
Nature Genetics | Volume 57 | October 2025 | 2578–2588 2578

nature genetics

Article https://doi.org/10.1038/s41588-025-02326-8

Genetic variants affecting RNA stability 
influence complex traits and disease risk
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Sari Terrazas4, Thuy Linh Nguyen2, Carlos Gonzalez-Figueroa2, 
Armen Khanbabaei    5, Jae Hoon Bahn2, Rajagopal Varada    2, Kofi Amoah1, 
Jonatan Hervoso1, Michelle T. Paulsen6,7, Brian Magnuson8, Mats Ljungman    6,7, 
Jingyi Jessica Li    1,3,9,10,11 & Xinshu Xiao    1,2,4,12 

Gene expression is modulated jointly by transcriptional regulation and 
messenger RNA stability, yet the latter is often overlooked in studies 
on genetic variants. Here, leveraging metabolic labeling data (Bru/
BruChase-seq) and a new computational pipeline, RNAtracker, we 
categorize genes as allele-specific RNA stability (asRS) or allele-specific RNA 
transcription events. We identify more than 5,000 asRS variants among 
665 genes across a panel of 11 human cell lines. These variants directly 
overlap conserved microRNA target regions and allele-specific RNA-binding 
protein sites, illuminating mechanisms through which stability is mediated. 
Furthermore, we identified causal asRS variants using a massively 
parallel screen (MapUTR) for variants that affect post-transcriptional 
mRNA abundance, as well as through CRISPR prime editing approaches. 
Notably, asRS genes were enriched significantly among a multitude of 
immune-related pathways and contribute to the risk of several immune 
system diseases. This work highlights RNA stability as a critical, yet 
understudied mechanism linking genetic variation and disease.

Identifying genetic variants that regulate gene abundance is a common 
strategy to decipher the mechanisms that underlie traits and diseases. It 
is well established that transcriptional regulation and variable stability 
of transcripts jointly determine steady-state messenger RNA abun-
dance. However, the former has received far greater attention than the 
latter. As a result, known functional genetic variants associated with 
gene abundance are linked primarily to transcriptional regulation (for 
example, by disruption of transcription factor binding sites1,2 or core 
promoter motifs3) rather than mRNA stability regulation.

Despite the limited attention, the role of mRNA stability in deter-
mining gene abundance has long been established4,5. Genome-wide 
characterizations of mRNA stability have revealed large variabilities 
in decay rates across genes6,7. Factors such as sequence composition8, 
presence of AU-rich elements (AREs)9, expression of RNA-binding 
proteins (RBPs), microRNA target sites10 and translational efficiency11 
have all been implicated in modulating mRNA stability. Genetic vari-
ants, as mutations in the DNA template for mRNA transcription, have 
the propensity to alter stability-modulating sequences. Thus, genetic 
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line, data was collected at three timepoints with two replicates per 
timepoint: 0 h (Bru-seq), 2 h (BruChase-seq with 2-h uridine chase) 
and 6 h (BruChase-seq with 6-h uridine chase). Allelic counts were 
obtained at nonintronic heterozygous single nucleotide variant (SNV) 
positions in genes that did not overlap copy number variant (CNV) 
regions (Extended Data Fig. 1b). Five cell lines (K562, Panc1, PC-3, PC-9 
and Caco-2) were excluded from downstream analysis as they each 
had fewer than 100 genes eligible for categorization (Extended Data 
Fig. 1c). Across the remaining 11 cell lines, we identified a total of 665 
asRS genes (corresponding to 5,051 unique variants), and 491 asRT 
genes (corresponding to 3,397 unique variants) (Extended Data Fig. 1d 
and Supplementary Table 2). Genes exhibiting ASE patterns reflecting 
complex cases where both asRS and asRT may coexist were categorized 
separately (Methods). A total of 434 genes were assigned to this ‘mixed’ 
category across all cell lines (Extended Data Fig. 1d and Supplementary 
Table 2). An example asRS gene, TJP2, is shown in Fig. 1c, where allelic 
imbalance was not observed until the 6 h timepoint. In contrast, an asRT 
gene, FN1 (Fig. 1c), exhibited allelic imbalance at times 0 h, 2 h and 6 h, 
supporting allele-specific transcriptional regulation.

We did not observe substantial differences in coverage or decay 
rate (Supplementary Note 4) across different groups of genes cat-
egorized as above, suggesting that these factors are unlikely to have 
skewed the categorization (Extended Data Fig. 2a,b). Removal of SNVs 
overlapping alternatively spliced regions had a minor effect on gene 
categorizations (Supplementary Note 5 and Extended Data Fig. 2c) as 
well, suggesting that alternative splicing is not likely to impact these 
gene categorizations in most cases. Assessing our workflow on simu-
lated data (Supplementary Note 6) revealed an average precision of 
0.97 and recall of 0.89 across all gene states (Extended Data Fig. 3a,b). 
When considering only genes that passed our confidence cut-offs 
(Methods), the average recall is 0.99 (Extended Data Fig. 3c).

Although the causal variant underlying asRT does not need to lie 
in the mRNA itself, RNAtracker cannot detect asRT genes without any 
heterozygous SNVs in the mRNA (Extended Data Fig. 4a). Such genes 
may carry heterozygous variants in the promoter/enhancer regions 
that regulate transcription but, without heterozygous SNVs in the 
mRNA to observe, they are untestable by RNAtracker. To address this 
limitation, we applied RNAtracker to identify ASE genes using testable 
intronic SNVs alone at timepoint 0 h. Since introns captured at 0 h 
Bru-seq most likely have not been spliced out, allelic imbalance at this 
timepoint implies that the gene is under transcriptional regulation. 
We call this class of genes ‘intron-based asRT’ (Extended Data Fig. 4b 
and Supplementary Table 2) and include them in the calculation of 
asRT prevalence (Fig. 1d), as well as all analyses hereafter. Notably, 
including the ‘intron-based asRT’ genes resulted in only minor shifts 
in asRT prevalence across most cell lines (Extended Data Fig. 4c). This 
approach does not apply to asRS genes, which are most likely regulated 
by SNVs in the mRNA.

The prevalence of genes under stability regulation (asRS plus 
mixed) was variable across cell lines, ranging from 6.2% in HUVEC to 
26.5% in Calu3 (Fig. 1d). Prevalence was calculated by dividing the num-
ber of asRS plus mixed genes over the total number of genes catego-
rized by RNAtracker in each cell line. We observed that most asRS genes 
were unique to a single cell line (Extended Data Fig. 5a). However, this 
observation may be due partially to differences in genetic background 
among the cell lines or limited sequencing depth in each sample to 
detect asRS events. As a result, common testable variants and genes 
are limited across cell lines (Extended Data Fig. 5b–d). Alternatively, it 
may also reflect cell-type-specificity of asRS. To further examine this 
latter possibility, we asked whether the overlap of asRS genes between 
a pair of cell lines was higher than expected by chance (Methods). A 
total of nine pairwise comparisons exhibited significant difference 
(P < 0.05). Notably, all of them showed that the shared asRS prevalence 
was greater than expected (Fig. 1e). We observed similar results on the 
variant level, in which most asRS variants were identified in a single 

variants represent an important, yet understudied, class of features in 
mRNA stability regulation.

A handful of human studies have linked genetic variants to mRNA 
stability. Work by Pai et al. estimated that 19% of the expression quan-
titative trait loci (eQTLs) that they identified in lymphoblastoid cells 
might be regulated, at least in part, by differences in decay rates12. 
Model-based approaches13 have been used to estimate mRNA decay 
rates in lung tissue, enabling identification of variants associated with 
RNA stability14.

The above studies highlight the potential contribution of geneti-
cally regulated RNA stability towards gene regulation. However, a sys-
tematic characterization of stability-regulating genetic variants across 
different cellular contexts is still lacking. To fill these gaps, we aimed to 
provide a comprehensive account detailing the effects of genetic vari-
ants on RNA stability and their potential contributions to disease phe-
notypes. Using metabolic labeling data (Bru-seq/BruChase-seq) of 11 
cell lines and a new computational workflow, RNAtracker, we examined 
transcriptome changes over time to identify allele-specific RNA stabil-
ity (asRS) and allele-specific RNA transcription (asRT) events. We found 
>1,000 genes with asRS and/or asRT patterns across the cell lines with 
significant overlap. We showed that asRS variants can explain previ-
ously identified eQTL signals across a wide range of tissues. In addition, 
our data uncovered enrichment of asRS genes within immune-related 
pathways, many of which featured genes that help to functionally 
interpret genetic variants related to various immune-related diseases. 
Our study highlights the critical contributions of genetically mediated 
RNA stability—a previously underappreciated mechanism of regula-
tion—towards human disease and biology.

Results
Overview of Bru-seq/BruChase-seq and RNAtracker
Bru-seq/BruChase-seq are a set of complementary experimental 
techniques for tracking the same population of RNA over time15. 
In this protocol, RNA is incubated with bromouridine nucleotides, 
which are subsequently incorporated into nascent transcripts. These 
bromouridine-labeled RNA molecules are then either isolated imme-
diately for sequencing (Bru-seq) or ‘chased’ with uridine nucleotides 
for n hours so that any newly synthesized transcripts will incorporate 
uridine rather than bromouridine before sequencing (BruChase-seq). 
After n hours have passed, the bromouridine-labeled RNA is isolated for 
sequencing (leaving unlabeled transcripts behind). Thus, comparing 
transcript expression differences between Bru-seq and BruChase-seq 
samples enables inferences about degradation that may have occurred 
over the n hours (Fig. 1a). Typically, BruChase-seq data are collected at 
several timepoints to track changes in RNA abundance and Bru-seq data 
are considered time 0. We note that bromouridine labeling has minimal 
impact on gene expression (Extended Data Fig. 1a) and splicing16, and 
thus is unlikely to confound our identification of asRS/asRT events.

To analyze and interpret Bru-seq/BruChase-seq in an allele-specific 
manner, we developed a computational workflow named RNAtracker 
(Fig. 1b and Methods). Briefly, in this workflow, data from several time-
points assayed by Bru-seq/BruChase-seq (Supplementary Note 1) are 
considered together to identify genes with allele-specific expression 
(ASE) patterns. Specifically, RNAtracker employs a beta-binomial 
mixture model to categorize genes probabilistically into those asso-
ciated with asRS or asRT regulation (Supplementary Notes 2 and 3 
and Methods). These categorizations are based on the principle that 
allele-specific transcriptional regulation affects all timepoints (starting 
at time 0) and allele-specific regulation of RNA stability induces ASE at 
later timepoints (no allelic bias at time 0).

RNAtracker categorizes genes by their mechanisms of genetic 
regulation
We obtained Bru-seq/BruChase-seq data from 16 different cell lines 
as part of the ENCODE project (Supplementary Table 1). For each cell 
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Fig. 1 | RNAtracker categorizes genes by the underlying mechanisms of allelic 
imbalance. a, Bru/BruChase-seq reads for a gene exhibiting asRS pattern (allele 1 
exhibits greater degradation than allele 2, which becomes apparent at the 6-h 
timepoint; schematic illustration only). b, RNAtracker categorizes genes as asRS, 
asRT, ‘mixed’ or non-ASE by using a beta-binomial mixture model to calculate the 
posterior probability of each state. c, Example asRS (TJP2) and asRT (FN1) genes. 
Variants in TJP2 exhibit balanced allelic ratios at 0 h, but unbalanced allelic ratios 
at 2 h and 6 h in the HCT116 cell line. Variants in FN1 exhibit unbalanced allelic 
ratios at all three timepoints in the A673 cell line. Alt, alternative; ref, reference. 
 d, Comparison of the prevalence of stability-regulated genes versus 

transcriptionally regulated genes. Stability-regulated genes include asRS and 
mixed genes. Transcriptionally regulated genes include asRT, intronic asRT and 
mixed genes. To calculate prevalence, the number of genes falling under each of 
these categories is summed and divided by the total number of categorized genes 
in the cell line. For each cell line, the prevalence of stability-regulated versus 
transcriptionally regulated genes was compared through two-sided Fisher’s 
exact test (*P ≤ 0.05, ***P ≤ 0.001). e,f, Pairs of cell lines that exhibited a significant 
difference between the expected and actual proportion of overlapping asRS (e) 
or asRT (f) genes (*P ≤ 0.05, **P ≤ 0.01, ***P ≤ 0.001, two-sided binomial test).
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cell line (Extended Data Fig. 5e). All 24 pairwise comparisons in which 
the actual proportion of overlapping asRS variants was significantly 
different from the background expectation exhibited greater actual 
asRS prevalence than background (Extended Data Fig. 5f). Thus, the low 
fraction of overlap between cell lines is due largely to having different 
SNPs present in their genomes. In other words, given shared genetic 
background, the variant effects tend to be independent of cell type.

Similarly, genes under transcriptional regulation (asRT plus 
intron-based asRT plus mixed) also exhibited variability in prevalence 
across cell lines, ranging from 8.17% in HepG2 to 41.1% in MCF-7 (Fig. 1d 
and Supplementary Note 7). Like the asRS genes, most asRT genes 
were unique to a single cell line (Extended Data Fig. 6a). Nonethe-
less, 33 pairs of cell lines showed significant differences between the 
background expectation versus the actual proportion of overlapping 
asRT genes, all in which the shared asRT prevalence was greater than 
expected (Fig. 1f). Again, similar results were observed on the variant 
level (Extended Data Fig. 6b,c). Together, these results suggest that 
genetic variants often affect RNA stability or transcriptional regulation 
in a cell-type-independent manner, consistent with the genetically 
driven nature of such events.

asRS and asRT contribute to gene expression regulation
We next assessed the prevalence of asRS and asRT events among vari-
ants that have been associated previously with gene expression changes 
on a population-wide scale (GTEx eQTL data)17. We overlapped asRS and 
asRT variants with significant eQTLs, which are genetic loci associated 
with gene expression variation, among tissue types that most closely 
matched the cell lines in our dataset (Supplementary Table 1). Since 
regulatory variants of RNA stability are expected to be intragenic, for 
this analysis we required not only the asRS/asRT variant to match the 
eQTL, but also the eQTL target (eGene) to match the asRS/asRT gene. 
We observed that both asRS and asRT variants were enriched among 
significant eQTLs (Fig. 2a and Extended Data Fig. 7a). Although the 
lower enrichment of asRT variants is expected since only intragenic 
variants were considered, the high enrichment of asRS variants sup-
ports our prediction that these intragenic variants are associated with 
stability regulation. In addition, the magnitude of enrichment appeared 
to be unrelated to the biological similarity between the cell line/GTEx 
tissue, further supporting the cell-type-independent effects of asRS 
and asRT variants (Fig. 2a).

Moving from a variant-level to gene-level analysis, we found that 
the proportion of asRS genes that overlapped eGenes was greater than 
that of asRT genes (Fig. 2b and Extended Data Fig. 7b). This was the case 
for combined asRS or asRT genes across all cell lines (Fig. 2b), as well as 
for each cell line individually (Extended Data Fig. 7b). As with the eQTL 
variant overlap, the magnitude of enrichment was unrelated to the bio-
logical similarity between the cell line/GTEx tissue. Overall, we found 
that, among the subset of eGenes that overlapped the total set of genes 
categorized by RNAtracker, 15.6–19.2% overlapped asRS genes, whereas 
20.6–23.7% overlapped asRT genes. The slightly higher percentage of 
overlap with asRT genes is to be expected since there are more asRT 
genes (when intron-based asRT genes are included) than asRS genes 
(Supplementary Table 2) in our data. Together, these analyses revealed 
that asRS and asRT both contribute towards shaping gene expression 
profiles that have been observed on a population-wide scale.

Delineating functional mechanisms and effects of  
asRS variants
As genetically mediated RNA stability has been underexplored previ-
ously despite its essential contributions to gene regulation, we focused 
on further analysis of asRS events for the remainder of the study. In an 
asRS gene, several genetic variants demonstrate ASE patterns. How-
ever, not all variants are necessarily functional with regards to their 
effect on mRNA stability. Nonetheless, the observation of asRS reflects 
the existence of one or more functional variants as cis-acting regula-
tors of RNA stability. To hone in on the functional variants as well as 
their mechanisms of action, we first considered enrichment of asRS 
variants in binding regions of RBPs as determined through enhanced 
cross-linking immunoprecipitation (eCLIP) experiments. Relative 
to random controls (Methods), asRS variants were enriched signifi-
cantly in the binding sites of known stability-regulating RBPs, such as  
MATR3 (ref. 18), FMR1 (ref. 19), TIA1 (ref. 20) and UPF1 (ref. 21) (Fig. 3a 
and Supplementary Table 3).

Showcasing a more granular view of how asRS variants may impact 
RBP binding, we also observed significant enrichment of asRS variants 
among allele-specific binding (ASB) sites in eCLIP data that were iden-
tified using our previously developed method BEAPR22 (Fig. 3b). ASB 
reflects the functional role of an asRS variant in altering protein–RNA 
interactions. Notably, the RBP with the highest proportion of asRS 
variants among its ASB sites is SUB1 (Fig. 3c, Extended Data Fig. 8a and 
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Supplementary Table 3), which also exhibited significant enrichment 
of asRS variants within its eCLIP peaks (Fig. 3a and Supplementary 
Table 3) and has been shown to stabilize its target RNAs23.

In addition to RBPs, miRNAs are well-known regulators of RNA sta-
bility24. Thus, we asked whether asRS variants may alter miRNA target-
ing. SNPs in miRNA seed regions that create or disrupt miRNA binding 
sites (that is, target gain/loss effects, respectively) have previously been 
identified25. In total, 2,243 and 2,198 asRS variants overlapped these 
gain and loss sites, respectively. Using miRNAs expressed in each cell 
line (Methods), we observed that the proportion of asRS variants that 
overlapped miRNA target sites was significantly higher than that of 
control SNVs (Fig. 3d and Supplementary Table 3). Analogously, SNPs 
in miRNA seed regions are enriched significantly with asRS variants 
(Extended Data Fig. 8b).

Experimental support for asRS events
To provide orthogonal experimental support for asRS genes, we per-
formed deep transcriptomic sequencing in GM12878, HCT116 and 

MCF-7 cells at various timepoints after treatment with the transcrip-
tional inhibitor actinomycin D (ActD; 0 h untreated; 2 h, 8 h and 24 h 
post-treatment) (Fig. 4a). We then identified asRS genes with SNVs that 
demonstrated ASE at timepoints after 0 h, or that exhibited increased 
allelic imbalance compared to the 0 h timepoint (Methods). Further-
more, the direction of the imbalance (that is, whether the reference 
or alternative allele degrades faster over time) was required to be 
consistent with the observation in the Bru/BruChase-seq data. With 
these requirements, we obtained experimental support for 159 (74.3%) 
asRS genes out of a total of 214 testable in the ActD RNA sequencing 
(RNA-seq) data (Supplementary Table 4). asRS genes GEN1, CDC137 
and C2CD2 are shown as examples in the MCF-7, GM12878 and HCT116 
cell lines, respectively (Fig. 4b–d). We note that ActD treatment 
functions as a major disruptor of cellular physiology and may affect 
post-transcriptional processes such as RNA localization7. As a result, 
one should not view ActD-based experiments as a gold standard to 
evaluate the performance of asRS prediction. Nonetheless, it func-
tions as an orthogonal support for a select number of asRS events.
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Whereas the ActD experiments showcased that asRS genes are 
undergoing stability-mediated regulation, they do not reveal which spe-
cific variants are functional with regards to their effects on allele-specific 
degradation. Variants with ASE may simply be tag variants reflecting the 
existence of a functional SNV. To hone in on these functional variants, we 
leveraged data from massively parallel reporter assays (MPRA) that were 

designed to identify functional variants affecting post-transcriptional 
regulation (Fig. 4e). These experiments involve cloning oligonucleo-
tides containing the variant of interest and their genomic context into 
the 3′ UTR of a reporter gene. After cellular transfection of the plasmid 
reporters, sequencing data of the plasmid DNA and mRNA are com-
pared to identify sites associated with significant allelic expression 
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differences. Sites that exhibit differences above a specified threshold 
can then be nominated as candidate functional variants.

We first overlapped asRS variants with SNVs tested by a screen-
ing method from our laboratory called MapUTR26. Among the asRS 
variants that overlapped those evaluated by MapUTR, 106 (29.04%) 
were identified as functional, defined as exhibiting significantly  
different activity scores between their alternative and reference alleles  
(logfold change (FC) ≥ 0.1, false discovery rate (FDR) ≤ 0.1; Methods). On the 
gene level, 55.07% (76 out of 138) of the MapUTR tested asRS genes had 
at least one functional variant (Supplementary Table 5). We also found 
that 61 out of the 365 (16.71%) asRS variants tested by a separate mas-
sively parallel assay (MPRAu27) were identified as functional transcript 
abundance-modulating variants (tamVars). On a gene level, 40 out  
of 107 (37.38%) MPRAu tested asRS genes had at least one tamVar  
(Supplementary Table 5). Combined with the RBP and miRNA analyses 
in the last section, we were able to nominate at least one functional 
variant for 88.3% (587 out of 665) of all asRS genes (Fig. 4f).

Prime editors can be used to introduce variants at specific genomic 
positions (Fig. 4g). To further hone in on causal asRS variants, we intro-
duced select asRS variants into the genome of HEK293T cells, which 
have proven editing efficiency with prime editing28. We prioritized test-
ing variants within genes that were supported by our MPRA (MapUTR) 
(Supplementary Table 5). We were able to successfully perform genome 
editing for variant chr. 2:173364016:T>C in CDCA7 and variants chr. 
11:838672:C>T and chr. 11:834745:G>T in CD151. After confirming suc-
cessful genome editing (with an average editing efficiency of 25.24% 
across the three variants) (Extended Data Fig. 9a–c), we performed 
gene-targeted sequencing of cells at various timepoints after treat-
ment with ActD (0 h untreated; 2 h, 8 h and 24 h post-treatment). To 
assess the variant effect on stability, we compared the variant allelic 
ratio at each post-ActD treatment timepoint with that of the untreated 
timepoint. A significant difference in allelic ratio at a post-treatment 
timepoint compared to the 0 h timepoint points to a difference in the 
stability of the two alleles. Under this evaluation, chr. 11:834745:G>T in 
CD151 and chr. 2:173364016:T>C in CDCA7 were both identified as causal 
stability-regulating variants (Fig. 4h). We note that the allelic ratio at 0 h 
is similar to the DNA allelic ratio (0.24 for CDCA7:chr. 2:173364016:T>C 
and 0.27 for CD151:chr. 11:834745:G>T).

In CDCA7, we found that an increased proportion of reads were 
assigned to the alternative allele (C) of chr. 2:173364016:T>C at all 
post-treatment timepoints compared to the 0 h timepoint. This sug-
gests that the alternative allele confers higher RNA stability to the gene 
compared to the reference allele. Indeed, in the Bru/BruChase-seq 
data (although in a different cell line, OCI-LY7, from HEK293T), we also 
observe that the alternative allele exhibits higher expression at both 
2 h and 6 h, suggesting greater stability compared to the reference 
allele (Extended Data Fig. 9d). Similarly in CD151, we found that an 
increased proportion of reads were assigned to the alternative allele 
(T) of chr. 11:834745:G>T at all post-treatment timepoints compared 
to the 0 h timepoint. This suggests that the alternative allele confers 
higher RNA stability than the reference allele. Although we are unable 
to compare this prime editing result with the Bru/BruChase-seq data 
due to insufficient BruChase-seq coverage at 2 h and 6 h for this variant, 
our findings suggest functional role for what would otherwise be an 
understudied variant. Overall, the above results demonstrate causality 
for the two variants on RNA stability.

asRS genes are enriched in immune-related pathways
To elucidate the functional importance of stability-regulated 
genes, we first performed Gene Ontology (GO) enrichment analy-
sis to identify biological processes that featured a significant 
number of asRS genes (Methods). Out of all enriched GO terms, 
‘positive regulation of nuclear-transcribed mRNA catabolic process, 
deadenylation-dependent decay’ exhibited by far the most significant 
enrichment (Fig. 5a and Supplementary Table 6). This group includes 

the genes CNOT1 and PABPC1, which have been studied closely in tan-
dem for their contributions towards generating cycles of mRNA dead-
enylation29. Notably, another mRNA stability-related term, ‘miRNA 
metabolic process,’ was also one of the most significant hits. Other 
significant terms were related to cell adhesion and junction organiza-
tion or immune response—all of which are closely related functionali-
ties. Although proper cell adhesion functioning is important across all 
cells, regulation of this process is especially relevant to immune cells30 
and inflammatory processes31.

To explore the complete list of enriched GO terms more thor-
oughly, we clustered terms by semantic similarity (Methods). This 
allowed us to ascertain whether there exist groups of related biological 
pathways that were consistently enriched among asRS genes. From this 
analysis, we again observed that ‘cell adhesion’ and ‘cell–cell junction 
organization’ as two clusters with the highest average enrichment 
scores (Fig. 5b). We also observed several clusters of terms highlight-
ing immune-related processes (such as ‘innate immune response’ and 
‘defense response to Gram-positive bacterium’), as well as catabolic 
processes such as ‘proteolysis’ and ‘positive regulation of autophagy’—a 
process in which cytosolic material, including proteins, is delivered to 
lysosomes for degradation32 (Fig. 5c). Notably, the extent of enrich-
ment for these processes appears specific to asRS genes, as we did not 
observe the same level of significance among asRT genes (Extended 
Data Fig. 10a).

asRS variants are enriched among genome-wide association 
studies hits
Genome-wide association studies (GWAS) can relate genetic variants to 
various traits by identifying significant associations between specific 
variants and traits on a population-wide scale33. Modulating mRNA sta-
bility is one mechanism through which variants may contribute towards 
specific phenotypes. Indeed, we found that asRS variants were enriched 
significantly among hits with genome-wide significance (P < 5 × 10−8) 
reported in the GWAS catalog34 (Fig. 6a).

Whereas the RNAtracker workflow does not pinpoint the exact 
causal variant in asRS genes, our MPRA assay and ASB analysis allowed 
us to identify likely functional asRS variants. Of the 239 total variants 
examined, 24 directly overlapped significant GWAS hits (Supplemen-
tary Table 7). Several asRS genes (for example, CCND1, CDK6, EPHA3, 
IL7R, WDFY4) harbored one or more variants associated with several 
traits, including autoimmune disorders such as multiple sclerosis, 
primary biliary cirrhosis, rheumatoid arthritis and systemic lupus 
erythematosus. In most cases, the mechanism through which these 
asRS-overlapping GWAS hits contribute to disease risk has not been 
explored.

Next, we performed stratified linkage disequilibrium (LD) score 
(S-LDSC) regression to assess disease heritability enrichment of asRS 
variants. Given their apparent relevance to immune-related processes, 
we focused on immune-related diseases with GWAS summary statistics 
available through the GWAS catalog (Methods). Notably, for several 
autoimmune diseases (such as rheumatoid arthritis and systemic 
lupus erythematosus), asRS variants demonstrated heritability enrich-
ment across several independent studies (Fig. 6b and Supplementary 
Table 7). Together, our data suggest that stability-regulating variants 
in these genes may contribute to disease susceptibility.

asRS genes are associated with immune-related diseases
To reinforce the relevance of asRS genes to the immune-related dis-
eases of interest, we took an approach that is analogous to that of 
summary-based transcriptome-wide association studies (TWAS35). 
TWAS is similar in principle to GWAS; however, rather than associat-
ing specific genetic variants with traits, it can identify associations 
between the expression of genes and various traits. Specifically, we built 
genetics-based gene expression prediction models using genic SNPs 
(Methods) to infer the expression of asRS genes in GTEx participants 
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from disease-relevant tissues (Supplementary Table 8). These predic-
tion models were then used to identify associations between asRS 
genes and traits using GWAS summary statistics of immune-related 
diseases. Restricting the models to genic SNPs helps minimize the 
influence of transcriptional regulatory variants, thus enriching for 
stability-mediated mechanisms. Across all evaluated asRS gene–trait 
pairs, 17 unique genes (out of 414 tested) were associated significantly 
with disease (Fig. 6c and Supplementary Table 8).

This TWAS-like analysis uncovered additional disease-related asRS 
genes that were not apparent from the direct overlap of GWAS hits 
with functional asRS variants. The strongest observed association was 
between FAM114A1 and allergic rhinitis in lung tissue (P = 5.41 × 10−71). 
This gene encodes the nervous system overexpressed protein NOXP20 
and has been implicated in regulating apoptosis in melanocytes36 and 
angiotensin II signaling in cardiac cells37, yet its role in inflammatory 

processes in the lung remains largely unexplored. Other notable genes 
include the nonsense-mediated decay factor SMG7, significantly associ-
ated with both systemic lupus erythematosus (P = 7.01 × 10−7 in whole 
blood) and type 1 diabetes mellitus (P = 2.53 × 10−5 in whole blood), as 
well as the E3 ubiquitin ligase protein-encoding gene RNF114, which dis-
played a significant association with multiple sclerosis (P = 3.45 × 10−4 
in whole blood). Collectively, these findings strengthen the notion 
that genetically mediated mRNA stability represents a key mechanism 
contributing to the pathogenesis of immune-related diseases.

Discussion
In this study, we present a systematic analysis of allele-specific RNA 
stability, independent of transcriptional regulation, in human cells. 
Employing metabolic labeling data (Bru-seq/BruChase-seq) with the 
RNAtracker computational workflow, our approach sheds light on 
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the role of mRNA stability, distinguishing between gene abundance 
changes that result from transcriptional regulation versus decay rate 
variability. Because stability-regulating variants often reside within 
the mRNA, the allele-specific approach of RNAtracker ensures that the 
causal SNP is probably among variants we evaluate, making our work-
flow particularly effective for revealing stability-mediated regulatory 
events. On the other hand, variants that regulate transcription, such as 
promoters or enhancers, may reside outside of the genes. Nonetheless, 
RNAtracker can still capture transcriptionally regulated genes based 
on the read counts of its mRNA heterozygous variants—even though 
they may not necessarily be causal.

Future applications of RNAtracker can continue to extend our 
paradigm for understanding stability-mediated regulation of mRNA 
abundance. Indeed, the workflow can be adapted readily for use with 
any data that tracks the same population of RNA across different 
timepoints. These include other forms of uridine labeling38 as well 
as collecting RNA at several timepoints after transcriptional inac-
tivation. Whereas our analyses show that asRS and asRT events are 
largely cell-type-independent, variants regulated by cell-type-specific 
trans-acting factors (such as RBPs and miRNAs) may present a class of 
exceptions. We accounted for cellular context by limiting our analysis 
to cell line-specific miRNAs and using relevant GTEx tissue types when 
possible. Nonetheless, the generation of datasets from samples of more 
relevant cellular contexts will facilitate a more precise understanding 
of stability regulators.

In summary, we present a workflow for identifying stability- 
mediating variants and provide a comprehensive characterization 
of their biological roles. Our results highlight their contributions to 
disease and nominate functional explanations for poorly understood 
variant–trait associations, demonstrating RNA stability as a key link 
between genetic variants and disease.
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Methods
Ethics
This research study did not require approval from any specific ethics 
board/committee.

CNV removal
We obtained absolute copy numbers generated by the Cancer Cell Line 
Encyclopedia (CCLE)39 using the ABSOLUTE algorithm40. These copy 
number calls were overlapped with the GENCODE v.36 gene annotation. 
Only genes that overlapped copy number regions in which the minor 
ABSOLUTE copy number call and the major ABSOLUTE copy number 
call were equal to 1 were retained in downstream analysis.

If ABSOLUTE calls were not available, we used the CNVpytor41 soft-
ware with bin size set to 10 kb to analyze cell lines that had publicly avail-
able whole-genome sequencing data (Supplementary Table 1 for data 
sources). We then filtered the CNV calls by requiring P value < 0.0001, 
CNV size ≥50,000 and at least half of the reads to be uniquely mapped. 
We used the default mean-shift caller for cell lines that are diploid 
or near diploid and the joint-caller for cell lines that are known to be 
polyploid (Supplementary Table 1).

For the remaining cell lines, we downloaded Hi-C data in pairs for-
mat (standard text format for pairs of genomic loci given at 1 bp point 
positions) and used ‘cload’ from the cooler42 software to convert these 
files into *.cool matrices at 20 kb resolution. We used the ‘calculate-cnv’ 
and ‘segment-cnv’ modules from NeoloopFinder43 to identify CNV 
regions in each cell line using the Hi-C cool files as input. ‘calculate-cnv’ 
was run with the ‘–enzyme’ parameter set to uniform and ‘segment-cnv’ 
was run with bin size 1,000 and ploidy set to two (default) for all cell 
lines except for Caco-2, in which ploidy was set to three. All genomic 
segments with copy number!= 2 were considered CNV regions. We 
filtered out genes if they overlapped any predicted CNV region.

Identification of asRS, asRT and mixed genes with RNAtracker
To categorize a gene as asRS, asRT or mixed, RNAtracker fits a 
beta-binomial mixture model (Supplementary Notes 2 and 3) for the 
reference allelic counts of the gene’s testable SNVs (total read counts 
≥10 and minor read count ≥2) at each timepoint. Combining three 
timepoints (0 h, 2 h, 6 h), RNAtracker categorizes genes into one of 
seven possible states (listed in the table below), where each state is a 
triplet corresponding to three timepoints. At each timepoint, a gene 
is encoded as 1 for ASE and 0 for non-ASE. We denote the total count of 
the ith SNV of a gene g at timepoint t by nt

gi, among which we assume 
the reference allelic count follows beta-binomial(nt

gi,α
t
0,β

t
0, ) if gene g is 

non-ASE or beta-binomial(nt
gi,α

t
1,

t
1) if gene g is ASE, t = 0, 2, 6. Since we 

do not want to assume that the reference allelic count is always greater 
than the alternative allelic count, we ensure the beta distributions are 
symmetrical by setting the two beta distribution parameters equal, 
that is, αt

0 = βt
0,α

t
1 = βt

1. Specifically, in our implementation, we assume 
the reference allelic counts at 2 h and 6 h share the same parameters. 
To summarize, we have distributions at timepoints t = 0 following 
beta-binomial(n0

gi,α
0
0,β

0
0, ) if gene g is non-ASE or beta-binomial(n0

gi,α
1
1,β

1
1) 

if gene g is ASE; at t = 2 or 6 following beta-binomial(nt
gi,α

2,6
0 ,β2,6

0 ) if gene 
g is non-ASE or beta-binomial(nt

gi,α
2,6
1 ,β2,6

1 ) if gene g is ASE.

First, in a preprocessing step, we focused on the 0 h data only and 
assumed that the reference allelic counts of each gene either follow the 
ASE beta-binomial distribution or the non-ASE beta-binomial distribu-
tion. Only genes with at least two testable SNVs are evaluated. We used 
π0
1  to represent the probability of a gene being ASE (or π0

0 = 1 − π0
1  for a 

gene being non-ASE) at 0 h, where π refers to a fixed (nonrandom) 
parameter (or unknown constant) to be estimated. The expectation–
maximization (EM) algorithm is then used to estimate the parameters 
(π0

1 ,α
0
0,α

0
1 ).

Upon convergence of the EM algorithm, we labeled each gene 
as non-ASE (0) or ASE (1) at 0 h based on the gene’s posterior prob-
abilities for the two states. Our assignment of genes to the two states 
is a two-step procedure: first, we assigned every gene to the state at 
which its posterior probability is greater than 0.5; second, based on 
the initially assigned genes, we retained a gene in a state only if its 
posterior probability at that state is at least (1) 0.95 or (2) the first 
tercile of the posterior probabilities of all genes initially assigned 
to that state.

Second, after determining whether the gene exhibits ASE at 0 h in 
the preprocessing step, RNAtracker jointly considers data from the 2 h 
and 6 h timepoints to categorize genes into one of the seven triplet 
states. For genes that are labeled non-ASE in the previous step, the EM 
algorithm is used to estimate parameters α2,6

0 ,α2,6
1 ,π2,6

0 ,π2,6
1 , the first two 

of which are defined as the symmetric hyperparameters for the 
beta-binomial representing non-ASE and ASE genes, respectively, at 
each of the latter two timepoints (2 h and 6 h) and the last two of which 
are defined as the probability of a gene being in state 0 or state 1, respec-
tively. The probability of a gene being in state 2 is π2,6

2 = 1 − π2,6
0 − π2,6

1 . 
Similarly, for genes that are labeled ASE in the previous step, the EM 
algorithm is used to estimate parameters α2,6

0 ,α2,6
1 ,π2,6

3 ,π2,6
4 ,π2,6

5 . Again, 
α2,6
0  and α2,6

1  are defined as the symmetric hyperparameters for the 
beta-binomial representing non-ASE and ASE genes respectively  
at each of the latter two timepoints (2 h and 6 h), and π2,6

3 ,π2,6
4 ,π2,6

5   
are defined as the probability of a gene being in state 3, state 4 or  
state 5, respectively. The probability of a gene being in state 6 is 
π2,6
6 = 1 − π2,6

3 − π2,6
4 − π2,6

5 .
We then used a procedure similar to the two-step procedure 

utilized in the preprocessing step, with an additional refinement 
step to assign genes to the seven states. In step 1, we assigned every 
gene to the state with the highest posterior probability. In step 2, 
based on the initially assigned genes, we retained a gene in a state 
only if its posterior probability at that state is at least (1) 0.95 or (2) 
the first tercile of the posterior probabilities of all genes initially 
assigned to that state. Finally, in step 3, for each gene, we require 
at least half of its SNVs at each ASE timepoint (encoded as 1 in the 
table above) to exhibit allelic imbalance in the same direction 
across the two replicates. In other words, at least half of the SNVs 
in the gene must have the same sign (reference allelic ratio − 0.5) 
for the two replicates. Genes that fail this threshold are considered  
uncategorized.

To summarize, for the three timepoints, the RNAtracker  
model has a total of ten independent parameters (α0

0,α
0
1 ,π

0
1 ,

α2,6
0 ,α2,6

1 ,π2,6
0 ,π2,6

1 ,π2,6
3 ,π2,6

4 ,π2,6
5 )  a n d  t h r e e  p a r a m e t e r s  t h a t  

are constrained by π0
0 = 1 − π0

1 ,  π2,6
2 = 1 − (π2,6

0 + π2,6
1 )  and π2,6

6
= 1 − (π2,6

3 + π2,6
4 + π2,6

5 ) . Our justification for the model parameteriza-
tion (in which parameters for 0 h are estimated separately from the 2 h 
and 6 h data) is that we want to implement stringent thresholds for 
calling genes ASE or non-ASE at 0 h, as this timepoint is crucial to dis-
tinguishing asRS from asRT genes. Moreover, the distribution of refer-
ence allelic counts at 0 h was found to be distinct from that of 2 h and 
6 h; hence, the beta-binomial parameters are the same for 2 h and 6 h, 
but different from 0 h.

For details on the criteria for testable SNVs, identification of ASE 
SNVs, estimation of initial hyperparameters, and an extended explana-
tion of RNAtracker, please refer to Supplementary Note 1.

0 h 2 h 6 h

State 0 (non-ASE) 0 0 0

State 1 (asRS) 0 1 1

State 2 (asRS) 0 0 1

State 3 (asRT) 1 1 1

State 4 (mixed) 1 0 1

State 5 (mixed) 1 0 0

State 6 (mixed) 1 1 0
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Cell-type comparisons
To calculate the background expectation of shared asRS genes between 
each pair of cell lines, we obtained the number of asRS genes in each cell 
line and divided each value by the number of common testable asRS 
genes. The product of these two values was used as the background 
expectation, that is, the expected proportion of overlap. A binomial 
test was used to evaluate whether the background expectation differed 
from the actual proportion of shared asRS genes between the two cell 
lines. The same analysis was applied to asRT genes.

GTex analysis
Significant GTEx cis-eQTLs were downloaded from the GTex portal 
(v.8 release) at https://www.gtexportal.org/home/datasets (filename: 
GTEx_Analysis_v8_eQTL.tar). Fisher’s exact test was used to compute 
the odds ratio (that is, enrichment) of asRS or asRT variants overlap-
ping significant GTEx cis-eQTLs compared to background variants. 
Background variants were those found in genes categorized as non-ASE 
by RNAtracker. For each overlap, we required the eQTL-associated 
gene to match the asRS, asRT or background gene. We also compared 
the enrichment of asRS and asRT genes among eGenes using Fisher’s 
exact test. This analysis was performed per tissue using asRS or asRT 
events combined across all cell lines (Fig. 2b), as well as in each cell line 
separately (Extended Data Fig. 7b).

Deep transcriptomic profiling of ActD-treated cells
RNA-seq (NovaSeq X Plus 150 PE) was performed for GM12878, MCF-7 
and HCT116 cells before treatment with 10 μg ml−1 (GM12878, HCT116) 
or 5 μg ml−1 (MCF-7) of ActD, as well as 2 h, 8 h and 24 h post-treatment 
(three replicates per timepoint). These reads were processed using 
the same procedure as the Bru/BruChase-seq data (that is, STAR map-
ping with WASP filtering, followed by obtaining read counts at het-
erozygous SNV positions). To confirm the genotypes for these three 
cell lines, we sequenced their genomic DNA and called variants using 
the GATK germline short-variant discovery pipeline (https://gatk. 
broadinstitute.org/hc/en-us/articles/360035535932-Germline-short- 
variant-discovery-SNPs-Indels). To be considered validated, we required 
asRS genes to have at least one SNV that is non-ASE at 0 h but ASE at a lat-
ter timepoint. The allelic imbalance at the latter timepoint must be more 
extreme than the 0 h timepoint and at least 0.1 in at least one replicate. 
Alternatively, if the SNV is ASE at 0 h, its allelic imbalance must be more 
extreme at a latter timepoint and be at least 0.1 in at least one replicate. 
In either case, the direction of the allelic imbalance must be consistent 
with what is observed in the Bru/BruChase-seq data.

We used our previous approach in which we derive an empirical 
Gaussian distribution for the read coverage of each SNV to evaluate the 
probability that the average read count of the minor allele was gener-
ated from the same distribution as that of the major allele22. A SNV was 
deemed ASE if its Benjamini–Hochberg adjusted P value was less than 
0.05. Allelic imbalance is calculated based on the delta allelic ratio 
at each SNV position: delta allelic ratio = abs(SNV allelic ratio − 0.5).

Prime editing
Prime editing was performed using the PE7 approach, which features 
a prime editor protein (PE7) fused to the RNA-binding, N-terminal 
domain of the small RNA-binding exonuclease protection factor 
La44. For each asRS variant that we evaluated with prime editing, we 
designed spacer and extension sequences for engineered prime edit-
ing guide RNAs (epegRNAs) using pegFinder45. pegLIT46 was used to 
design linker patterns for each epegRNA. Golden Gate assembly was 
used to clone the spacer, extension and epegRNA scaffold sequences 
(Supplementary Table 9) into the pU6-tevopreq1-GG-acceptor vector 
(Addgene, catalog number 174038) for epegRNA constructs. We then 
transfected pCMV-PE7 (Addgene, catalog number 214812) and the 
plasmid expressing each epegRNA into HEK293T cells, respectively. 
gDNA was extracted 72 h post-transfection to confirm genome editing 

events. Total RNA was then harvested from cells 0 h (pretreatment) and 
2 h, 8 h and 24 h after treatment with 10 μg ml−1 of ActD (three replicates 
per timepoint). gDNA was also harvested from cells before ActD treat-
ment (0 h). After reverse transcription using the SuperScript IV Reverse 
Transcriptase (Thermo Fisher Scientific, catalog number 18090010), 
the cDNA was amplified using gene-specific primers (Supplementary 
Table 9) to generate amplicons containing the variant of interest. 
Amplicons containing different variants from the same timepoint were 
pooled together before a second round of PCR to add Illumina adapters 
for sequencing. The PCR reactions were stopped before the plateau of 
the amplification curves. The libraries were purified using 2% agarose 
gel and sequenced with NovaSeq X Plus 150 PE.

Adapters were trimmed with bbduk (https://sourceforge.net/
projects/bbmap/) before reads were mapped to GRCh38 with STAR 
(v.2.7.8a)47. To focus on reads from mature mRNA sequences, we filtered 
out unspliced reads before quantifying variant allelic counts with 
perbase (https://github.com/sstadick/perbase). Variants with a sig-
nificantly different (Student’s t-test; P < 0.05) allelic ratio at post-ActD 
treatment timepoints (2 h, 8 h or 24 h) compared to the 0 h pretreat-
ment timepoint were identified as causal variants.

Massively parallel reporter assays
A total of 365 asRS variants (Supplementary Table 5) were included in the 
MPRA experiment (following the MapUTR26 screening method) in HeLa 
cells. In brief, synthetic DNA oligonucleotides containing the variants of 
interest and their flanking sequences (164 nucleotides total) were cloned 
into the 3′ UTR of the eGFP gene. The expression of this reporter gene was 
driven by the cytomegalovirus early enhancer/chicken beta actin (CAG) 
promoter. These oligos were then introduced into HeLa cells by elec-
troporation. Following electroporation (24 h), total RNA was extracted 
for sequencing targeting the tested variant regions. Specifically, the 
test sequences were amplified from both the plasmid library and mRNA 
to generate DNA sequencing and RNA-seq libraries. Three biological 
replicates were collected for each experiment and a high correlation was 
observed between replicates (R = 0.84). Sequencing data of the plasmid 
DNA and mRNA were compared to identify sites associated with signifi-
cant expression differences between the two alleles using MPRAnalyze48. 
FDR ≤ 0.1 and |ln(FC)| ≥ 0.1 were required to call significance.

tamVars identified by MPRAu27 were obtained from Supplementary 
Table 1 of the corresponding study. Variants identified as a tamVar in at 
least one of the tested cell lines were considered functional variants.

Functional enrichment analysis
Allele-specific binding sites were obtained from our previous work (Sup-
plementary Data 2 from ref. 22. After removing coordinate-unstable 
positions49, we converted ASB sites from hg19 to hg38 coordinates to be 
consistent with the asRS variants. eCLIP data for reproducible peaks (as 
determined from the irreproducible discovery rate approach50) were 
downloaded from the ENCODE portal. Annotations for RBP functions 
were obtained from Supplementary Data 1 from ref. 50.

rsids for SNPs overlapping miRNA seed regions that create or 
disrupt miRNA binding sites were downloaded from miRNASNPv3 
(ref. 25). To be included in the enrichment analysis, these SNPs were 
required to be in the seed regions of miRNAs that were expressed in 
the cell line under consideration (nonzero read counts in miRNA-seq; 
Supplementary Table 1).

Each asRS variant was matched with a control variant that was 
sampled randomly from the same chromosome and type of genomic 
region (that is 3′ UTR, 5′ UTR, coding exon or exon in noncoding tran-
scripts). asRS variants that appeared in more than one genomic context 
were assigned one control variant per genomic context. We overlapped 
all asRS and control variants with each set of functional annotations. 
For ASB and miRNA targeted sites, the proportion of asRS and control 
variants that overlapped each set of sites was calculated per cell line. 
Two-sided Wilcoxon’s signed-rank test was then used to assess whether 

http://www.nature.com/naturegenetics
https://www.gtexportal.org/home/datasets
https://gatk.broadinstitute.org/hc/en-us/articles/360035535932-Germline-short-variant-discovery-SNPs-Indels
https://gatk.broadinstitute.org/hc/en-us/articles/360035535932-Germline-short-variant-discovery-SNPs-Indels
https://gatk.broadinstitute.org/hc/en-us/articles/360035535932-Germline-short-variant-discovery-SNPs-Indels
https://sourceforge.net/projects/bbmap/
https://sourceforge.net/projects/bbmap/
https://github.com/sstadick/perbase


Nature Genetics

Article https://doi.org/10.1038/s41588-025-02326-8

the asRS variant proportion was significantly greater than the control 
variant proportion. For the eCLIP annotations, we used two-sided Fish-
er’s exact test to calculate enrichment of asRS variants that overlapped 
each set of functional annotations compared to control variants. The 
enrichment test was performed using the combined list of asRS and 
control variants across all cell lines. A pseudocount of 1 was added to 
avoid division by zero errors.

GO enrichment analysis
GO terms were downloaded from Ensembl using biomaRt51. The enrich-
ment analysis was performed using all asRS genes as the set of query 
genes. For each asRS gene, a random control gene with gene length 
and average gene expression (across all samples) within 10% relative 
to that of the asRS gene was chosen. A total of 10,000 sets of control 
genes were obtained and a Gaussian distribution was fit to the number 
of control genes containing each GO term. This distribution was used to 
calculate the enrichment P value of the GO term among all asRS genes. 
Focusing on significant (FDR < 0.05) GO terms with at least five asRS (or 
asRT) genes, we then used rrvgo52 to group terms by semantic similarity 
(threshold = 0.7). rrvgo assigns parent terms to each group based on 
the GO term that has the most significant enrichment P value. Groups 
with two or more GO terms are shown in Fig. 4b. The ‘innate immune 
response’ cluster was renamed ‘immune response’ to more accurately 
describe the range of GO terms within this group.

GWAS catalog analysis
All reported associations were downloaded from the GWAS catalog (17 
April 2023) and filtered to include variants that passed genome-wide 
significance at P < 5 × 10−8. We obtained GRCh38 genotype reference 
files from the 1000 Genomes project (subsampled for the EUR and CEU 
populations) (https://www.internationalgenome.org/data-portal/
data-collection/grch38). Tag SNPs (required to be within 250 kb and 
exhibit r2 ≥ 0.8 with the target variant) were generated using plink (v.1.90)53 
for all 2,242 asRS variants that were present in the genotype reference 
files. The overall enrichment of asRS variants that shared tag SNPs (across 
all traits) with significant GWAS associations compared to a random set 
of control variants was computed using two-sided Fisher’s exact test.

S-LDSC regression54 was used to estimate disease heritability. This 
analysis was run on all available harmonized summary statistics (31 Janu-
ary 2025) from GWAS catalog that were categorized under the EFO term 
EFO0000540 (immune system disease). Variant sets were defined by all 
genic variants inside asRS genes as determined by RNAtracker. LD scores 
for the regression were calculated using genotype reference files from 
1000 Genomes project EUR samples within the variant sets for each 
chromosome. Disease heritability was then calculated using summary 
statistics for each disease of interest (Supplementary Table 7b), and s.e. 
values for heritability estimates were computed using the jackknifing 
approach. We required the enrichment s.e. to be less than the estimated 
enrichment for the result to be reported in Supplementary Table 7b.

Gene prediction of disease
Gene prediction models were built using the FUSION.compute_
weights.R script from http://gusevlab.org/projects/fusion/. We 
matched each trait of interest to disease-relevant GTEx tissues (Sup-
plementary Table 8). Subsequently, the genotypes and gene expression 
from each GTEx tissue of interest was used to compute gene prediction 
models for matched traits using variants that resided within asRS genes. 
The FUSION.assoc_test.R script was then used to estimate gene-disease 
associations.

Statistics and reproducibility
No statistical method was used to determine sample size. Sample size 
was set based on the number of Bru/BruChase-seq samples available 
through the ENCODE portal. We excluded data from cell lines that had 
an insufficient (<100) number of testable genes after CNV filtering. The 

experiments were not randomized. The investigators were not blinded 
to allocation during experiments and outcome assessment. Randomi-
zation and blinding were not relevant for our study given that samples 
were not allocated into experimental groups. The software (including 
specific version) and statistical tests used in the data analysis have 
been reported in Methods to facilitate reproducibility of the results.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
Bru-seq/BruChase-seq from 16 human cell lines (GM12878, HCT116, 
HepG2, IMR-90, K562, MCF-7, PC-3, Panc1, PC-9, A673, MCF10A, Calu3, 
Caco-2, OCI-LY7, endothelial cell of umbilical vein (HUVEC) and mam-
mary epithelial cell (HMEC)) were downloaded from the ENCODE 
data portal (https://www.encodeproject.org/). Accession IDs can be 
found in Supplementary Table 1b. The GRCh38 reference genome 
and gene annotation can be found at https://www.gencodegenes.
org/human/release_36.html (filenames: GRCh38.primary_assembly.
genome.fa.gz; gencode.v36.primary_assembly.annotation.gtf.gz). 
Significant GTEx cis-eQTLs were downloaded from the GTex portal (v.8 
release) at https://www.gtexportal.org/home/datasets (GTEx_Analy-
sis_v8_eQTL.tar). ABSOLUTE CNVs from CCLE can be obtained from 
https://depmap.org/portal/data_page/?release=CCLE+2019&file= 
CCLE_ABSOLUTE_combined_20181227.xlsx&tab=allData. Allele-specific 
binding sites were obtained from our previous work (Supplemen-
tary Data 2 from ref. 22). SNPs overlapping miRNA seed regions 
that create or disrupt miRNA binding sites were downloaded from  
miRNASNPv3 (ref. 25). eCLIP data for reproducible peaks (as determined 
from the irreproducible discovery rate approach50) were downloaded 
from the ENCODE portal. ActD RNA-seq data can be accessed on GEO 
(Series record GSE276016). MapUTR sequencing data can be accessed on 
GEO (Series record GSE298114). CRISPR editing results can be accessed 
on GEO (Series record GSE298112). All GWAS summary statistics used 
in this paper can be downloaded from the GWAS catalog (https://www.
ebi.ac.uk/gwas/; accession codes in Supplementary Table 8a). GRCh38 
genotype reference files from the 1000 Genomes project can be found 
at https://www.internationalgenome.org/data-portal/data-collection/
grch38. Source data are provided with this paper.

Code availability
Code for reproducing the RNAtracker gene categorization results and 
other data analysis scripts is available via GitHub at https://github.
com/gxiaolab/RNAtracker and via Zenodo at https://doi.org/10.5281/
zenodo.15528784 (ref. 55). We used bbduk from the BBmap package 
(v.38.91) (https://sourceforge.net/projects/bbmap/) for read adapter 
trimming, STAR47 (v.2.7.8a) for read mapping, Picard Tools (https://
broadinstitute.github.io/picard/) (v.1.94) to remove PCR duplicates 
and extract uniquely mapped reads, NeoloopFinder43 (v.0.3.0) for 
CNV predictions, rrvgo52 (v.1.6.0) for GO enrichment analysis, PLINK56 
(v.1.9) to obtain tag SNPs and bedtools (v.2.30.0)57 to overlap genomic 
regions. Perbase (v.0.10.0) (https://github.com/sstadick/perbase) 
was used to obtain variant allelic counts in the CRISPR prime editing 
sequencing data. MPRAnalyze48 was used to identify functional variants 
in the MapUTR data. S-LDSC54 was used to estimate disease heritability. 
FUSION.compute_weights.R from http://gusevlab.org/projects/fusion/ 
was used to build gene prediction models. For analyzing whole-genome 
sequencing data, we used bwa mem58 (v.0.7.17) for read mapping and 
CNVpytor41 (v.1.3.1) for identifying CNV regions. The VGAM59 (v.1.1) R 
package was used to compute probability density values and simulate 
allelic counts. Genome coordinate conversions were performed using 
liftOver (https://www.bioconductor.org/packages/release/workflows/
html/liftOver.html). Other R packages used for plotting include Com-
plexUpSet60, ComplexHeatmap61 and AllelicImbalance62.
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Extended Data Fig. 1 | See next page for caption.
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Extended Data Fig. 1 | RNAtracker facilities the classification of ASE genes. 
a, Transcriptomic comparison of Bru-labeled vs. unlabeled K562 cells based on 
two-sided Pearson’s correlation test (p < 2.2 e-16). b, Allelic ratio distribution 
after copy-number variant (CNV) removal for the 11 cell lines with >100 genes 

eligible for classification. Allelic ratio (AR) is calculated by dividing the number 
of reference allelic counts by total counts per variant. c, Number of genes eligible 
for classification by RNAtracker in each cell line. d, Number of genes identified as 
asRS, asRT, or mixed.
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Extended Data Fig. 4 | Bias against asRT identification varies across cell 
lines. a, Number of expressed genes with and without heterozygous genic 
single-nucleotide variants (SNVs). Genes without heterozygous SNVs are 
further categorized into whether they have intronic heterozygous SNVs or 
0 heterozygous SNVs (even when introns are considered). To be considered 
expressed, a gene must have average base coverage ≥ 10 across all genic 
regions, across all 6 timepoint samples. b, Prevalence (top panel) and number 
(bottom panel) of intron-based asRT genes. Prevalence is calculated using 

the total number of genes that are testable based on having SNVs in intronic 
regions. c, Comparison of the prevalence of stability-regulated genes versus 
transcriptionally regulated genes (including and excluding intron-based 
asRT genes). Stability regulated genes include asRS and mixed genes. 
Transcriptionally regulated genes include asRT, intronic asRT, and mixed 
genes. To calculate prevalence, the number of genes falling under each of these 
categories is summed and divided by the total number of genes that were tested 
using RNAtracker in the cell line.
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Extended Data Fig. 5 | Low proportion of asRS sharing across cell lines can be 
attributed to their unique genetic backgrounds. a, UpSet plot of asRS genes 
that are unique to or shared across cell lines. b,c UpSet plot of heterozygous 
single-nucleotide variants (SNVs) within genes classified by RNAtracker (b), as 
well as all (including intronic) heterozygous SNVs (c) that are unique to or shared 
across cell lines. Note that Calu3 is not shown because only the top 30 largest 

intersections are plotted. d, UpSet plot of all genes categorized by RNAtracker 
across cell lines. e, UpSet plot of asRS variants that are unique to or shared across 
cell lines. f, Pairs of cell lines that exhibited a significant difference between the 
expected and actual proportion of overlapping asRS variants. All 24 comparisons 
had significantly greater actual proportion than expected. *p ≤ 0.05, **p ≤ 0.01, 
***p ≤ 0.001 (two-sided binomial test).
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Extended Data Fig. 6 | Low proportion of asRT sharing across cell lines can be 
attributed to their unique genetic backgrounds. a, UpSet plot of asRT genes 
shared across cell lines. b, UpSet plot of asRT variants shared across cell lines.  
c, Pairs of cell lines that exhibited a significant difference between the expected 

and actual proportion of overlapping asRT variants. 33 out of 33 of these 
comparisons had significantly greater actual proportion than expected. 
*p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001 (two-sided binomial test).
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to gene expression. a, Proportion of asRS and asRT variants in each cell line 
(n = 11) that overlapped expression quantitative trait loci (eQTLs) (p = 3.71e-20). 
P value was calculated via a two-sided Wilcoxon’s signed rank-test. In boxplots, 
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of the comparisons in which the asRT overlap proportion was higher than the 
asRS overlap proportion were significant.

http://www.nature.com/naturegenetics


Nature Genetics

Article https://doi.org/10.1038/s41588-025-02326-8

3

1

5

1

1

2

1

2

11

2

1

3

3

1

1

4

1

1

1

1

1

1

1

2

2

1

1

1

2

1

1

3

2

1

8

1

2

6

4

9

2

1

CSTF2T

BUD13

KHSRP

AQR

NONO

PRPF8

PRPF4

FUS

HNRNPC

SUGP2

ZNF800

MTPAP

LSM11

NOLC1

PUM1

SRSF1

RPS3

ZNF622

DDX24

U2AF2

PPIG

HLTF

LIN28B

STAU2

UCHL5

AKAP1

DDX55

UPF1

RBM15

HNRNPL

IGF2BP3

RBM22

GRWD1

IGF2BP1

NIP7

BCLAF1

PABPC4

YBX3

LARP4

SND1

LARP7

SUB1

0.0 2.5 5.0 7.5 10.0 12.5
% of ASB sites

R
BP

0.00012

0e+00

2e−05

4e−05

6e−05

8e−05

asRS Control
Variant Type

Pr
op

or
tio

n 
of

 m
iR

N
A 

ta
rg

et
 g

ai
n/

lo
ss

 S
N

Ps
th

at
 o

ve
rla

p 
as

R
S 

or
 C

on
tro

l v
ar

ia
nt

a b

Extended Data Fig. 8 | asRS variants may function by disrupting interactions 
with trans-regulatory factors. a, RNA binding proteins (RBPs) with allele-
specific binding (ASB) sites that overlap asRS variants. X axis shows percentage of 
each RBP’s ASB sites that overlap asRS variants. Number of ASB sites that overlap 
asRS variants is shown to the right of each bar. Purple: RBPs involved with RNA 

stability and decay according to previous manual literature curation.  
b, Proportion of miRNA target gain/loss SNPs that overlap asRS or control 
variants in each cell line (n = 11). In boxplots, minima/maxima represent least/
greatest proportion values, bounds show 25th and 75th percentiles, and whiskers 
indicate values within 1.5 * the interquartile range.

http://www.nature.com/naturegenetics


Nature Genetics

Article https://doi.org/10.1038/s41588-025-02326-8

60 bp 80 bp 100 bp 120 bp 140 bp 160 bp

106 bp

CD151:chr11:838672:C>T

[0 - 13365159]

L V S L D S A P A V F P T A V T T T R N A T W S L C T A L F M C L C G A G
S S P S T A P L L S S P P Q S P P P EM P R G H C A L P C S C A S A G Q

P R L P R Q R P C C L P H R S H H H P K C H V V T V H C P V H V P L R G R

*** **

0

30

60

90

0h 2h 6h
Bru timepoint

N
or

m
al

ize
d 

co
un

ts

allele
alt

ref

a

c d

b

160 bp 170 bp 180 bp 190 bp 200 bp

49 bp

CDCA7:chr2:173364016:T>C

[0 - 6554755]

C
C

C

C

E G D L E E T P * Q I S G * S S L
K G T * R K P P D R S L D D P P *

R R G P R G N P L T D L W M I L L E

A G G G G A C C T A G A G G A A A C C C C C T G A C A G A T C T C T G G A T G A T C C T C C T T G

60 bp 70 bp 80 bp 90 bp 100 bp 110 bp 120 bp 130 bp

83 bp

CD151:chr11:834745:G>T

[0 - 15619530]

L P G F P M L T A C P L L Q V G R A R G I W G G A * P V
P S L A S P C S Q L A H C C R S G G H G A S G E G H S L S
P P W L P H A H S L P T A A G R A G T G H L G R G I A C L

Extended Data Fig. 9 | Prime editing supports the causality of asRS variants. 
a-c, Genomic DNA sequencing supports the successful genome editing of 
chr2:173364016:T > C (a), chr11:838672:C > T (b), and chr11:834745:G > T (c).  
d, Comparison of SNV normalized counts in Bru/BruChase-seq data (2 biological 

replicates per timepoint) for chr2:173364016:T > C in CDCA7. In boxplots, 
minima/maxima represent least/greatest proportion values, bounds show  
25th and 75th percentiles, and whiskers indicate values within 1.5 * the 
interquartile range.

http://www.nature.com/naturegenetics


Nature Genetics

Article https://doi.org/10.1038/s41588-025-02326-8

translation initiation factor binding
positive regulation of vascular endothelial growth factor production

receptor catabolic process
face morphogenesis

transcription regulator complex
artery morphogenesis

DNA polymerase binding
cellular response to platelet−derived growth factor stimulus

G protein−coupled receptor binding
positive regulation of phagocytosis

negative regulation of defense response to virus
protein binding

regulation of ERK1 and ERK2 cascade
DNA−templated transcription initiation

regulation of Arp2/3 complex−mediated actin nucleation
blood vessel development

keratinization
atrioventricular canal development

regulation of epidermal growth factor receptor signaling pathway
cellular response to estrogen stimulus

0 5 10
−log10(enrichment p−value)

G
O

 te
rm

Ocurrences in
query

5
6
7
8
10
14
35
1147

a

Extended Data Fig. 10 | asRS and asRT genes are involved in various pathways. a, Top 20 enriched Gene Ontology (GO) terms for asRT genes. P values were derived 
from an empirical Gaussian distribution of number of control genes containing each GO term (Methods).

http://www.nature.com/naturegenetics


1

nature portfolio  |  reporting sum
m

ary
April 2023

Corresponding author(s): Xinshu Xiao

Last updated by author(s): May 27, 2025

Reporting Summary
Nature Portfolio wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency 
in reporting. For further information on Nature Portfolio policies, see our Editorial Policies and the Editorial Policy Checklist.

Statistics
For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code
Policy information about availability of computer code

Data collection No software was used for data collection.

Data analysis Code for reproducing the RNAtracker gene categorization results is available at https://github.com/gxiaolab/RNAtracker. We used bbduk from 
the BBmap package (v. 38.91) (https://sourceforge.net/projects/bbmap/) for read adaptor trimming, STAR (v2.7.8a) for read mapping, Picard 
Tools (https://broadinstitute.github.io/picard/) (v1.94) to remove PCR duplicates and extract uniquely mapped reads, NeoloopFinder (v0.3.0) 
for CNV predictions, rrvgo (v1.6.0) for GO enrichment analysis, PLINK (v1.9) to obtain tag SNPs, and bedtools (v2.30.0) to overlap genomic 
regions. Perbase (v0.10.0) (https://github.com/sstadick/perbase) was used to obtain variant allelic counts in the CRISPR prime editing 
sequencing data. MPRAnalyze was used to identify functional variants in the MapUTR data. S-LDSC was used to estimate disease heritability. 
FUSION.compute_weights.R from http://gusevlab.org/projects/fusion/ was used to build gene prediction models. For analyzing WGS data, we 
used bwa mem (v0.7.17) for read mapping and CNVpytor (v.1.3.1) for identifying copy-number variant regions. The VGAM (v1.1) R package 
was used to compute probability density values and simulate allelic counts. Genome coordinate conversions were performed using liftOver 
(https://www.bioconductor.org/packages/release/workflows/html/liftOver.html). Other R packages used for plotting include ComplexUpSet, 
ComplexHeatmap, and AllelicImbalance.   

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and 
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.

1

nature portfolio  |  reporting sum
m

ary
April 2023

Corresponding author(s): Xinshu Xiao

Last updated by author(s): May 27, 2025

Reporting Summary
Nature Portfolio wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency 
in reporting. For further information on Nature Portfolio policies, see our Editorial Policies and the Editorial Policy Checklist.

Statistics
For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code
Policy information about availability of computer code

Data collection No software was used for data collection.

Data analysis Code for reproducing the RNAtracker gene categorization results is available at https://github.com/gxiaolab/RNAtracker. We used bbduk from 
the BBmap package (v. 38.91) (https://sourceforge.net/projects/bbmap/) for read adaptor trimming, STAR (v2.7.8a) for read mapping, Picard 
Tools (https://broadinstitute.github.io/picard/) (v1.94) to remove PCR duplicates and extract uniquely mapped reads, NeoloopFinder (v0.3.0) 
for CNV predictions, rrvgo (v1.6.0) for GO enrichment analysis, PLINK (v1.9) to obtain tag SNPs, and bedtools (v2.30.0) to overlap genomic 
regions. Perbase (v0.10.0) (https://github.com/sstadick/perbase) was used to obtain variant allelic counts in the CRISPR prime editing 
sequencing data. MPRAnalyze was used to identify functional variants in the MapUTR data. S-LDSC was used to estimate disease heritability. 
FUSION.compute_weights.R from http://gusevlab.org/projects/fusion/ was used to build gene prediction models. For analyzing WGS data, we 
used bwa mem (v0.7.17) for read mapping and CNVpytor (v.1.3.1) for identifying copy-number variant regions. The VGAM (v1.1) R package 
was used to compute probability density values and simulate allelic counts. Genome coordinate conversions were performed using liftOver 
(https://www.bioconductor.org/packages/release/workflows/html/liftOver.html). Other R packages used for plotting include ComplexUpSet, 
ComplexHeatmap, and AllelicImbalance.   

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and 
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.



2

nature portfolio  |  reporting sum
m

ary
April 2023

Data
Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A description of any restrictions on data availability 
- For clinical datasets or third party data, please ensure that the statement adheres to our policy 

 

Bru-seq/BruChase-seq from 16 human cell lines (GM12878, HCT116, HepG2, IMR-90, K562, MCF-7, PC-3, Panc1, PC-9, A673, MCF10A, Calu3, Caco-2, OCI-LY7, 
endothelial cell of umbilical vein (HUVEC) and mammary epithelial cell (HMEC)) were downloaded from the ENCODE data portal (https://www.encodeproject.org/). 
Accession IDs can be found in Supplementary Table 1. The GRCh38 reference genome and gene annotation can be found at https://www.gencodegenes.org/
human/release_36.html (filenames: GRCh38.primary_assembly.genome.fa.gz; gencode.v36.primary_assembly.annotation.gtf.gz). Significant GTEx cis-eQTLs were 
downloaded from the GTex portal (V8 release) at https://www.gtexportal.org/home/datasets (GTEx_Analysis_v8_eQTL.tar). ABSOLUTE copy-number variants from 
CCLE can be obtained from https://depmap.org/portal/data_page/?release=CCLE+2019&file=CCLE_ABSOLUTE_combined_20181227.xlsx&tab=allData. Allele-
specific binding sites were obtained from our previous work rsids for SNPs overlapping miRNA seed regions that create or disrupt miRNA binding sites were 
downloaded from miRNASNPv3. eCLIP data for reproducible peaks (as determined from the irreproducible discovery rate, or IDR, approach) were downloaded from 
the ENCODE portal. ActD RNA-seq data can accessed on GEO (Series record GSE276016).  MapUTR sequencing data can be accessed on GEO (Series record 
GSE298114). CRISPR editing results can be accessed on GEO (Series record GSE298112). All GWAS summary statistics used in this paper can be downloaded from 
the GWAS catalogue (https://www.ebi.ac.uk/gwas/; accession codes in Supplementary Table 8). GRCh38 genotype reference files from the 1000 Genomes project 
can be found at: https://www.internationalgenome.org/data-portal/data-collection/grch38.

Research involving human participants, their data, or biological material
Policy information about studies with human participants or human data. See also policy information about sex, gender (identity/presentation), 
and sexual orientation and race, ethnicity and racism.

Reporting on sex and gender NA

Reporting on race, ethnicity, or 
other socially relevant 
groupings

NA

Population characteristics NA

Recruitment NA

Ethics oversight NA

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Field-specific reporting
Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences Behavioural & social sciences  Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size No statistical method was used to determine sample size. Sample size was set based on the number of Bru-Seq/BruChase-seq replicates that 
were available per cell line through the ENCODE portal. Sample size was sufficient to identify asRS and asRT events.

Data exclusions We included Bru-Seq/BruChase-seq samples from 11 out of the 16 deeply profiled ENCODE cell lines. The excluded cell lines had insufficient 
(<100) number of testable genes.

Replication We required genes to have at least two testable SNVs in order to be evaluated by RNAtracker to increase the chances that we were giving 
RNAtracker enough information to make a reliable categorization. While we did not verify reproducibility using an independent Bru/BruChase-
seq dataset, ActD was used as an alternative method for identifying stability-regulated genes. 

Randomization Randomization was not relevant for our study of genes regulated by RNA stability and transcriptional regulation as samples were not allocated 
into experimental groups.  

Blinding Blinding was not relevant for our study of genes regulated by RNA stability and transcriptional regulation as samples were not allocated nto 
experimental groups. 

2

nature portfolio  |  reporting sum
m

ary
April 2023

Data
Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A description of any restrictions on data availability 
- For clinical datasets or third party data, please ensure that the statement adheres to our policy 

 

Bru-seq/BruChase-seq from 16 human cell lines (GM12878, HCT116, HepG2, IMR-90, K562, MCF-7, PC-3, Panc1, PC-9, A673, MCF10A, Calu3, Caco-2, OCI-LY7, 
endothelial cell of umbilical vein (HUVEC) and mammary epithelial cell (HMEC)) were downloaded from the ENCODE data portal (https://www.encodeproject.org/). 
Accession IDs can be found in Supplementary Table 1. The GRCh38 reference genome and gene annotation can be found at https://www.gencodegenes.org/
human/release_36.html (filenames: GRCh38.primary_assembly.genome.fa.gz; gencode.v36.primary_assembly.annotation.gtf.gz). Significant GTEx cis-eQTLs were 
downloaded from the GTex portal (V8 release) at https://www.gtexportal.org/home/datasets (GTEx_Analysis_v8_eQTL.tar). ABSOLUTE copy-number variants from 
CCLE can be obtained from https://depmap.org/portal/data_page/?release=CCLE+2019&file=CCLE_ABSOLUTE_combined_20181227.xlsx&tab=allData. Allele-
specific binding sites were obtained from our previous work rsids for SNPs overlapping miRNA seed regions that create or disrupt miRNA binding sites were 
downloaded from miRNASNPv3. eCLIP data for reproducible peaks (as determined from the irreproducible discovery rate, or IDR, approach) were downloaded from 
the ENCODE portal. ActD RNA-seq data can accessed on GEO (Series record GSE276016).  MapUTR sequencing data can be accessed on GEO (Series record 
GSE298114). CRISPR editing results can be accessed on GEO (Series record GSE298112). All GWAS summary statistics used in this paper can be downloaded from 
the GWAS catalogue (https://www.ebi.ac.uk/gwas/; accession codes in Supplementary Table 8). GRCh38 genotype reference files from the 1000 Genomes project 
can be found at: https://www.internationalgenome.org/data-portal/data-collection/grch38.

Research involving human participants, their data, or biological material
Policy information about studies with human participants or human data. See also policy information about sex, gender (identity/presentation), 
and sexual orientation and race, ethnicity and racism.

Reporting on sex and gender NA

Reporting on race, ethnicity, or 
other socially relevant 
groupings

NA

Population characteristics NA

Recruitment NA

Ethics oversight NA

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Field-specific reporting
Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences Behavioural & social sciences  Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size No statistical method was used to determine sample size. Sample size was set based on the number of Bru-Seq/BruChase-seq replicates that 
were available per cell line through the ENCODE portal. Sample size was sufficient to identify asRS and asRT events.

Data exclusions We included Bru-Seq/BruChase-seq samples from 11 out of the 16 deeply profiled ENCODE cell lines. The excluded cell lines had insufficient 
(<100) number of testable genes.

Replication We required genes to have at least two testable SNVs in order to be evaluated by RNAtracker to increase the chances that we were giving 
RNAtracker enough information to make a reliable categorization. While we did not verify reproducibility using an independent Bru/BruChase-
seq dataset, ActD was used as an alternative method for identifying stability-regulated genes. 

Randomization Randomization was not relevant for our study of genes regulated by RNA stability and transcriptional regulation as samples were not allocated 
into experimental groups.  

Blinding Blinding was not relevant for our study of genes regulated by RNA stability and transcriptional regulation as samples were not allocated nto 
experimental groups. 



3

nature portfolio  |  reporting sum
m

ary
April 2023

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Materials & experimental systems
n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology and archaeology

Animals and other organisms

Clinical data

Dual use research of concern

Plants

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Eukaryotic cell lines
Policy information about cell lines and Sex and Gender in Research

Cell line source(s) Source: ATCC 

Authentication None

Mycoplasma contamination Tested negative for mycoplasma. 

Commonly misidentified lines
(See ICLAC register)

None

Novel plant genotypes NA

Seed stocks NA

Authentication NA

Plants

3

nature portfolio  |  reporting sum
m

ary
April 2023

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Materials & experimental systems
n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology and archaeology

Animals and other organisms

Clinical data

Dual use research of concern

Plants

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Eukaryotic cell lines
Policy information about cell lines and Sex and Gender in Research

Cell line source(s) Source: ATCC 

Authentication None

Mycoplasma contamination Tested negative for mycoplasma. 

Commonly misidentified lines
(See ICLAC register)

None

Novel plant genotypes NA

Seed stocks NA

Authentication NA

Plants


	Genetic variants affecting RNA stability influence complex traits and disease risk

	Results

	Overview of Bru-seq/BruChase-seq and RNAtracker

	RNAtracker categorizes genes by their mechanisms of genetic regulation

	asRS and asRT contribute to gene expression regulation

	Delineating functional mechanisms and effects of asRS variants

	Experimental support for asRS events

	asRS genes are enriched in immune-related pathways

	asRS variants are enriched among genome-wide association studies hits

	asRS genes are associated with immune-related diseases


	Discussion

	Online content

	Fig. 1 RNAtracker categorizes genes by the underlying mechanisms of allelic imbalance.
	Fig. 2 asRS and asRT events overlapping GTEx eQTL and their target genes.
	Fig. 3 asRS variants are enriched within functional regions.
	Fig. 4 Experimental support for asRS variants.
	Fig. 5 asRS genes are enriched in immune-related processes.
	Fig. 6 asRS events illuminate mechanisms underlying significant GWAS hits for various diseases.
	Extended Data Fig. 1 RNAtracker facilities the classification of ASE genes.
	Extended Data Fig. 2 Read coverage, gene half-life, and alternative-splicing contribute minimally to RNAtracker performance.
	Extended Data Fig. 3 RNAtracker exhibits high Precision and Recall in simulations.
	Extended Data Fig. 4 Bias against asRT identification varies across cell lines.
	Extended Data Fig. 5 Low proportion of asRS sharing across cell lines can be attributed to their unique genetic backgrounds.
	Extended Data Fig. 6 Low proportion of asRT sharing across cell lines can be attributed to their unique genetic backgrounds.
	Extended Data Fig. 7 asRS and asRT events are both important contributors to gene expression.
	Extended Data Fig. 8 asRS variants may function by disrupting interactions with trans-regulatory factors.
	Extended Data Fig. 9 Prime editing supports the causality of asRS variants.
	Extended Data Fig. 10 asRS and asRT genes are involved in various pathways.




