites, illuminating mechanisms through which stability is mediated.
Furthermore, we identified causal asRS variants using a massively

parallel screen (MapUTR) for variants that affect post-transcriptional

mRNA abundance, as well as through CRISPR prime editing approaches.
Notably, asRS genes were enriched significantly among a multitude of
immune-related pathways and contribute to the risk of severalimmune
system diseases. This work highlights RNA stability as a critical, yet
understudied mechanism linking genetic variation and disease.

Identifying genetic variants that regulate gene abundanceisacommon
strategy to decipher the mechanisms that underlie traits and diseases. It
iswell established that transcriptional regulation and variable stability
of transcripts jointly determine steady-state messenger RNA abun-
dance.However, the former hasreceived far greater attention than the
latter. As a result, known functional genetic variants associated with
gene abundance are linked primarily to transcriptional regulation (for
example, by disruption of transcription factor binding sites** or core
promoter motifs®) rather than mRNA stability regulation.

Despite the limited attention, the role of mRNA stability in deter-
mining gene abundance has long been established*’. Genome-wide
characterizations of mRNA stability have revealed large variabilities
indecay rates across genes®’. Factors such as sequence composition®,
presence of AU-rich elements (AREs)’, expression of RNA-binding
proteins (RBPs), microRNA target sites' and translational efficiency"
have all been implicated in modulating mRNA stability. Genetic vari-
ants, as mutations in the DNA template for mRNA transcription, have
the propensity to alter stability-modulating sequences. Thus, genetic
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variants represent animportant, yet understudied, class of features in
mRNA stability regulation.

Ahandful of human studies have linked genetic variants to mRNA
stability. Work by Pai et al. estimated that 19% of the expression quan-
titative trait loci (eQTLs) that they identified in lymphoblastoid cells
might be regulated, at least in part, by differences in decay rates®.
Model-based approaches® have been used to estimate mRNA decay
ratesinlungtissue, enablingidentification of variants associated with
RNA stability™.

The above studies highlight the potential contribution of geneti-
cally regulated RNA stability towards gene regulation. However, a sys-
tematic characterization of stability-regulating genetic variants across
different cellular contextsis still lacking. Tofill these gaps, we aimed to
provide acomprehensive account detailing the effects of genetic vari-
antson RNA stability and their potential contributions to disease phe-
notypes. Using metabolic labeling data (Bru-seq/BruChase-seq) of 11
celllines and anew computational workflow, RNAtracker, we examined
transcriptome changes over time to identify allele-specific RNA stabil-
ity (asRS) and allele-specific RNA transcription (asRT) events. We found
>1,000 genes with asRS and/or asRT patterns across the cell lines with
significant overlap. We showed that asRS variants can explain previ-
ouslyidentified eQTL signals across awide range of tissues. Inaddition,
our datauncovered enrichment of asRS genes withinimmune-related
pathways, many of which featured genes that help to functionally
interpret genetic variantsrelated to variousimmune-related diseases.
Our study highlights the critical contributions of genetically mediated
RNA stability—a previously underappreciated mechanism of regula-
tion—towards human disease and biology.

Results
Overview of Bru-seq/BruChase-seq and RNAtracker
Bru-seq/BruChase-seq are a set of complementary experimental
techniques for tracking the same population of RNA over time®.
In this protocol, RNA is incubated with bromouridine nucleotides,
which are subsequently incorporated into nascent transcripts. These
bromouridine-labeled RNA molecules are then either isolated imme-
diately for sequencing (Bru-seq) or ‘chased’ with uridine nucleotides
for nhours so that any newly synthesized transcripts willincorporate
uridine rather than bromouridine before sequencing (BruChase-seq).
After nhours have passed, the bromouridine-labeled RNA is isolated for
sequencing (leaving unlabeled transcripts behind). Thus, comparing
transcript expression differences between Bru-seq and BruChase-seq
samples enablesinferences about degradation that may have occurred
overthe nhours (Fig.1a). Typically, BruChase-seq dataare collected at
several timepoints to track changes in RNA abundance and Bru-seq data
are considered time 0. We note that bromouridine labeling has minimal
impact on gene expression (Extended Data Fig. 1a) and splicing', and
thusis unlikely to confound our identification of asRS/asRT events.
Toanalyze andinterpret Bru-seq/BruChase-seqinanallele-specific
manner, we developed acomputational workflow named RNAtracker
(Fig.1b and Methods). Briefly, in this workflow, data from several time-
points assayed by Bru-seq/BruChase-seq (Supplementary Note 1) are
considered together to identify genes with allele-specific expression
(ASE) patterns. Specifically, RNAtracker employs a beta-binomial
mixture model to categorize genes probabilistically into those asso-
ciated with asRS or asRT regulation (Supplementary Notes 2 and 3
and Methods). These categorizations are based on the principle that
allele-specific transcriptional regulation affects all timepoints (starting
attime 0) and allele-specific regulation of RNA stability induces ASE at
later timepoints (no allelic bias at time 0).

RNAtracker categorizes genes by their mechanisms of genetic
regulation

We obtained Bru-seq/BruChase-seq data from 16 different cell lines
as part of the ENCODE project (Supplementary Table 1). For each cell

line, data was collected at three timepoints with two replicates per
timepoint: O h (Bru-seq), 2 h (BruChase-seq with 2-h uridine chase)
and 6 h (BruChase-seq with 6-h uridine chase). Allelic counts were
obtained at nonintronic heterozygous single nucleotide variant (SNV)
positions in genes that did not overlap copy number variant (CNV)
regions (Extended DataFig. 1b). Five celllines (K562, Pancl, PC-3, PC-9
and Caco-2) were excluded from downstream analysis as they each
had fewer than 100 genes eligible for categorization (Extended Data
Fig.1c). Across the remaining 11 cell lines, we identified a total of 665
asRS genes (corresponding to 5,051 unique variants), and 491 asRT
genes (corresponding to 3,397 unique variants) (Extended Data Fig. 1d
and Supplementary Table 2). Genes exhibiting ASE patternsreflecting
complex cases where bothasRS and asRT may coexist were categorized
separately (Methods). A total of 434 genes were assigned to this ‘mixed’
category acrossall cell lines (Extended Data Fig.1d and Supplementary
Table 2). An example asRS gene, T/P2, is shown in Fig. 1c, where allelic
imbalance was not observed until the 6 htimepoint. In contrast, anasRT
gene, FNI (Fig.1c), exhibited allelicimbalance at timesO h,2 hand 6 h,
supporting allele-specific transcriptional regulation.

We did not observe substantial differences in coverage or decay
rate (Supplementary Note 4) across different groups of genes cat-
egorized as above, suggesting that these factors are unlikely to have
skewed the categorization (Extended Data Fig. 2a,b). Removal of SNVs
overlapping alternatively spliced regions had a minor effect on gene
categorizations (Supplementary Note 5 and Extended Data Fig. 2¢) as
well, suggesting that alternative splicing is not likely to impact these
gene categorizations in most cases. Assessing our workflow on simu-
lated data (Supplementary Note 6) revealed an average precision of
0.97 andrecall of 0.89 across all gene states (Extended Data Fig. 3a,b).
When considering only genes that passed our confidence cut-offs
(Methods), the average recall is 0.99 (Extended DataFig. 3c).

Although the causal variant underlying asRT does not need to lie
inthe mRNA itself, RNAtracker cannot detect asRT genes without any
heterozygous SNVs in the mRNA (Extended Data Fig. 4a). Such genes
may carry heterozygous variants in the promoter/enhancer regions
that regulate transcription but, without heterozygous SNVs in the
mRNA to observe, they are untestable by RNAtracker. To address this
limitation, we applied RNAtracker to identify ASE genes using testable
intronic SNVs alone at timepoint O h. Since introns captured at O h
Bru-seq most likely have not been spliced out, allelicimbalance at this
timepoint implies that the gene is under transcriptional regulation.
We call this class of genes ‘intron-based asRT’ (Extended Data Fig. 4b
and Supplementary Table 2) and include them in the calculation of
asRT prevalence (Fig. 1d), as well as all analyses hereafter. Notably,
including the ‘intron-based asRT’ genes resulted in only minor shifts
inasRT prevalence across most cell lines (Extended DataFig. 4c). This
approach doesnotapplytoasRS genes, which are most likely regulated
by SNVsinthe mRNA.

The prevalence of genes under stability regulation (asRS plus
mixed) was variable across cell lines, ranging from 6.2% in HUVEC to
26.5%in Calu3 (Fig.1d). Prevalence was calculated by dividing the num-
ber of asRS plus mixed genes over the total number of genes catego-
rized by RNAtrackerin each cell line. We observed that most asRS genes
were unique to asingle cell line (Extended Data Fig. 5a). However, this
observationmay be due partially to differences in genetic background
among the cell lines or limited sequencing depth in each sample to
detect asRS events. As a result, common testable variants and genes
arelimited across celllines (Extended Data Fig. 5b—d). Alternatively, it
may also reflect cell-type-specificity of asRS. To further examine this
latter possibility, we asked whether the overlap of asRS genes between
a pair of cell lines was higher than expected by chance (Methods). A
total of nine pairwise comparisons exhibited significant difference
(P<0.05).Notably, all of them showed that the shared asRS prevalence
was greater than expected (Fig. 1e). We observed similar results on the
variant level, in which most asRS variants were identified in a single
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Fig.1|RNAtracker categorizes genes by the underlying mechanisms of allelic
imbalance. a, Bru/BruChase-seq reads for a gene exhibiting asRS pattern (allele 1
exhibits greater degradation than allele 2, which becomes apparent at the 6-h
timepoint; schematicillustration only). b, RNAtracker categorizes genes as asRS,
asRT, ‘mixed’ or non-ASE by using a beta-binomial mixture model to calculate the
posterior probability of each state. ¢, Example asRS (7/P2) and asRT (FNI) genes.
Variants in 7/P2 exhibit balanced allelic ratios at O h, but unbalanced allelic ratios
at2hand 6 hinthe HCT116 cell line. Variants in FNI exhibit unbalanced allelic
ratios at all three timepoints in the A673 cell line. Alt, alternative; ref, reference.
d, Comparison of the prevalence of stability-regulated genes versus

transcriptionally regulated genes. Stability-regulated genes include asRS and
mixed genes. Transcriptionally regulated genes include asRT, intronic asRT and
mixed genes. To calculate prevalence, the number of genes falling under each of
these categories is summed and divided by the total number of categorized genes
inthe cell line. For each cell line, the prevalence of stability-regulated versus
transcriptionally regulated genes was compared through two-sided Fisher’s
exacttest (*P<0.05,**P<0.001). e f, Pairs of cell lines that exhibited a significant
difference between the expected and actual proportion of overlapping asRS (e)
or asRT (f) genes (*P< 0.05,**P < 0.01, **P < 0.001, two-sided binomial test).
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Fig.2|asRS and asRT events overlapping GTEx eQTL and their target genes.
a, Enrichment (two-sided Fisher’s exact test odds ratio compared against
background variants) of asRS and asRT variants among GTEx eQTLs. Black
boxes represent cell lines matched with their most biologically similar GTEx
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overlapped genes with significant eQTLs (eGenes) in GTEx tissues; **P < 0.00)
(two-sided Fisher’s exact test comparing asRS and asRT enrichment). EBV,
Epstein-Barr virus.

cellline (Extended Data Fig. Se). All 24 pairwise comparisons in which
the actual proportion of overlapping asRS variants was significantly
different from the background expectation exhibited greater actual
asRS prevalence than background (Extended Data Fig. 5f). Thus, the low
fraction of overlap betweencell linesis due largely to having different
SNPs present in their genomes. In other words, given shared genetic
background, the variant effects tend to be independent of cell type.

Similarly, genes under transcriptional regulation (asRT plus
intron-based asRT plus mixed) also exhibited variability in prevalence
across celllines, ranging from 8.17% in HepG2 to 41.1% in MCF-7 (Fig. 1d
and Supplementary Note 7). Like the asRS genes, most asRT genes
were unique to a single cell line (Extended Data Fig. 6a). Nonethe-
less, 33 pairs of cell lines showed significant differences between the
background expectation versus the actual proportion of overlapping
asRT genes, all in which the shared asRT prevalence was greater than
expected (Fig. 1f). Again, similar results were observed on the variant
level (Extended Data Fig. 6b,c). Together, these results suggest that
genetic variants often affect RNA stability or transcriptional regulation
in a cell-type-independent manner, consistent with the genetically
driven nature of such events.

asRS and asRT contribute to gene expression regulation

We next assessed the prevalence of asRS and asRT events among vari-
ants that have been associated previously with gene expression changes
onapopulation-wide scale (GTEx eQTL data)”. We overlapped asRS and
asRT variants with significant eQTLs, which are geneticlociassociated
with gene expression variation, among tissue types that most closely
matched the cell lines in our dataset (Supplementary Table 1). Since
regulatory variants of RNA stability are expected to be intragenic, for
this analysis we required not only the asRS/asRT variant to match the
eQTL, but also the eQTL target (eGene) to match the asRS/asRT gene.
We observed that both asRS and asRT variants were enriched among
significant eQTLs (Fig. 2a and Extended Data Fig. 7a). Although the
lower enrichment of asRT variants is expected since only intragenic
variants were considered, the high enrichment of asRS variants sup-
portsour prediction that these intragenic variants are associated with
stability regulation. In addition, the magnitude of enrichment appeared
tobeunrelated to the biological similarity between the cell line/GTEx
tissue, further supporting the cell-type-independent effects of asRS
and asRT variants (Fig. 2a).

Moving from a variant-level to gene-level analysis, we found that
the proportion of asRS genes that overlapped eGenes was greater than
thatof asRT genes (Fig.2b and Extended DataFig. 7b). This was the case
for combined asRS or asRT genes across all cell lines (Fig. 2b), as well as
for each celllineindividually (Extended Data Fig. 7b). As with the eQTL
variant overlap, the magnitude of enrichment was unrelated to the bio-
logical similarity between the cell line/GTEx tissue. Overall, we found
that,among the subset of eGenes that overlapped the total set of genes
categorized by RNAtracker,15.6-19.2% overlapped asRS genes, whereas
20.6-23.7% overlapped asRT genes. The slightly higher percentage of
overlap with asRT genes is to be expected since there are more asRT
genes (when intron-based asRT genes are included) than asRS genes
(Supplementary Table 2) in our data. Together, these analyses revealed
that asRS and asRT both contribute towards shaping gene expression
profiles that have been observed on a population-wide scale.

Delineating functional mechanisms and effects of
asRS variants
As genetically mediated RNA stability has been underexplored previ-
ously despiteits essential contributions to gene regulation, we focused
on further analysis of asRS events for the remainder of the study. Inan
asRS gene, several genetic variants demonstrate ASE patterns. How-
ever, not all variants are necessarily functional with regards to their
effecton mRNA stability. Nonetheless, the observation of asRS reflects
the existence of one or more functional variants as cis-acting regula-
tors of RNA stability. To hone in on the functional variants as well as
their mechanisms of action, we first considered enrichment of asRS
variants in binding regions of RBPs as determined through enhanced
cross-linking immunoprecipitation (eCLIP) experiments. Relative
to random controls (Methods), asRS variants were enriched signifi-
cantly in the binding sites of known stability-regulating RBPs, such as
MATR3 (ref. 18), FMRI1 (ref. 19), TIA1 (ref. 20) and UPF1 (ref. 21) (Fig. 3a
and Supplementary Table 3).

Showcasingamore granular view of how asRS variants may impact
RBP binding, we also observed significant enrichment of asRS variants
among allele-specificbinding (ASB) sites in eCLIP data that were iden-
tified using our previously developed method BEAPR* (Fig. 3b). ASB
reflects the functional role of an asRS variantin altering protein-RNA
interactions. Notably, the RBP with the highest proportion of asRS
variantsamongits ASB sites is SUB1 (Fig. 3¢, Extended Data Fig. 8aand
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Fig. 3| asRS variants are enriched within functional regions. a, Enrichment of asRS
variants within the eCLIP peaks of each RBP. P values were calculated by two-sided
Fisher’s exact test. NS, nonsignificant. b, Proportion of asRS and control variantsin
eachcellline (n=11) that overlapped ASBssites. P value was calculated by two-sided
Wilcoxon’s signed-rank test. RBPs with known roles in RNA stability and decay are
shownin purple. ¢, RBPs with the highest proportion of ASB sites that overlapped
asRSvariants. The height of the columns represents the proportion of ASB sites

that overlapped asRS variants; the distance of the circular dot/triangle from the
center reflects the number of ASB sites that overlapped asRS variants. Values of
these two metrics are also shown below each RBP name. d, Proportion of asRS and
control variantsin each cellline (n =11) that overlap miRNA target loss/gain SNPs.
Pvalue was calculated by Wilcoxon’s signed-rank test. Inboxplots, minima/maxima
represent least/greatest proportion values, bounds show 25th and 75th percentiles,
and whiskersindicate values within 1.5x the interquartile range.

Supplementary Table 3), which also exhibited significant enrichment
of asRS variants within its eCLIP peaks (Fig. 3a and Supplementary
Table 3) and has been shown to stabilize its target RNAs™.

Inadditionto RBPs, miRNAs are well-known regulators of RNA sta-
bility?*. Thus, we asked whether asRS variants may alter miRNA target-
ing. SNPsin miRNA seed regions that create or disrupt miRNA binding
sites (thatis, target gain/loss effects, respectively) have previously been
identified®. In total, 2,243 and 2,198 asRS variants overlapped these
gain and loss sites, respectively. Using miRNAs expressed in each cell
line (Methods), we observed that the proportion of asRS variants that
overlapped miRNA target sites was significantly higher than that of
control SNVs (Fig. 3d and Supplementary Table 3). Analogously, SNPs
in miRNA seed regions are enriched significantly with asRS variants
(Extended DataFig. 8b).

Experimental support for asRS events
To provide orthogonal experimental support for asRS genes, we per-
formed deep transcriptomic sequencing in GM12878, HCT116 and

MCEF-7 cells at various timepoints after treatment with the transcrip-
tional inhibitor actinomycin D (ActD; O huntreated;2h,8 hand24 h
post-treatment) (Fig. 4a). We then identified asRS genes with SNVs that
demonstrated ASE at timepoints after O h, or that exhibited increased
allelicimbalance compared to the O htimepoint (Methods). Further-
more, the direction of the imbalance (that is, whether the reference
or alternative allele degrades faster over time) was required to be
consistent with the observationin the Bru/BruChase-seq data. With
these requirements, we obtained experimental support for 159 (74.3%)
asRS genes out of a total of 214 testable in the ActD RNA sequencing
(RNA-seq) data (Supplementary Table 4). asRS genes GENI, CDC137
and C2CD2 are shown as examples in the MCF-7, GM12878 and HCT116
cell lines, respectively (Fig. 4b-d). We note that ActD treatment
functions as amajor disruptor of cellular physiology and may affect
post-transcriptional processes such as RNA localization’. As aresult,
one should not view ActD-based experiments as a gold standard to
evaluate the performance of asRS prediction. Nonetheless, it func-
tions as an orthogonal support for a select number of asRS events.
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Fig. 4| Experimental support for asRS variants. a, Schematic illustration of
ActD RNA-seq experiments. b—d, Examples of asRS SNVs in MCF-7 (b), GM12878
(c) and HCT116 (d) that exhibit stability-mediated regulation in ActD RNA-

seq. Left: comparison of normalized counts for each SNV in ActD RNA-seq

at pretreatment (O h) and post-treatment (2 h, 8 h, 24 h) timepoints (three
replicates per timepoint). Right: comparison of normalized counts for each SNV
in Bru/BruChase-seq data (two replicates per timepoint). *P < 0.05,**P< 0.01,
***P < 0.001(SNV allele-specific expression test Pvalue; Supplementary Note 1).
e, Schematicillustration of MapUTR design. f, Validation method for asRS
genes. If agene had variants validated by several methods, the following priority
order was used: MapUTR > MPRAu > ActD > ASB > eCLIP > miRNA. g, Schematic
illustration of prime editing. h, Alternative allelic ratio (number of alternative
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blue indicates higher alternative allelic stability compared to the O h timepoint;
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Whereas the ActD experiments showcased that asRS genes are
undergoing stability-mediated regulation, they do not reveal which spe-
cificvariants are functional with regards to their effects onallele-specific
degradation. Variants with ASE may simply be tag variants reflecting the
existence of afunctional SNV. To honein onthese functional variants, we
leveraged datafrom massively parallel reporter assays (MPRA) that were

designed toidentify functional variants affecting post-transcriptional
regulation (Fig. 4e). These experiments involve cloning oligonucleo-
tides containing the variant of interest and their genomic contextinto
the 3’ UTR of areporter gene. After cellular transfection of the plasmid
reporters, sequencing data of the plasmid DNA and mRNA are com-
pared to identify sites associated with significant allelic expression
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differences. Sites that exhibit differences above a specified threshold
canthen be nominated as candidate functional variants.

We first overlapped asRS variants with SNVs tested by a screen-
ing method from our laboratory called MapUTR?. Among the asRS
variants that overlapped those evaluated by MapUTR, 106 (29.04%)
were identified as functional, defined as exhibiting significantly
differentactivity scores between their alternative and reference alleles
(10 fotd change (Fc) = 0.1, false discovery rate (FDR) < 0.1; Methods). Onthe
genelevel, 55.07% (76 out 0of 138) of the MapUTR tested asRS genes had
atleast one functional variant (Supplementary Table 5). We also found
that 61 out of the 365 (16.71%) asRS variants tested by a separate mas-
sively parallel assay (MPRAu”’) were identified as functional transcript
abundance-modulating variants (tamVars). On a gene level, 40 out
of 107 (37.38%) MPRAu tested asRS genes had at least one tamVar
(Supplementary Table 5). Combined with the RBP and miRNA analyses
in the last section, we were able to nominate at least one functional
variant for 88.3% (587 out of 665) of all asRS genes (Fig. 4f).

Primeeditors canbe usedtointroduce variants at specific genomic
positions (Fig.4g). To further hone in on causal asRS variants, we intro-
duced select asRS variants into the genome of HEK293T cells, which
have proven editing efficiency with prime editing®®. We prioritized test-
ing variants within genes that were supported by our MPRA (MapUTR)
(Supplementary Table 5). We were able to successfully perform genome
editing for variant chr. 2:173364016:T>C in CDCA7 and variants chr.
11:838672:C>T and chr. 11:834745:G>T in CDI151. After confirming suc-
cessful genome editing (with an average editing efficiency of 25.24%
across the three variants) (Extended Data Fig. 9a-c), we performed
gene-targeted sequencing of cells at various timepoints after treat-
ment with ActD (0 h untreated; 2 h, 8 h and 24 h post-treatment). To
assess the variant effect on stability, we compared the variant allelic
ratio at each post-ActD treatment timepoint with that of the untreated
timepoint. A significant difference in allelic ratio at a post-treatment
timepoint compared to the O h timepoint points to adifferenceinthe
stability of the two alleles. Under this evaluation, chr.11:834745:G>T in
CDI51and chr.2:173364016:T>Cin CDCA7 were both identified as causal
stability-regulating variants (Fig. 4h). We note that the allelicratioat O h
issimilar tothe DNA allelicratio (0.24 for CDCA7:chr.2:173364016:T>C
and 0.27 for CD15I:chr.11:834745:G>T).

In CDCA7, we found that an increased proportion of reads were
assigned to the alternative allele (C) of chr. 2:173364016:T>C at all
post-treatment timepoints compared to the O h timepoint. This sug-
geststhat the alternative allele confers higher RNA stability to the gene
compared to the reference allele. Indeed, in the Bru/BruChase-seq
data (althoughinadifferent cell line, OCI-LY7, from HEK293T), we also
observe that the alternative allele exhibits higher expression at both
2 hand 6 h, suggesting greater stability compared to the reference
allele (Extended Data Fig. 9d). Similarly in CD151, we found that an
increased proportion of reads were assigned to the alternative allele
(T) of chr. 11:834745:G>T at all post-treatment timepoints compared
to the O h timepoint. This suggests that the alternative allele confers
higher RNA stability than the reference allele. Although we are unable
to compare this prime editing result with the Bru/BruChase-seq data
duetoinsufficient BruChase-seq coverageat 2 hand 6 h for this variant,
our findings suggest functional role for what would otherwise be an
understudied variant. Overall, the above results demonstrate causality
for the two variants on RNA stability.

asRS genes are enriched inimmune-related pathways

To elucidate the functional importance of stability-regulated
genes, we first performed Gene Ontology (GO) enrichment analy-
sis to identify biological processes that featured a significant
number of asRS genes (Methods). Out of all enriched GO terms,
‘positive regulation of nuclear-transcribed mRNA catabolic process,
deadenylation-dependent decay’ exhibited by far the most significant
enrichment (Fig. 5a and Supplementary Table 6). Thisgroup includes

the genes CNOT1 and PABPCI, which have been studied closely in tan-
dem for their contributions towards generating cycles of mRNA dead-
enylation?. Notably, another mRNA stability-related term, ‘miRNA
metabolic process, was also one of the most significant hits. Other
significant terms were related to cell adhesion and junction organiza-
tion orimmune response—all of which are closely related functionali-
ties. Although proper cell adhesion functioning isimportant acrossaall
cells, regulation of this process is especially relevant toimmune cells*
and inflammatory processes®.

To explore the complete list of enriched GO terms more thor-
oughly, we clustered terms by semantic similarity (Methods). This
allowed us to ascertain whether there exist groups of related biological
pathways that were consistently enriched among asRS genes. From this
analysis, we again observed that ‘cell adhesion” and ‘cell-cell junction
organization’ as two clusters with the highest average enrichment
scores (Fig. 5b). We also observed several clusters of terms highlight-
ingimmune-related processes (such as ‘innateimmune response’ and
‘defense response to Gram-positive bacterium’), as well as catabolic
processessuchas ‘proteolysis’and ‘positive regulation of autophagy’—a
processinwhich cytosolic material, including proteins, is delivered to
lysosomes for degradation® (Fig. 5¢). Notably, the extent of enrich-
ment for these processes appears specific to asRS genes, as we did not
observe the same level of significance among asRT genes (Extended
DataFig.10a).

asRS variants are enriched among genome-wide association
studies hits

Genome-wide association studies (GWAS) canrelate genetic variants to
various traits by identifying significant associations between specific
variants and traits on a population-wide scale®>. Modulating mRNA sta-
bility is one mechanism through which variants may contribute towards
specific phenotypes. Indeed, we found that asRS variants were enriched
significantly among hits with genome-wide significance (P <5 x107%)
reported in the GWAS catalog® (Fig. 6a).

Whereas the RNAtracker workflow does not pinpoint the exact
causal variantin asRS genes, our MPRA assay and ASB analysis allowed
us to identify likely functional asRS variants. Of the 239 total variants
examined, 24 directly overlapped significant GWAS hits (Supplemen-
tary Table 7). Several asRS genes (for example, CCND1, CDK6, EPHA3,
IL7R, WDFY4) harbored one or more variants associated with several
traits, including autoimmune disorders such as multiple sclerosis,
primary biliary cirrhosis, rheumatoid arthritis and systemic lupus
erythematosus. In most cases, the mechanism through which these
asRS-overlapping GWAS hits contribute to disease risk has not been
explored.

Next, we performed stratified linkage disequilibrium (LD) score
(S-LDSC) regression to assess disease heritability enrichment of asRS
variants. Given their apparent relevance toimmune-related processes,
we focused onimmune-related diseases with GWAS summary statistics
available through the GWAS catalog (Methods). Notably, for several
autoimmune diseases (such as rheumatoid arthritis and systemic
lupus erythematosus), asRS variants demonstrated heritability enrich-
mentacross severalindependent studies (Fig. 6b and Supplementary
Table 7). Together, our data suggest that stability-regulating variants
in these genes may contribute to disease susceptibility.

asRS genes are associated withimmune-related diseases

Toreinforce the relevance of asRS genes to the immune-related dis-
eases of interest, we took an approach that is analogous to that of
summary-based transcriptome-wide association studies (TWAS™>).
TWAS is similar in principle to GWAS; however, rather than associat-
ing specific genetic variants with traits, it can identify associations
between the expression of genes and various traits. Specifically, we built
genetics-based gene expression prediction models using genic SNPs
(Methods) to infer the expression of asRS genes in GTEX participants
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Fig. 5| asRS genes are enriched inimmune-related processes. a, Top 15 enriched
GO terms for asRS genes. b, rrvgo plot showing GO terms after clustering. A
selection ofimmune-related terms is highlighted. ‘Positive regulation of nuclear-
transcribed mRNA catabolic process, deadenylation-dependent decay’ is
omitted for plotting purposes because its P value is an outlier. ¢, asRS genes in the

rrvgo groups ‘innateimmune response, ‘proteolysis, ‘defense response to Gram-
positive bacterium’ and ‘positive regulation of autophagy. Foraandb, P values
were derived from an empirical Gaussian distribution of number of control genes
containing each GO term (Methods).
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Fig. 6| asRS events illuminate mechanisms underlying significant GWAS hits
for various diseases. a, Proportion of asRS and control (Ctrl) variants matched
withatleast one significant GWAS hit based on shared tag SNPs. Top: all GWAS
traits (P=1.31x107); bottom: disease-related traits only (P=9.21 x10%).

b, Disease heritability enrichment estimates with P < 0.1for asRS variants. Each
cellrepresents the heritability enrichment from a different GWAS summary

statistics file (*P < 0.05, **P < 0.01). ¢, Gene-trait prediction results by TWAS

(all significant associations are labeled). P values are based on the estimated
association between predicted asRS gene expression and disease as a weighted
linear combination of SNP-trait standardized effect sizes and have been FDR-
adjusted. Legend indicates GTEx tissues tested for each significant trait. L, lung;
P, pancreas; SM, skeletal muscle; SS, suprapubic skin; WB, whole blood.

fromdisease-relevant tissues (Supplementary Table 8). These predic-
tion models were then used to identify associations between asRS
genes and traits using GWAS summary statistics ofimmune-related
diseases. Restricting the models to genic SNPs helps minimize the
influence of transcriptional regulatory variants, thus enriching for
stability-mediated mechanisms. Across all evaluated asRS gene-trait
pairs, 17 unique genes (out of 414 tested) were associated significantly
with disease (Fig. 6¢c and Supplementary Table 8).

This TWAS-like analysis uncovered additional disease-related asRS
genes that were not apparent from the direct overlap of GWAS hits
with functional asRS variants. The strongest observed association was
between FAM114A1 and allergic rhinitis in lung tissue (P=5.41x107").
Thisgene encodes the nervous system overexpressed protein NOXP20
and hasbeenimplicated in regulating apoptosis in melanocytes* and
angiotensin Il signaling in cardiac cells”, yet its role in inflammatory

processesinthe lung remains largely unexplored. Other notable genes
includethe nonsense-mediated decay factor SMG7, significantly associ-
ated with both systemic lupus erythematosus (P=7.01x 107 inwhole
blood) and type 1diabetes mellitus (P=2.53 x 10~ in whole blood), as
wellas the E3 ubiquitin ligase protein-encoding gene RNF114, which dis-
played asignificant association with multiple sclerosis (P=3.45 x10™
in whole blood). Collectively, these findings strengthen the notion
that genetically mediated mRNA stability represents a key mechanism
contributing to the pathogenesis of immune-related diseases.

Discussion

In this study, we present a systematic analysis of allele-specific RNA
stability, independent of transcriptional regulation, in human cells.
Employing metabolic labeling data (Bru-seq/BruChase-seq) with the
RNAtracker computational workflow, our approach sheds light on
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the role of mRNA stability, distinguishing between gene abundance
changes that result from transcriptional regulation versus decay rate
variability. Because stability-regulating variants often reside within
the mRNA, the allele-specific approach of RNAtracker ensures that the
causal SNPis probably among variants we evaluate, making our work-
flow particularly effective for revealing stability-mediated regulatory
events. Onthe other hand, variants that regulate transcription, such as
promoters or enhancers, may reside outside of the genes. Nonetheless,
RNAtracker can still capture transcriptionally regulated genes based
on the read counts of its mMRNA heterozygous variants—even though
they may not necessarily be causal.

Future applications of RNAtracker can continue to extend our
paradigm for understanding stability-mediated regulation of mRNA
abundance. Indeed, the workflow can be adapted readily for use with
any data that tracks the same population of RNA across different
timepoints. These include other forms of uridine labeling*® as well
as collecting RNA at several timepoints after transcriptional inac-
tivation. Whereas our analyses show that asRS and asRT events are
largely cell-type-independent, variants regulated by cell-type-specific
trans-acting factors (such as RBPs and miRNAs) may presenta class of
exceptions. We accounted for cellular context by limiting our analysis
to cell line-specific miRNAs and using relevant GTEx tissue types when
possible. Nonetheless, the generation of datasets from samples of more
relevant cellular contexts will facilitate amore precise understanding
of stability regulators.

In summary, we present a workflow for identifying stability-
mediating variants and provide a comprehensive characterization
of their biological roles. Our results highlight their contributions to
disease and nominate functional explanations for poorly understood
variant-trait associations, demonstrating RNA stability as a key link
between genetic variants and disease.
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Methods

Ethics

This research study did not require approval from any specific ethics
board/committee.

CNVremoval

We obtained absolute copy numbers generated by the Cancer Cell Line
Encyclopedia (CCLE)* using the ABSOLUTE algorithm*’. These copy
number calls were overlapped with the GENCODE v.36 gene annotation.
Only genes that overlapped copy number regions in which the minor
ABSOLUTE copy number call and the major ABSOLUTE copy number
call were equal to 1were retained in downstream analysis.

If ABSOLUTE calls were not available, we used the CNVpytor* soft-
warewithbinsize set to10 kb to analyze cell lines that had publicly avail-
ablewhole-genome sequencing data (Supplementary Table1for data
sources). We then filtered the CNV calls by requiring P value < 0.0001,
CNVsize >50,000 and at least half of the reads to be uniquely mapped.
We used the default mean-shift caller for cell lines that are diploid
or near diploid and the joint-caller for cell lines that are known to be
polyploid (Supplementary Table 1).

For the remaining cell lines, we downloaded Hi-C datain pairs for-
mat (standard text format for pairs of genomiclocigivenat1bp point
positions) and used ‘cload’ from the cooler*’ software to convert these
filesinto*.coolmatrices at20 kb resolution. We used the ‘calculate-cnv’
and ‘segment-cnv’ modules from NeoloopFinder* to identify CNV
regionsin each cell line using the Hi-C cool files asinput. ‘calculate-cnv’
was runwith the ‘-~enzyme’ parameter set to uniformand ‘segment-cnv’
was run with bin size 1,000 and ploidy set to two (default) for all cell
lines except for Caco-2, in which ploidy was set to three. All genomic
segments with copy number!=2 were considered CNV regions. We
filtered out genes if they overlapped any predicted CNV region.

Identification of asRS, asRT and mixed genes with RNAtracker

To categorize a gene as asRS, asRT or mixed, RNAtracker fits a
beta-binomial mixture model (Supplementary Notes 2 and 3) for the
reference allelic counts of the gene’s testable SNVs (total read counts
>10 and minor read count >2) at each timepoint. Combining three
timepoints (0 h, 2 h, 6 h), RNAtracker categorizes genes into one of
seven possible states (listed in the table below), where each state is a
triplet corresponding to three timepoints. At each timepoint, a gene
isencoded as1for ASE and O for non-ASE. We denote the total count of
the ith SNV of a gene g at timepoint ¢ by n;., among which we assume
the reference allelic count follows beta-binomial(n;i, af, B,)ifgenegis
non-ASE or beta-binomial(n;i, of, Difgenegis ASE, t=0,2, 6.Since we
donotwanttoassume thatthe reference allelic countis always greater
thanthealternative allelic count, we ensure the beta distributions are
symmetrical by setting the two beta distribution parameters equal,
thatis, af) = ﬂf),ai = B. Specifically, in ourimplementation, we assume
the reference allelic counts at 2 h and 6 h share the same parameters.
To summarize, we have distributions at timepoints ¢ = O following
beta- bmomlal(ng o, if gene gis non-ASE or beta- bmomlal(no, o, B

ifgenegis ASE; at t 2 oré followmg beta “binomial(n,, a®, B%) lfgene
gisnon-ASE or beta- bmomlal(n‘ a“ lfgeneglsASE
Oh 2h 6h

State O (non-ASE) 0 0 0

State 1(asRS) 0 1 1

State 2 (asRS) 0 0 1

State 3 (asRT) 1 1 1

State 4 (mixed) 1 0 1

State 5 (mixed) 1 0

State 6 (mixed) 1 1

First,in a preprocessing step, we focused on the 0 h dataonly and
assumed that thereference allelic counts of each gene either follow the
ASE beta-binomial distribution or the non-ASE beta-binomial distribu-
tion. Only genes with at least two testable SNVs are evaluated. We used
n¥ torepresent the probability of a gene being ASE (or n§ =1—nfora
gene being non-ASE) at O h, where 1 refers to a fixed (nonrandom)
parameter (or unknown constant) to be estimated. The expectation-
maximization (EM) algorithmis then used to estimate the parameters
(7, a5, &7)-

Upon convergence of the EM algorithm, we labeled each gene
as non-ASE (0) or ASE (1) at O h based on the gene’s posterior prob-
abilities for the two states. Our assignment of genes to the two states
isatwo-step procedure: first, we assigned every gene to the state at
whichits posterior probability is greater than 0.5; second, based on
the initially assigned genes, we retained a gene in a state only if its
posterior probability at that state is at least (1) 0.95 or (2) the first
tercile of the posterior probabilities of all genes initially assigned
to that state.

Second, after determining whether the gene exhibits ASEat O hin
the preprocessing step, RNAtracker jointly considers datafromthe2 h
and 6 h timepoints to categorize genes into one of the seven triplet
states. For genesthat are labeled non-ASEinthe previous step,the EM
algorithmis used to estimate parameters a°, a®, >, 07, the first two
of which are defined as the symmetric hyperparameters for the
beta-binomial representing non-ASE and ASE genes, respectively, at
each of thelatter two timepoints (2 hand 6 h) and the last two of which
are defined asthe probability of agene beingin state O or state1, respec-
tively. The probability of a gene being in state 2is m3° = 1 - 2 — .
Similarly, for genes that are labeled ASE in the previous step, the EM
algorithm s used to estimate parameters a3, a®, 3¢, 1>, 2. Again,
a2® and o2 are defined as the symmetric hyperparameters for the
beta-binomial representing non-ASE and ASE genes respectively
at each of the latter two timepoints (2 h and 6 h), and 113 ,Ty ,nﬁ"
are defined as the probability of a gene being in state 3, state 4 or
state 5, respectively. The probability of a gene being in state 6 is
né’(’ =1- ng'(’ — ni’ﬁ - nﬁ’(’.

We then used a procedure similar to the two-step procedure
utilized in the preprocessing step, with an additional refinement
step to assign genes to the seven states. In step 1, we assigned every
gene to the state with the highest posterior probability. In step 2,
based on the initially assigned genes, we retained a gene in a state
only if its posterior probability at that state is at least (1) 0.95 or (2)
the first tercile of the posterior probabilities of all genes initially
assigned to that state. Finally, in step 3, for each gene, we require
at least half of its SNVs at each ASE timepoint (encoded as 1in the
table above) to exhibit allelic imbalance in the same direction
across the two replicates. In other words, at least half of the SNVs
in the gene must have the same sign (reference allelic ratio — 0.5)
for the two replicates. Genes that fail this threshold are considered
uncategorized.

To summarize, for the three timepoints, the RNAtracker
model has a total of ten independent parameters (aJ,a?,m?,

a2l iy, w0 ¢, 2% ) and three parameters that
are constrained by nd=1-n%, ©°=1-@}*+1%) and m®
=1- (2 + 1 + m2°). Our justification for the model parameteriza-
tion (in which parameters for O hare estimated separately fromthe2 h
and 6 h data) is that we want to implement stringent thresholds for
calling genes ASE or non-ASE at O h, as this timepoint is crucial to dis-
tinguishing asRS from asRT genes. Moreover, the distribution of refer-
ence allelic counts at 0 h was found to be distinct from that of 2 hand
6 h; hence, the beta-binomial parameters arethesamefor2handéh,
butdifferentfrom O h.

For details on the criteria for testable SNVs, identification of ASE
SNVs, estimation of initial hyperparameters, and an extended explana-
tion of RNAtracker, please refer to Supplementary Note 1.
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Cell-type comparisons

To calculate the background expectation of shared asRS genes between
each pair of cell lines, we obtained the number of asRS genesin each cell
line and divided each value by the number of common testable asRS
genes. The product of these two values was used as the background
expectation, that is, the expected proportion of overlap. A binomial
test was used to evaluate whether the background expectation differed
fromthe actual proportion of shared asRS genes between the two cell
lines. The same analysis was applied to asRT genes.

GTex analysis

Significant GTEX cis-eQTLs were downloaded from the GTex portal
(v.8release) at https://www.gtexportal.org/home/datasets (filename:
GTEx_Analysis_v8_eQTL.tar). Fisher’s exact test was used to compute
the odds ratio (that is, enrichment) of asRS or asRT variants overlap-
ping significant GTEx cis-eQTLs compared to background variants.
Background variants were those found in genes categorized as non-ASE
by RNAtracker. For each overlap, we required the eQTL-associated
gene tomatch the asRS, asRT or background gene. We also compared
the enrichment of asRS and asRT genes among eGenes using Fisher’s
exact test. This analysis was performed per tissue using asRS or asRT
events combined across all celllines (Fig. 2b), as well asin each cell line
separately (Extended Data Fig. 7b).

Deep transcriptomic profiling of ActD-treated cells

RNA-seq (NovaSeq X Plus 150 PE) was performed for GM12878, MCF-7
and HCT116 cells before treatment with 10 pg ml™ (GM12878, HCT116)
or 5 pg ml™ (MCF-7) of ActD, as well as 2 h, 8 h and 24 h post-treatment
(three replicates per timepoint). These reads were processed using
the same procedure as the Bru/BruChase-seq data (that is, STAR map-
ping with WASP filtering, followed by obtaining read counts at het-
erozygous SNV positions). To confirm the genotypes for these three
cell lines, we sequenced their genomic DNA and called variants using
the GATK germline short-variant discovery pipeline (https://gatk.
broadinstitute.org/hc/en-us/articles/360035535932-Germline-short-
variant-discovery-SNPs-Indels). To be considered validated, we required
asRSgenestohaveatleastone SNVthatisnon-ASEat 0 hbut ASE atalat-
ter timepoint. The allelicimbalance at the latter timepoint must be more
extremethanthe O htimepointand atleast 0.1in atleast onereplicate.
Alternatively, ifthe SNVis ASE at O h, its allelicimbalance must be more
extremeatalatter timepointandbeatleast 0.1inatleast onereplicate.
Ineither case, the direction of the allelicimbalance must be consistent
with what is observed in the Bru/BruChase-seq data.

We used our previous approach in which we derive an empirical
Gaussian distribution for the read coverage of each SNV to evaluate the
probability that the average read count of the minor allele was gener-
ated from the same distribution as that of the major allele’’. ASNV was
deemed ASE ifits Benjamini-Hochberg adjusted P value was less than
0.05. Allelic imbalance is calculated based on the delta allelic ratio
ateach SNV position: delta allelic ratio = abs(SNV allelic ratio — 0.5).

Prime editing

Prime editing was performed using the PE7 approach, which features
a prime editor protein (PE7) fused to the RNA-binding, N-terminal
domain of the small RNA-binding exonuclease protection factor
La**. For each asRS variant that we evaluated with prime editing, we
designed spacer and extension sequences for engineered prime edit-
ing guide RNAs (epegRNAs) using pegFinder®. pegLIT*® was used to
design linker patterns for each epegRNA. Golden Gate assembly was
used to clone the spacer, extension and epegRNA scaffold sequences
(Supplementary Table 9) into the pUé6-tevopreql-GG-acceptor vector
(Addgene, catalog number 174038) for epegRNA constructs. We then
transfected pCMV-PE7 (Addgene, catalog number 214812) and the
plasmid expressing each epegRNA into HEK293T cells, respectively.
gDNA was extracted 72 h post-transfection to confirm genome editing

events. Total RNAwas then harvested fromcells O h (pretreatment) and
2h,8hand 24 hafter treatment with10 pg mi™ of ActD (threereplicates
pertimepoint). gDNA was also harvested from cells before ActD treat-
ment (0 h). After reverse transcription using the SuperScript IV Reverse
Transcriptase (Thermo Fisher Scientific, catalog number 18090010),
the cDNA was amplified using gene-specific primers (Supplementary
Table 9) to generate amplicons containing the variant of interest.
Amplicons containing different variants from the same timepoint were
pooledtogether before asecond round of PCR to add Illumina adapters
forsequencing. The PCR reactions were stopped before the plateau of
the amplification curves. The libraries were purified using 2% agarose
geland sequenced with NovaSeq X Plus 150 PE.

Adapters were trimmed with bbduk (https://sourceforge.net/
projects/bbmap/) before reads were mapped to GRCh38 with STAR
(v.2.7.8a)"". To focus on reads from mature mRNA sequences, we filtered
out unspliced reads before quantifying variant allelic counts with
perbase (https://github.com/sstadick/perbase). Variants with a sig-
nificantly different (Student’s t-test; P < 0.05) allelic ratio at post-ActD
treatment timepoints (2 h, 8 h or 24 h) compared to the O h pretreat-
ment timepoint were identified as causal variants.

Massively parallel reporter assays
Atotal of 365 asRS variants (Supplementary Table 5) wereincludedin the
MPRA experiment (following the MapUTR* screening method) inHeLa
cells.Inbrief, synthetic DNA oligonucleotides containing the variants of
interest and their flanking sequences (164 nucleotides total) were cloned
intothe 3’ UTR of the eGFPgene. The expression of this reporter gene was
drivenby the cytomegalovirus early enhancer/chicken betaactin (CAG)
promoter. These oligos were then introduced into HeLa cells by elec-
troporation. Following electroporation (24 h), total RNA was extracted
for sequencing targeting the tested variant regions. Specifically, the
test sequences were amplified fromboth the plasmid library and mRNA
to generate DNA sequencing and RNA-seq libraries. Three biological
replicates were collected for each experimentand a high correlation was
observed betweenreplicates (R = 0.84). Sequencing data of the plasmid
DNA and mRNA were compared to identify sites associated with signifi-
cantexpression differences between the two alleles using MPRAnalyze*s.
FDR < 0.1and|In(FC)| = 0.1were required to call significance.
tamVarsidentified by MPRAu” were obtained from Supplementary
Table1ofthe corresponding study. Variants identified asatamVarin at
least one of the tested cell lines were considered functional variants.

Functional enrichment analysis

Allele-specificbinding sites were obtained from our previous work (Sup-
plementary Data 2 from ref. 22. After removing coordinate-unstable
positions*’, we converted ASB sites from hgl19 to hg38 coordinates tobe
consistent with the asRS variants. eCLIP data for reproducible peaks (as
determined from the irreproducible discovery rate approach’®) were
downloaded from the ENCODE portal. Annotations for RBP functions
were obtained from Supplementary Data1fromref. 50.

rsids for SNPs overlapping miRNA seed regions that create or
disrupt miRNA binding sites were downloaded from miRNASNPv3
(ref. 25). To be included in the enrichment analysis, these SNPs were
required to be in the seed regions of miRNAs that were expressed in
thecellline under consideration (nonzero read counts in miRNA-seq;
Supplementary Table1).

Each asRS variant was matched with a control variant that was
sampled randomly from the same chromosome and type of genomic
region (thatis 3’ UTR, 5’ UTR, coding exon or exon in noncoding tran-
scripts). asRS variants that appeared in more than one genomic context
were assigned one control variant per genomic context. We overlapped
all asRS and control variants with each set of functional annotations.
For ASB and miRNA targeted sites, the proportion of asRS and control
variants that overlapped each set of sites was calculated per cell line.
Two-sided Wilcoxon’s signed-rank test was then used to assess whether
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the asRS variant proportion was significantly greater than the control
variant proportion. For the eCLIP annotations, we used two-sided Fish-
er’sexacttesttocalculate enrichment of asRS variants that overlapped
each set of functional annotations compared to control variants. The
enrichment test was performed using the combined list of asRS and
control variants across all cell lines. A pseudocount of 1 was added to
avoid division by zero errors.

GO enrichment analysis

GO terms were downloaded from Ensembl using biomaRt*.. The enrich-
ment analysis was performed using all asRS genes as the set of query
genes. For each asRS gene, arandom control gene with gene length
and average gene expression (across all samples) within 10% relative
to that of the asRS gene was chosen. A total of 10,000 sets of control
geneswere obtained and a Gaussian distribution was fit to the number
of control genes containing each GO term. This distribution was used to
calculatethe enrichment P value of the GO term among all asRS genes.
Focusingonsignificant (FDR < 0.05) GO terms with at least five asRS (or
asRT) genes, we then used rrvgo®’ to group terms by semantic similarity
(threshold = 0.7). rrvgo assigns parent terms to each group based on
the GO term that has the most significant enrichment P value. Groups
with two or more GO terms are shown in Fig. 4b. The ‘innate immune
response’ cluster was renamed ‘immune response’ to more accurately
describe the range of GO terms within this group.

GWAS catalog analysis
All reported associations were downloaded from the GWAS catalog (17
April 2023) and filtered to include variants that passed genome-wide
significance at P<5x 1078, We obtained GRCh38 genotype reference
files from the 1000 Genomes project (subsampled for the EUR and CEU
populations) (https://www.internationalgenome.org/data-portal/
data-collection/grch38). Tag SNPs (required to be within 250 kb and
exhibit”>0.8 with the target variant) were generated using plink (v.1.90)>
for all 2,242 asRS variants that were present in the genotype reference
files. The overall enrichment of asRS variants that shared tag SNPs (across
alltraits) with significant GWAS associations compared to arandom set
of control variants was computed using two-sided Fisher’s exact test.
S-LDSCregression®* was used to estimate disease heritability. This
analysis was run onall available harmonized summary statistics (31Janu-
ary2025) from GWAS catalog that were categorized under the EFO term
EFO0000540 (immune system disease). Variant sets were defined by all
genicvariantsinside asRS genes as determined by RNAtracker. LD scores
for the regression were calculated using genotype reference files from
1000 Genomes project EUR samples within the variant sets for each
chromosome. Disease heritability was then calculated using summary
statistics for each disease ofinterest (Supplementary Table 7b), ands.e.
values for heritability estimates were computed using the jackknifing
approach. Werequired the enrichments.e. tobeless than the estimated
enrichment for the result to be reported in Supplementary Table 7b.

Gene prediction of disease

Gene prediction models were built using the FUSION.compute_
weights.R script from http://gusevlab.org/projects/fusion/. We
matched each trait of interest to disease-relevant GTEXx tissues (Sup-
plementary Table 8). Subsequently, the genotypes and gene expression
from each GTEx tissue of interest was used to compute gene prediction
models for matched traits using variants that resided within asRS genes.
The FUSION.assoc_test.R script was then used to estimate gene-disease
associations.

Statistics and reproducibility

Nostatistical method was used to determine sample size. Sample size
was set based on the number of Bru/BruChase-seq samples available
throughthe ENCODE portal. We excluded data from cell lines that had
aninsufficient (<100) number of testable genes after CNV filtering. The

experiments were not randomized. The investigators were not blinded
toallocation during experiments and outcome assessment. Randomi-
zation and blinding were not relevant for our study given that samples
were not allocated into experimental groups. The software (including
specific version) and statistical tests used in the data analysis have
beenreported in Methods to facilitate reproducibility of the results.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

Bru-seq/BruChase-seq from 16 human cell lines (GM12878, HCT116,
HepG2,IMR-90,K562, MCF-7, PC-3, Pancl, PC-9, A673, MCF10A, Calu3,
Caco-2, OCI-LY7, endothelial cell of umbilical vein (HUVEC) and mam-
mary epithelial cell (HMEC)) were downloaded from the ENCODE
data portal (https://www.encodeproject.org/). Accession IDs can be
found in Supplementary Table 1b. The GRCh38 reference genome
and gene annotation can be found at https://www.gencodegenes.
org/human/release_36.html (filenames: GRCh38.primary_assembly.
genome.fa.gz; gencode.v36.primary_assembly.annotation.gtf.gz).
Significant GTEx cis-eQTLs were downloaded fromthe GTex portal (v.8
release) at https://www.gtexportal.org/home/datasets (GTEx_Analy-
sis_v8 eQTL.tar). ABSOLUTE CNVs from CCLE can be obtained from
https://depmap.org/portal/data_page/?release=CCLE+2019&file=
CCLE_ABSOLUTE_combined_20181227.xIsx&tab=allData. Allele-specific
binding sites were obtained from our previous work (Supplemen-
tary Data 2 from ref. 22). SNPs overlapping miRNA seed regions
that create or disrupt miRNA binding sites were downloaded from
miRNASNPvV3 (ref.25).eCLIP data for reproducible peaks (as determined
from the irreproducible discovery rate approach’) were downloaded
from the ENCODE portal. ActD RNA-seq data can be accessed on GEO
(Seriesrecord GSE276016). MapUTR sequencing datacanbeaccessed on
GEO (Seriesrecord GSE298114). CRISPR editing results can be accessed
on GEO (Series record GSE298112). All GWAS summary statistics used
inthis paper canbe downloaded from the GWAS catalog (https://www.
ebi.ac.uk/gwas/; accession codesin Supplementary Table 8a). GRCh38
genotype reference files fromthe 1000 Genomes project can be found
athttps://www.internationalgenome.org/data-portal/data-collection/
grch38. Source data are provided with this paper.

Code availability

Code for reproducing the RNAtracker gene categorization results and
other data analysis scripts is available via GitHub at https://github.
com/gxiaolab/RNAtracker and viaZenodo at https://doi.org/10.5281/
zenodo.15528784 (ref. 55). We used bbduk from the BBmap package
(v.38.91) (https://sourceforge.net/projects/bbmap/) for read adapter
trimming, STARY (v.2.7.8a) for read mapping, Picard Tools (https://
broadinstitute.github.io/picard/) (v.1.94) to remove PCR duplicates
and extract uniquely mapped reads, NeoloopFinder* (v.0.3.0) for
CNV predictions, rrvgo® (v.1.6.0) for GO enrichment analysis, PLINK*®
(v.1.9) to obtain tag SNPs and bedtools (v.2.30.0)*’ to overlap genomic
regions. Perbase (v.0.10.0) (https://github.com/sstadick/perbase)
was used to obtain variant allelic counts in the CRISPR prime editing
sequencing data. MPRAnalyze*® was used to identify functional variants
inthe MapUTR data.S-LDSC** was used to estimate disease heritability.
FUSION.compute_weights.R from http://gusevlab.org/projects/fusion/
was used tobuild gene prediction models. For analyzing whole-genome
sequencing data, we used bwa mem*® (v.0.7.17) for read mapping and
CNVpytor* (v.1.3.1) for identifying CNV regions. The VGAM* (v.1.1) R
package was used to compute probability density values and simulate
alleliccounts. Genome coordinate conversions were performed using
liftOver (https://www.bioconductor.org/packages/release/workflows/
html/liftOver.html). Other R packages used for plotting include Com-
plexUpSet®®, ComplexHeatmap® and Allelicimbalance®.
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Extended Data Fig. 1| RNAtracker facilities the classification of ASE genes. eligible for classification. Allelic ratio (AR) is calculated by dividing the number
a, Transcriptomic comparison of Bru-labeled vs. unlabeled K562 cells based on of reference allelic counts by total counts per variant. ¢, Number of genes eligible
two-sided Pearson’s correlation test (p < 2.2 e-16). b, Allelic ratio distribution for classification by RNAtracker in each cellline.d, Number of genes identified as
after copy-number variant (CNV) removal for the 11 cell lines with >100 genes asRS, asRT, or mixed.
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ComplexHeatmap, and Allelicimbalance.

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.
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Data

Policy information about availability of data
All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- A description of any restrictions on data availability

- For clinical datasets or third party data, please ensure that the statement adheres to our policy

Bru-seq/BruChase-seq from 16 human cell lines (GM12878, HCT116, HepG2, IMR-90, K562, MCF-7, PC-3, Pancl, PC-9, A673, MCF10A, Calu3, Caco-2, OCI-LY7,
endothelial cell of umbilical vein (HUVEC) and mammary epithelial cell (HMEC)) were downloaded from the ENCODE data portal (https://www.encodeproject.org/).
Accession IDs can be found in Supplementary Table 1. The GRCh38 reference genome and gene annotation can be found at https://www.gencodegenes.org/
human/release_36.html (filenames: GRCh38.primary_assembly.genome.fa.gz; gencode.v36.primary_assembly.annotation.gtf.gz). Significant GTEx cis-eQTLs were
downloaded from the GTex portal (V8 release) at https://www.gtexportal.org/home/datasets (GTEx_Analysis_v8_eQTL.tar). ABSOLUTE copy-number variants from
CCLE can be obtained from https://depmap.org/portal/data_page/?release=CCLE+2019&file=CCLE_ABSOLUTE_combined_20181227.xIsx&tab=allData. Allele-
specific binding sites were obtained from our previous work rsids for SNPs overlapping miRNA seed regions that create or disrupt miRNA binding sites were
downloaded from miRNASNPv3. eCLIP data for reproducible peaks (as determined from the irreproducible discovery rate, or IDR, approach) were downloaded from
the ENCODE portal. ActD RNA-seq data can accessed on GEO (Series record GSE276016). MapUTR sequencing data can be accessed on GEO (Series record
GSE298114). CRISPR editing results can be accessed on GEO (Series record GSE298112). All GWAS summary statistics used in this paper can be downloaded from
the GWAS catalogue (https://www.ebi.ac.uk/gwas/; accession codes in Supplementary Table 8). GRCh38 genotype reference files from the 1000 Genomes project
can be found at: https://www.internationalgenome.org/data-portal/data-collection/grch38.

Research involving human participants, their data, or biological material

Policy information about studies with human participants or human data. See also policy information about sex, gender (identity/presentation)
and sexual orientation and race, ethnicity and racism.

Reporting on sex and gender NA

Reporting on race, ethnicity, or NA
other socially relevant

groupings

Population characteristics NA
Recruitment NA
Ethics oversight NA

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Field-specific reporting

Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

& Life sciences D Behavioural & social sciences D Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size No statistical method was used to determine sample size. Sample size was set based on the number of Bru-Seq/BruChase-seq replicates that
were available per cell line through the ENCODE portal. Sample size was sufficient to identify asRS and asRT events.

Data exclusions  We included Bru-Seq/BruChase-seq samples from 11 out of the 16 deeply profiled ENCODE cell lines. The excluded cell lines had insufficient
(<100) number of testable genes.

Replication We required genes to have at least two testable SNVs in order to be evaluated by RNAtracker to increase the chances that we were giving
RNAtracker enough information to make a reliable categorization. While we did not verify reproducibility using an independent Bru/BruChase-
seq dataset, ActD was used as an alternative method for identifying stability-regulated genes.

Randomization  Randomization was not relevant for our study of genes regulated by RNA stability and transcriptional regulation as samples were not allocated
into experimental groups.

Blinding Blinding was not relevant for our study of genes regulated by RNA stability and transcriptional regulation as samples were not allocated nto
experimental groups.
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Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.
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Eukaryotic cell lines

Policy information about cell lines and Sex and Gender in Research

Cell line source(s) Source: ATCC
Authentication None
Mycoplasma contamination Tested negative for mycoplasma.

Commonly misidentified lines  None
(See ICLAC register)

Plants

Seed stocks NA

Novel plant genotypes ~ NA

Authentication NA
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