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Abstract

Summary: Identifying differentially expressed (DE) genes along cell pseudotime is crucial for
understanding dynamic biological processes captured by single-cell RNA sequencing. However, existing
DE methods either produce invalid p-values by ignoring the uncertainty in pseudotime inference or
struggle to scale with the growing size of modern datasets. To address these limitations, we introduce
PseudotimeDE-fast, a scalable method for detecting DE genes along pseudotime with well-calibrated p-
values. Through comprehensive simulations and real-data analyses, we demonstrate that PseudotimeDE-
fast delivers comparable or superior performance to existing approaches while offering substantial

improvements in computational efficiency.

Availability: PseudotimeDE-fast is implemented in R with Rcpp acceleration and released under the MIT
license. The source code is available at: https://github.com/dsong-lab/PseudotimeDE.

Contact: lijy03@fredhutch.org; lucyxia@ust.hk

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Single-cell RNA sequencing (scRNA-seq) technologies have become a
powerful tool for uncovering continuous transitions in cell populations. A
common approach involves inferring a latent temporal variable, known as
“pseudotime,” from gene expression profiles to represent cells’ relative
positions along a developmental trajectory (Trapnell et al., 2014). To
interpret pseudotime, differential expression (DE) analysis is typically
performed to identify genes with significant expression changes along the
trajectory. Several methods have been developed for this purpose, such
as tradeSeq (Van den Berge et al., 2020), scMagSigPro (Srivastava et al.,
2024), and TDEseq (Fan er al., 2024). However, these methods rely on
regression models that treat pseudotime as fixed, ignoring the uncertainty
in its inference. This oversight can lead to invalid p-values, as shown in
prior studies (Campbell and Yau, 2016; Song and Li, 2021).

To consider the uncertainty in inferred pseudotime, we previously
developed PseudotimeDE (Song and Li, 2021), the first DE method
to explicitly account for this uncertainty. PseudotimeDE repeatedly

© The Author(s) 2025. Published by Oxford University Press.

performs trajectory (pseudotime) inference on subsampled cells and
applies permutations to break the gene expression—pseudotime association,
fitting a regression model to generate a null distribution of the test statistic.
This approach yields well-calibrated p-values and good statistical power.
However, its extensive computational demands, due to repeated model
fitting on many subsamples, limit its scalability and broader adoption in
the single-cell community.

To overcome the computational limitations of PseudotimeDE, we
propose PseudotimeDE-fast, a novel method and updated R package for
fast testing of gene expression changes along cell pseudotime. Unlike
the methods that rely on regression models assuming fixed pseudotime,
PseudotimeDE-fast tests the independence between gene expression and
pseudotime by treating both as random variables. It implements a
hypothesis test using a novel adaptation of the Bergsma—Dassios sign
covariance 7*—a robust extension of Kendall’s tau—for sparse data,
where 7* = 0 if and only if the two variables are independent (Bergsma
and Dassios, 2014). Through comprehensive simulations and analysis
of a large real dataset, we show that PseudotimeDE-fast produces well-
calibrated p-values, achieves comparable or improved FDR control and
power, and is over 100 times faster than existing methods.

This is an Open Access article distributed under the terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium,

provided the original work is properly cited.
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2 Implementation

PseudotimeDE-fast is implemented in R and can be installed via

devtools::install_github ("dsong-lab/PseudotimeDE").

To address the computational bottleneck of its predecessor PseudotimeDE,
it replaces the subsampling-and-permutation procedure with a direct,
deterministic statistical test. Specifically, it reframes DE analysis as a
formal test of independence between the pseudotime vector X and the
expression vector Yy of gene g.

The input consists of a sScRNA-seq count matrix Y = [Y7,...,Y,] €
R™*P_ where n is the number of cells and p is the number of genes, and a
pseudotime vector X € R"™ representing the inferred pseudotime of cells.
For each gene g € {1, ..., p}, PseudotimeDE-fast efficiently computes

T, , a consistent estimator of the Bergsma—Dassios sign covariance 7*:
(n —4)!
(X, Yy) = —— ST alXi, Xy, Xp, X1)-a(Ygi, Y5, Yars Y1)

1<i,j,k,l<n
0,7,k distinct

where

a(z1, 22, 23,24) = sign (|21 — 22| + |23 — 24| — |21 — 23| — |22 — 24]) -

The intuition for this measure, a powerful extension of the well-known
Kendall’s 7 (Kendall, 1938), is that it moves beyond comparing simple
pairs of points to evaluating all sets of four points (quartets). For each
quartet, it checks whether the arrangement of points is "concordant" or
"discordant" for both pseudotime and gene expression.

Previously, Heller and Heller (2016) introduced an algorithm to
compute 7% with O(n2) complexity, which becomes computationally
prohibitive as n (the number of cells) increases. To address this, we
developed an optimized algorithm that reduces the complexity of its
core step to O(Mn), where M < n denotes the number of unique
expression levels, often small due to sparsity in scRNA-seq data. Details
are provided in Supplementary Material S1. Under the null hypothesis of
independence between X and Yy, 7% admits a known limiting distribution,
enabling efficient hypothesis testing (Nandy et al., 2016). Compared to
other rank-based independence tests with similar statistical properties (Shi
etal.,2022), our implementation achieves near-linear scalability for sparse
data, while existing methods typically face computational bottlenecks.

3 Results

To evaluate the performance of PseudotimeDE-fast in terms of runtime, p-
value validity, FDR control, and statistical power for detecting DE genes,
we conducted simulations across varying numbers of cells (n) and used a
large-scale real scRNA-seq dataset (Tsukui ef al., 2024). We compared
PseudotimeDE-fast with state-of-the-art trajectory-based DE methods,
including PseudotimeDE (Song and Li, 2021)—in both its asymptotic (fix)
mode, which ignores pseudotime uncertainty and is not recommended, and
its subsampling-and-permutation (permute) mode, which is accurate but
computationally intensive - as well as tradeSeq (Van den Berge et al., 2020)
and TDEseq (Fan et al., 2024). The details about the implementation and
computational resources are described in Supplementary Material S2.

We generated synthetic datasets with p = 2,000 genes (20% DE) and
varying numbers of cells n € {1,000, 5,000, 10,000, 50,000, 100,000}
using scDesign3 (Song et al., 2024), which was trained on a real scRNA-
seq dataset of dentate gyrus neurogenesis (Hochgerner ez al., 2018). Fig. la
shows results for four example genes: PseudotimeDE-fast reported highly
significant p-values for three DE genes (Ppia, Ncdn, and Calb2) and an
insignificant p-value for a non-DE gene (Rab40b).

Fig. 1b compares runtime across methods as n increases. All methods
support multi-core parallelization, so we set the number of CPUs as 10 for
every method. At n = 10,000, PseudotimeDE-fast completed in 124.29
seconds (CPU time): 298 times faster than tradeSeq, 348 times faster

than PseudotimeDE-fix, 4,408 times faster than TDEseq, and over 24,013
times faster than PseudotimeDE-permute. With 10 cores, PseudotimeDE-
fast finished in just 26.8 seconds. Note that TDEseq failed to finish
within a reasonable runtime (48 hours) with n = 50,000 or more cells
(Supplementary Material S2).

To assess p-value validity under the null, we compared p-values
to the Uniform[0,1] distribution in two ways: (i) quantile-quantile
(QQ) plots using — log; p-values, and (ii) Kolmogorov—Smirnov tests
using the raw p-values (Fig. 1¢). PseudotimeDE-fast and PseudotimeDE-
permute yielded well-calibrated p-values close to the expected uniform
distribution. For DE gene detection at n = 10,000 (additional results
in Supplementary Fig. S1), PseudotimeDE-fast achieved comparable
power and FDR control to state-of-the-art methods while using far
less computational time (Fig. 1d). For PseudotimeDE-fix, although its
FDR was controlled, its p-values showed deviation from the expected
uniform distribution (Fig. 1c; Supplementary Fig. S2). In addition,
although PseudotimeDE-fast showed a slight power loss compared to
PseudotimeDE-permute, the few missed genes were highly sparse and
often of limited biological interest (Supplementary Fig. S3). These
results highlight PseudotimeDE-fast as a scalable solution for large-
scale pseudotime DE analysis. Note that this simulation has a high
signal-to-noise ratio, so pseudotime can be estimated accurately and the
“double-dipping” issue (Neufeld et al., 2024) is relatively mild. If double-
dipping remains a major concern, PseudotimeDE-fast may be combined
with the synthetic-null-data approach employed by ClusterDE (Song et al.,
2025) to improve FDR control.

We further evaluated PseudotimeDE-fast using a large-scale scRNA-
seq dataset of alveolar fibroblast lineage comprising n = 35,096 cells
and p = 12,834 genes (Tsukui et al., 2024). This dataset contains a
single trajectory, and pseudotime was inferred using Slingshot (Street
et al., 2018). We applied PseudotimeDE-fast, PseudotimeDE-fix, and
tradeSeq, which are the only feasible methods for this dataset, and
excluded PseudotimeDE-permute and TDEseq due to scalability issues.
PseudotimeDE-fast completed the analysis in under three hours, making
it over 30 times faster than the other two methods, each of which required
more than two days (Fig. le).

Since ground-truth DE genes are unknown, we assessed consistency
across methods as a proxy for power. PseudotimeDE-fast identified a
largely overlapping set of DE genes, sharing 63% with both other methods
(Fig. 1f). Among DE genes missed by PseudotimeDE-fast but detected
by both other methods (27%), 66.1% had zero expression in over 80% of
cells, indicating high sparsity and limited informativeness. These results
highlight that PseudotimeDE-fast offers substantial speed gains while
maintaining comparable statistical power to existing approaches.

4 Discussion

Based on the Bergsma—Dassios sign covariance (an association measure
for two random variables), PseudotimeDE-fast does not natively adjust for
covariates such as batch effects or sequencing depth; users should therefore
correct for confounders prior to analysis. Extending PseudotimeDE-fast
to handle covariates would require a conditional (or partial) form of the
Bergsma-Dassios sign covariance, which, to our knowledge, has not yet
been developed and represents an interesting direction for future research.
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Fig. 1. Benchmarking PseudotimeDE-fast against other trajectory-based DE methods. (a) Expression of four example genes along pseudotime. The estimated 7,7 and corresponding

p-values are shown for each gene. (b) Runtime comparison across different cell numbers (n). PseudotimeDE-fast is significantly faster than all other methods. (c) Quantile-quantile plots of

p-values under the null hypothesis on the — log o scale. Only PseudotimeDE-fast and PseudotimeDE-permute produce well-calibrated p-values, with points falling along the diagonal and

Kolmogorov-Smirnov test p > 0.05. (d) FDR and power in simulations. PseudotimeDE-fast achieves reasonable FDR control and comparable power to existing methods. (e) Application

to the alveolar fibroblast lineage dataset (Tsukui et al., 2024). Cells are visualized by UMAP:; colors denote cell types, and the curve indicates the inferred trajectory. PseudotimeDE-fast is

30x faster than PseudotimeDE-fix and tradeSeq. (f) UpSet plot showing overlaps in identified DE genes. PseudotimeDE-fast shares 63% of DE genes with both other methods, indicating

high consistency.
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