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mcRigor: a statisticalmethod to enhance the
rigor of metacell partitioning in single-cell
data analysis

Pan Liu1 & Jingyi Jessica Li 1,2,3

In single-cell data analysis, addressing sparsity often involves aggregating the
profiles of homogeneous single cells into metacells. However, existing meta-
cell partitioning methods lack checks on the homogeneity assumption and
may aggregate heterogeneous single cells, potentially biasing downstream
analysis and leading to spurious discoveries. To fill this gap, we introduce
mcRigor, a statistical method to detect dubious metacells, which are com-
posed of heterogeneous single cells, and optimize the hyperparameter(s) of a
metacell partitioning method. The core of mcRigor is a feature-correlation-
based statistic that measures the heterogeneity of a metacell, with its null
distribution derived from a double permutation scheme. As an optimizer for
existing metacell partitioning methods, mcRigor has been shown to improve
the reliability of discoveries in single-cell RNA-seq andmultiome (RNA +ATAC)
data analyses, such as uncovering differential gene co-expression modules,
enhancer-gene associations, and gene temporal expression. Moreover, mcRi-
gor enables benchmarking and selection of the most suitable metacell parti-
tioning method with optimized hyperparameter(s) tailored to a specific
dataset, ensuring reliable downstream analysis. Our results indicate that
among existing metacell partitioning methods, MetaCell and SEACells con-
sistently outperform MetaCell2 and SuperCell, albeit with the trade-off of
longer runtimes.

Single-cell sequencing technologies have catalyzed a paradigm shift in
genomics by uncovering cellular heterogeneity with unprecedented
resolution across multiple modalities, including transcriptomics via
single-cell RNA sequencing (scRNA-seq)1–3, epigenomics through
single-cell assay for transposase-accessible chromatin using sequen-
cing (scATAC-seq)4,5, and multiome assays that simultaneously mea-
sure RNA-seq and ATAC-seq6,7. The majority of these technologies are
high-throughput and droplet-based, capable of profiling millions of
cells, but they are often compromised by high sparsity in the
sequencing read counts due to low per-cell sequencing depth and
imperfections in the reverse transcription and amplification steps8.

The high sparsity presents a substantial challenge for data
analysis9, with common strategies to mitigate it including imputation
andmetacell partitioning. Imputation addresses sparsity by predicting
missing feature measurements, where features represent genes or
chromatin regions, using cells and/or features with similar measure-
ment profiles. Numerous imputation methods have been developed
for single-cell data, including scImpute10, SAVER11, MAGIC12, and DCA13,
as well as deep generative models14,15. Imputation methods have the
advantage of retaining the full set of single cells; however, they can
sometimes induce false positives in the downstream differential gene
expression (DGE) detection16 and may suffer from oversmoothing11,17,
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which creates artificial similarities among cells. As an alternative to
imputation, themetacell approach groups cells representing the same
cell state into a metacell and uses the metacell’s measurement profile,
typically obtained by averaging the single-cell measurement profiles,
for subsequent analysis17. Themetacell approach is expected to reduce
noise and thereby accentuate biological signals that are often
obscured in sparse datasets.

The metacell concept differs from the pseudobulk approach,
though both involve cell aggregation. Specifically, a pseudobulk is
created by merging all cells within a predefined cell population—typi-
cally a cell type—into a single profile, while a metacell aggregates a
much smaller, homogeneous group of cells, allowing for multiple
metacells within a single cell type. The pseudobulk approach reduces
data sparsity and enables the use of computational methods designed
for bulk data18,19. However, by merging all cells of a cell type into one
pseudobulk, this approach removes all within-cell-type variation. In
contrast, metacells aim to preserve this variation, maintaining the
resolution advantage of single-cell data that allows cell-type-specific
analysis. For instance, metacell partitioning has been demonstrated to
be beneficial for gene co-expression analysis20. While a pseudobulk
sample does not permit cell-type-specific gene co-expression analysis
(because each gene has only one aggregated expression level per cell
type, making it impossible to calculate correlations between two
genes)21,22, performing co-expression analysis using single cells within a
cell type is often hindered by the low sensitivity and high technical
noise of scRNA-seq data23. The metacell approach offers a valuable
middle ground by enhancing co-expression signals within specific
cell types.

Despite the increasing use of the metacell concept in high-profile
single-cell studies—such as investigating cell differentiation states24,
characterizing tissue compartments and diverse cell populations25–27,
patient stratification for individualized immunotherapy design28, and
temporal analysis of cell transcriptomes29,30—there is still no rigorous
definition of metacell or a universally accepted strategy for con-
structingmetacells. This lack of consensus can result in inconsistencies
across studies utilizing the metacell concept, undermining the relia-
bility of analysis outcomes.

In addition to the various approaches used for partitioning single
cells into metacells in in-house data analyses, several general methods
have been developed for this purpose. Themost popular ones include
MetaCell17, MetaCell231, SuperCell32, and SEACells33. MetaCell employs
a k-nearest neighbor (kNN) graph of cells, uses graph resampling and
clustering to update the graph, and finally identifies metacells as small
clusters. It also includes additional steps to detect and exclude outlier
cells that are not incorporated into any metacells. Developed by the
same authors as MetaCell, MetaCell2 is designed for faster perfor-
mance through divide-and-conquer. SuperCell applies a walktrap
clusteringmethod to a PCA-derived kNNgraph of cells. SEACells uses a
kernel to define a cell-cell similarity matrix, treating these similarities
as cell embeddings for archetypal analysis, with the resulting arche-
types used to identifymetacells. However, thesemethods can produce
different metacell partitions, which are also influenced by the hyper-
parameters they employ34. This lack of consensus leaves users uncer-
tain about which metacell partition to use and to what extent the
resulting metacell profiles preserve biological signals. Therefore, a
formal definition and an evaluation standard for metacells are needed
to guarantee principledmetacell partitioning and ensureunbiasedness
in downstream analyses.

To fill this gap, we propose a statistical definition of metacell and
accordingly develop mcRigor, a novel statistical method to enhance
the rigor of metacell partitioning in single-cell data analysis. Theore-
tically, a metacell is defined as a homogeneous group of single-cell
profiles that could be viewed as resamples from the same original cell,
with any variation within a metacell attributed solely to technical
measurement errors, termed technical variation, rather thanbiological

differences, termed biological variation. Built upon this definition,
mcRigor can identify dubious metacells that are heterogeneous and
violate this definition, while also optimizing the metacell partitioning
strategy to ensure reliable metacell construction. Our results demon-
strate that mcRigor successfully identifies and removes dubious
metacells, revealing the COVID-related co-expression of adaptive
immune response genes, which is enriched in COVID-19 patients
compared to healthy individuals.We also show thatmcRigor enhances
gene regulatory analysis by revealing enhancer-gene associations that
are obscured in single-cell multiome data or by the presence of
dubious metacells, while excluding spurious associations biased by
these metacells. Moreover, mcRigor balances the trade-off between
data sparsity and signal distortion, identifying optimal metacell parti-
tions to distinguish biological from non-biological zeros, detect dif-
ferentially expressed (DE) genes, and reveal temporal trajectories of
cellular immune responses.

Results
Overview of the mcRigor method
The mcRigor method is designed to improve the rigor of metacell
partitioning and the reliability of downstream analyses by distin-
guishing between trustworthy and dubious metacells, optimizing the
hyperparameters of any metacell partitioning method, and facilitating
comparisons across different metacell partitions. mcRigor is built on
thedefinition of ametacell as a homogeneous groupof single cells that
share the same biological state, characterized by the same true profile
of features (e.g., genes or chromatin regions), such that the cells’
observed profiles can be considered resampled from the same original
cell. The essenceof this definition, detailed in the “Methods” section, is
that within a metacell, any variability among cells should be solely
attributable to the technical variation. Aggregating such cells into a
metacell helps reduce technical noise while preserving true biological
signals, ensuring that the metacell’s averaged profile unbiasedly
represents the underlying biological state of these cells.

mcRigor has two main functionalities: detecting dubious meta-
cells and optimizing metacell partitioning. For its dubious metacell
detection functionality, mcRigor takes a single-cell dataset and an
initial metacell partition as input, producing a refined set of trust-
worthy metacells as output. Specifically, mcRigor detects dubious
metacells in the input partition using a statistical approach that
assesses the internal homogeneity of each metacell (Fig. 1a). The
approach is grounded in the premise that within a trustworthy meta-
cell, which is internally homogeneous, feature correlations are driven
exclusively by technical noise and should therefore be minimal. At the
core of this approach, we define a feature-correlation-based statistic
called the divergence score (mcDiv) for eachmetacell, whichmeasures
the deviation of the within-metacell feature correlation matrix from
the identity matrix that indicates no feature correlation. Note that
mcDiv includes a normalization factor derived from within-feature
permutation, which simulates the baseline scenario where the same
features become uncorrelated. A larger mcDiv value indicates greater
heterogeneity within the metacell, suggesting it is more dubious.

To set mcDiv thresholds for identifying dubious metacells,
mcRigor constructs a null divergence score (mcDivnull) for each meta-
cell through within-cell permutation, where feature values are shuffled
independently for each cell, preserving cell library sizes (i.e., the sum
of feature values per cell) while disrupting any biological correlations
among features. As varying cell library sizes can induce spurious fea-
ture correlations, it is essential to preserve cell library sizes in defining
mcDivnull. Note that mcDivnull also includes a normalization factor
derived from within-feature permutation applied to the features
already permuted in the previous within-cell permutation step.
Therefore, the calculation ofmcDivnull involves two permutation steps:
within-cell permutation followed by within-feature permutation, a
novel procedure we refer to as the double permutation. Double
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permutation is necessary because mcDiv and mcDivnull involve differ-
ent features and thus require different normalization factors. Pooling
the mcDivnull values from all metacells, mcRigor establishes thresholds
to distinguish dubious metacells from trustworthy ones. These
thresholds are conditional on the metacell size, i.e., the number of
single cells within themetacell, recognizing thatmetacells with smaller
sizes may exhibit greater variability in mcDiv values. Specifically, to
determine if each metacell is dubious, mcRigor employs a sliding
window approach to compute a local threshold for the metacell,
defined as the 95th percentile ofmcDivnull values among similarly sized
metacells. Metacells whose mcDiv values exceed the metacell-size-
specific thresholds are flagged as dubious, indicating likely hetero-
geneity within the cells they contain.

To ensure the reliability of downstream analyses, users may
choose to remove the detected dubious metacells. However, in some
cases, this removal may result in the loss of valuable information—
particularly when dubious metacells contain single cells from rare cell
types. In such scenarios, re-partitioning the dubious metacells into
smaller trustworthy metacells may be a more desirable strategy. We
discuss an extension of mcRigor to implement this strategy in the
“Discussion” section.

For its metacell partition optimization functionality, mcRigor
inputs a single-cell dataset along with metacell partitioning methods
and their candidate hyperparameter settings, returning the optimized
hyperparameter setting for each method and assessing the quality of
each method’s optimal metacell partition. That is, mcRigor optimizes
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metacell partitioning for a specific dataset by simultaneously evaluat-
ing various candidate method-hyperparameter configurations
(Fig. 2a), with each configuration representing a metacell method
combined with its hyperparameter setting. The most critical hyper-
parameter is the granularity level, γ, which represents the average
number of single cells per metacell, since γ is required by all existing
metacell methods. For each metacell partition obtained from a
method-hyperparameter configuration, mcRigor calculates an eva-
luation score that balances the dubious rate (the proportion of cells in
dubious metacells) and the sparsity level in the aggregated data
(measured by the proportion of zeros in the metacell expression
profiles), recognizing that these two factors often trade off against
each other (metacells containing more cells are more likely to be
dubious but have less sparse profiles). The configuration that max-
imizes this evaluation score is considered optimal, striking a balance
between preserving biological signals and minimizing technical noise.
Notably, mcRigor is designed to be flexible and applicable across dif-
ferent metacell methods and single-cell data modalities.

Validation of mcRigor using barcode multiplet data
Our statistical definition ofmetacell and themcRigormethod are both
built upon the assumption that the observed variation among cells
consists of two components: biological variation and technical varia-
tion. A natural question arises about the validity of this assumption,
particularly regarding the presence of technical variation. We addres-
sed this question by investigating technical variation using barcode
multiplets identified in droplet-based single-cell assays.

A barcode multiplet refers to a set of cell-like observations in
which each observation is assigned a unique cell barcode but actually
originates from the same physical cell. This occurs when a single cell is
tagged with multiple distinct barcodes during the droplet-based
sequencing process, leading to multiple barcodes being incorrectly
interpreted as separate cells35. Note that this term “barcode multiplet”
should not be confused with the term “multiplet” as used in the
doublet detection literature, where multiplets stand for multiple cells
enclosed by a single droplet. A typical type of barcode multiplets,
referred to as “barcodemultiplets caused by heterogeneous beads” by
ref. 36, form when multiple beads are encapsulated within a single
droplet containing one cell. Consequently, the mRNA fragments cap-
tured by these beads are all sampled from the same pool of mRNA
fragments from that cell35. Therefore, it is reasonable to assume that
the variation observed within a barcode multiplet approximates the
technical variation present among single cells in the same
biological state.

In ref. 36, Lareau et al. designed a computational method, called
bead-basedATACprocessing (bap), to identify barcodemultiples from
a public droplet-based scATAC-seq dataset of 5000 peripheral blood
mononuclear cells (PBMCs)37. In total, 16 barcode multiplets (caused
by heterogeneous beads) were identified, each consisting of three to
six cell-like observations. We found the observations within each bar-
codemultiplet to be dispersed, suggesting the existence of substantial
technical variation (multiplets 1–9 in Supplementary Fig. 1a). Further-
more, we tested mcRigor on this dataset by treating each barcode
multiplet as a trustworthymetacell, as the cell-like observations in each
barcode multiplet represent the same biological state. Remarkably,
mcRigor successfully identified all 16 barcode multiplets as trust-
worthy metacells.

Assessment of mcRigor’s accuracy in detecting dubious
metacells
Since barcode multiplets can only approximate trustworthy metacells
but not dubious ones, we next assessed mcRigor’s accuracy in
detecting dubious metacells. We began with a simulation where the
trustworthiness of metacells was known. Using the
scDesign3 simulator38, we generated a semi-synthetic datasetwith cells
of known biological states. This was done by modeling gene expres-
sion variation and separating it into biological and technical variations
based on our model assumptions, using a reference dataset of bone
marrow mononuclear cells measured by CITE-seq39 (the bmcite
dataset from the R package SeuratData40). Details of the semi-
synthetic dataset generation process are provided in the “Methods”
section. Our semi-synthetic dataset contains five major cell types—B
cells, T cells, progenitor cells, natural killer (NK) cells, and monocytes
or dendritic cells (Mono/DC)—and closely resembles the reference
dataset (Supplementary Fig. 1b, c). By separating biological and tech-
nical variations, we were able to generate 50 ground-truth metacells,
each corresponding to a distinct biological state, and then simulate
single cells within eachmetacell to reflect technical variation, with the
true granularity level set to γ* = 50. Using the ground-truth metacells,
we performed two tasks: (1) comparison of metacell partitioning
methods by evaluating whether their constructed metacells were
trustworthy or dubious, and (2) verification of mcRigor’s ability to
distinguish between trustworthy and dubious metacells. Both tasks
were facilitated by the realistic nature of the semi-synthetic data and
the availability of ground truth indicating metacell trustworthiness.

We applied the three popular metacell partitioning methods—
MetaCell, SEACells, and SuperCell—eachat varying granularity levels to
this semi-synthetic dataset, obtaining a metacell partition for each

Fig. 1 | mcRigor detects dubious metacells and rectifies downstream analysis
for both scRNA-seq and multiome (RNA+ATAC) data. a Schematic of the
mcRigor method for dubious metacell detection. b mcRigor effectively assesses
metacell heterogeneity and detects dubious metacells within the MetaCell meth-
od’s partitioning on semi-synthetic data. Left: UMAP plots showing partitioned
metacells, colored by mcDiv values compared to metacell purity (ground truth). A
strong negative Spearman correlation (ρ = −0.948) was observed between mcDiv
values and purity. Right: mcRigor distinguishes between dubious and trustworthy
metacells with high accuracy. The box plots (top right) show the medians (center
lines), the 25th and 75th percentiles (box bounds), and the whiskers (black lines)
extending to 1.5 times the interquartile range from the box. c Dubious metacells
identified by mcRigor exhibit internal heterogeneity and may occasionally appear
as outliers, while trustworthy metacells remain internally homogeneous. Bottom:
Heatmaps of gene-by-cell counts and gene-by-gene correlations for a trustworthy
and a dubious metacell. d mcRigor enhances cell-cycle marker gene expression
within cell lines. The violin plots display the log10ðcount + 1Þ expression levels of
four cell-cyclemarker genes across single cells, all metacells (“all”), and trustworthy
metacells (“trustworthy”). SNR FC represents the fold change in signal-to-noise
ratio for the phase associatedwith eachmarker gene (indicated by a star) relative to
the other two phases. e mcRigor reveals enriched co-expression of an adaptive

immune response gene module (highlighted in yellow) in COVID-19 samples (bot-
tom row) compared to healthy controls (top row), based on SuperCell partitions at
γ = 20. Left heatmaps: Gene-gene correlation matrices for three key gene modules
under COVID-19 and healthy control conditions, based on three data types: single
cells, trustworthy metacells identified by mcRigor, and all metacells. Each p-value
for the correlation comparisons in the adaptive immune response gene module
between the two conditions for each data type was obtained using a one-sided
Wilcoxon rank-sum test. Right scatter plots: Three gene pairs showing artifact
correlations caused by dubious metacells, with no apparent correlations in single-
cell data. f Applying mcRigor to the original metacell partition from the SEACells
paper empowers gene regulatory inference (left) and produces reliable discoveries
(right). Left: box plots (showing median, interquartile range, and whiskers
extending to 1.5 times the interquartile range) and scatter plots showing that
removing dubious metacells increases the correlations between genes and their
highly correlated peaks (HCPs). Right: removing dubious metacells uncovers a
validated HCP for GATA2 (blue) and filters out a weakly supported one (red), cor-
roborated by single-cell data. Each p-value assessing the significance of the corre-
lation between nonzero GATA2 expression and nonzero accessibility of the
corresponding peak at the single-cell level was obtained using a two-sided Spear-
man’s rho test.
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method and granularity level configuration.We also noticed the recent
publication of a newmetacell method, MetaQ41, during the revision of
this manuscript, and therefore included it in our comparison on this
semi-synthetic dataset to provide a more comprehensive analysis. For
evaluation, within a metacell partition, we defined the purity of a
metacell as the highest fraction of cells originating from the same
ground-truth metacell. Based on purity, the ground truth for metacell
trustworthiness was defined as follows: metacells with a purity of 1
were considered truly trustworthy, while all others were considered
truly dubious. Using this ground truth, we compared the fourmethods
at each granularity level by evaluating the resultingmetacell partitions
based on two criteria: (1) the proportion of dubious metacells relative
to the total number of metacells, and (2) the dubious rate, defined as
the proportion of single cells assigned to dubious metacells out of all
single cells. The results show that MetaCell, SEACells, and MetaQ
performed better than SuperCell, yielding more reliable metacell
partitions. MetaCell demonstrated a lower proportion of dubious
metacells and a lower dubious rate compared to SEACells and MetaQ,
but this came at the expense of assigning fewer single cells to

metacells. Specifically, at the granularity level γ = 60, which was above
the true granularity level γ* = 50, MetaCell, SEACells, SuperCell, and
MetaQ produced 20.5%, 24.6%, 26.9%, and 25.6% dubious metacells,
with dubious rates of 0.289, 0.308, 0.464, and 0.336, respectively.
When the granularity level γ was set to 30, below the true granularity
level, MetaCell, SEACells, SuperCell, and MetaQ produced 0.2%,
0.2%, 25.3%, and 0.5% dubious metacells, with dubious rates of 0.003,
0.005, 0.380, and 0.005, respectively. At the true granularity level
γ = 50, MetaCell, SEACells, SuperCell, and MetaQ produced 0.4%,
10.1%, 28.4%, and 7.8% dubiousmetacells, with dubious rates of 0.003,
0.161, 0.453, and 0.092, respectively.

With the ground-truthmetacell purity values and trustworthiness,
we then applied mcRigor to the metacell partitions produced by
MetaCell, SEACells, SuperCell, and MetaQ, to test if mcRigor can
accurately detect the dubious metacells from each partition. For
metacell partitions generated by different methods, mcRigor com-
puted per-metacell mcDiv scores that were strongly nega-
tively correlated with the ground-truth metacell purity values (Fig. 1b
and Supplementary Figs. 1d–f and 2a). By applying mcDiv thresholds

Fig. 2 | mcRigor optimizes themetacell method and hyperparameter selection
for various single-cell data analyses. a Schematic of the mcRigor method for
optimizing metacell partitioning, using Score as the optimization criterion to
balance DubRate and ZeroRate, illustrated with the optimization of MetaCell
partitions on semi-synthetic data as an example. b Line plots showing the zero
proportions in metacell partitions generated by three methods (MetaCell, SEA-
Cells, and SuperCell) across varying granularity levels (γ). The optimized metacell
partitions (triangles) closely align with the zero proportion observed in smRNA
FISH data (red line). c mcRigor optimizes the metacell method and hyperpara-
meter selection for DGE analysis. Top: a line plot and heatmaps comparing the
expression of the top 200 bulkDE genes across variousmetacell partitions to their
expression in bulk data. The line plot depicts the concordance between the bulk
and metacell profiles. Bottom: a line plot showing F-scores and a Venn diagram
comparing the DE genes identified from various metacell partitions with those

detected from bulk data. The optimal metacell partition (SEACells with γ = 13,
marked by the red smiling face) achieves the highest concordance (Pearson cor-
relation ρ =0.800) and F-score (0.400). b, c The colored triangles indicate the
optimal γ values selected by mcRigor for the three methods. d mcRigor’s opti-
mized metacell partition better reveals temporal immune cell trajectories com-
pared to the original metacell partition from the Zman-seq study30. Top: Line plots
comparing the metacells' continuous tumor exposure time (cTET) values calcu-
lated frommcRigor’s optimized partition to those from the original partition. The
value of ΔcTET, proportional to the size of the light blue area, indicates the dis-
tinction of tumor transitional stages. Bottom: smoothed gene expression profiles
of four marker genes in mcRigor’s optimized partition compared to the original
partition. Following optimization, the genes' expression patterns align more clo-
sely with biological expectations.
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derived frommcDivnull values generated through double permutation,
mcRigor effectively distinguished dubious metacells (purity < 1) from
trustworthymetacells (purity = 1) for theMetaCell partitions, achieving
an F-score (the harmonic mean of precision and recall for classifying
between dubious and trustworthy metacells) of 0.921 (Fig. 1b). For the
metacell partitions generated by SEACells, SuperCell, and MetaQ,
mcRigor demonstrated similar effectiveness in detecting dubious
metacells (Supplementary Fig. 1d–f), highlighting its applicability
across various metacell partitioning methods.

Next, we tested mcRigor on the original bone marrow mono-
nuclear cell CITE-seq dataset (the bmcite dataset from the R package
SeuratData). As with the semi-synthetic data, we applied MetaCell,
SEACells, and SuperCell, each at varying granularity levels, to this CITE-
seq dataset. To estimate the purity of metacells in this real dataset, we
considered fine-grained cell annotations, where T cells were further
divided into subtypes including CD4 Memory, CD4 Naive, CD8 Effec-
tor, CD8 Memory, CD8 Naive, gdT, MAIT, and Treg; B cells were divi-
ded into Memory B, Naive B, and Plasmablast; progenitor cells were
divided into GMP, HSC, and LMPP; Mono/DC were divided into CD14
Mono, CD16Mono, cDC2, and pDC. From the 455metacells generated
byMetaCell with granularity level γ = 30, mcRigor detected 12 dubious
metacells. For visualization, we projected the metacells onto the
single-cell t-SNE embedding optimized by scDEED42. Interestingly, the
dubious metacells either appeared as small clusters or lay at spurious
positions (Fig. 1c). For example, the centroid of metacell mc452 fell
within the cluster of LMPP and CD4 cells, while it mainly consisted of
non-naive CD8 cells. This indicated that Metacell mc452 consisted of
heterogeneous cells that were widely dispersed in the t-SNE embed-
ding. The cell-by-gene expression matrix of mc452 supported this
observation, revealing that the cells within it can be further divided
into at least two clusters based on notable differences in gene
expression (bottom right of Fig. 1c). In contrast, trustworthy metacells
such asmc86 exhibited a high level of internal homogeneity and near-
zero gene-gene correlations (bottom left of Fig. 1c). Other dubious
metacells weremostly aggregates of Plasmablasts andHSCs, which are
immature cells characterized by frequent self-renewal and multi-
lineage differentiation. These results affirm that mcRigor effectively
identifies dubious metacells that warrant further investigation.

mcRigor’s trustworthy metacells reveal cell-cycle phases within
cell lines
As a middle ground between the single-cell and pseudobulk approa-
ches, the metacell approach offers the advantage of revealing intra-
cell-type heterogeneity, capturing biological variation among cells
within the samecell type, including differences among cell subtypes or
states. However, this heterogeneity can be obscured by the presence
of dubious metacells, which may erroneously aggregate cells with
different biological states, making these states indistinguishable.
Therefore, to reveal intra-cell type heterogeneity accurately, it is
essential to identify and exclude dubious metacells.

We evaluated mcRigor’s ability to detect dubious metacells by
testing its effectiveness in revealing cell cycle phases across five cell
lines (A549, H2228, HCC827, HEK293T, and Jurkat) using scRNA-seq
data. This evaluation is based on the rationale that each cell line
represents a single cell type, with a major source of intra-cell-type
heterogeneity arising from differences in cell-cycle phases (G1, S, and
G2M). We appliedMetaCell and SEACells with γ = 20 to each of the five
cell lines separately to generatemetacell partitions. To annotate single
cells and metacells with cell-cycle phases, we used canonical gene
markers to assign each single cell to a specific cell-cycle phase43. Each
metacell was then assigned a cell-cycle phase based on the majority
phase of its constituent single cells, and the phase purity of each
metacell was calculated as the highest fractionof single cells belonging
to the same phase. Finally, we applied mcRigor to identify dubious
metacells within each metacell partition.

We observed that mcRigor successfully distinguished between
metacells with high and low phase purity. Specifically, for both meta-
cell methods and across all five cell lines, the trustworthy metacells
identified by mcRigor exhibited significantly higher phase purity than
the dubious metacells (mean p-value = 0.03740 for one-sided Wil-
coxon rank-sum tests across 10 comparisons (2methods × 5 cell lines),
Supplementary Fig. 3). Furthermore, in the trustworthymetacells, cell-
cycle marker genes exhibited less sparse expression within their cor-
responding phases and displayed a more distinct expression differ-
ence between the corresponding phase and the other two phases
(Fig. 1d). For instance, the G2M phasemarker geneHMGB2 exhibited a
fold change in the signal-to-noise (SNR) ratio (calculated as the mean
expression divided by the standard deviation) of 5.773 in G2M relative
to G1 and S when using trustworthy metacells. In comparison, the fold
change in SNR ratio was only 2.089 and 2.588 when using single
cells and all metacells, respectively (Fig. 1d). Similar patterns were
observed for other cell-cyclemarker genes (Fig. 1d and Supplementary
Fig. 3b), underscoring mcRigor’s ability to reveal intra-cell-type
heterogeneity.

mcRigor uncovers differential gene co-expression between
healthy and COVID-19 patients
Gene-gene co-expression analysis is widely performed on scRNA-seq
data to quantify the relatedness between genes, which is typically
measured by the pairwise correlation of gene expression levels across
cells of each cell type. However, technical noise, particularly sparsity in
single-cell sequencing data, impedes the inference of gene correla-
tions, biasing correlation estimates to an unpredictable degree44,45.
Metacell partitioning offers a solution to better estimate gene corre-
lations by reducing technical noise while retaining intra-cell-type
heterogeneity20. Nonetheless, this approach achieves its intended
effectiveness only when the metacells are trustworthy, which means a
metacell only includes cells from the samebiological state. Asweprove
in the “Methods” section, including dubious metacells in correlation
estimation often leads to spurious co-expression findings. It is there-
fore crucial to apply mcRigor to eliminate dubious metacells from any
downstream analysis, ensuring the reliability of discovering co-
expressed gene pairs.

We appliedmcRigor to an scRNA-seq dataset from human PBMCs
of seven hospitalized COVID-19 patients and six healthy controls46. In
this analysis, mcRigor successfully rectified co-expression estimates
and uncovered gene modules differentially co-expressed between the
COVID-19 and healthy cohorts. Given that co-expression patterns are
often specific to cell type and condition20,44, we applied SuperCell with
γ = 20 separately to the 3028 B cells from COVID-19 samples and the
1994 B cells from control samples. From the two metacell partitions
generated by SuperCell (one per condition), mcRigor detected 22
dubious metacells among the 152 metacells identified in the COVID-19
group and 26 dubious metacells out of the 99 metacells in the
control group.

We found that excluding dubious metacells prior to correlation
estimates removed biases and highlighted differentially co-expressed
genemodules thatmay play a role in theCOVID-19 diseasemechanism.
For example, correlation estimation using only trustworthy metacells
revealed three co-expression gene modules enriched in the COVID-19
cohort (Fig. 1e), representingdifferential biological functions of B cells,
including the antigen processing via MHC Class II gene module (p-
value = 3.7e − 31 for one-sided Wilcoxon rank-sum test), the adaptive
immune response gene module (p-value = 7.6e − 19), and the response
to interferon-alpha gene module (p-value = 0.00328). These enrich-
ment signals were notably strengthened compared to those in the raw
single-cell data, where the p-values for these three gene modules are
2.0e − 13, 0.00043, and 0.08441, respectively. We also observed that
these enrichment findings are consistent with those reported by the
CS-CORE method44.
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In contrast, correlation estimation that included dubious meta-
cells (using all metacells) yielded the counterintuitive result that the
adaptive immune responsegenemodulewas not enriched inCOVID-19
patients (p-value = 0.54632). We found that this misleading result was
causedby anartifact: the strong co-expression of the adaptive immune
response gene module under the healthy condition. Notably, this
artifact was absent at single-cell resolution and was induced solely by
the presence of dubious metacells (Fig. 1e). Applying mcRigor to the
partitions generated by SEACells, MetaCell, and MetaCell2 similarly
removed the artifact correlations introducedbydubiousmetacells and
enhanced enrichment signals (Supplementary Fig. 4), demonstrating
the applicability and robustness of mcRigor across various metacell
methods.

mcRigor empowers and rectifies gene regulatory inference on
single-cell multiome data
Single-cell multiome data or integrated scATAC-seq and scRNA-seq
data47–49, which provide both gene expression and chromatin accessi-
bility modalities in the same cells (either through direct measurement
or computational integration), offer a lens to study the association
between these two modalities. This approach reveals relationships
between genes and regulatory elements (e.g., enhancers) with finer
resolution, such as cell-type specificity, that is unattainable with bulk
multi-omics data. However, associating genes with their regulatory
elements can be challenging due to the high sparsity and noise in
single-cell sequencing data, especially in the chromatin accessibility
modality, so the reliability of inferred regulatory associations becomes
questionable. Hence, aggregating homogeneous single cells into
metacells has been implemented to help reduce data sparsity and
improve gene regulatory inference33,50.

Reference 33 demonstrated the effectiveness of metacell parti-
tioning for empowering gene regulatory inference by applying their
metacell partitioning method, SEACells, to a single-cell multiome
dataset, which consists of 6881 hematopoietic stem and progenitor
cells (HSPCs) from healthy bone marrow sorted for the pan-HSPC
marker CD34. Compared to single-cell-based analysis, using metacells
(the so-called “SEACells” generated by the SEACells method) sig-
nificantly reduced data sparsity in both modalities, particularly for
chromatin accessibility, and revealed gene-peak associations thatwere
obscured at the single-cell resolution (where peaks represent open
chromatin regions identified from the chromatin accessibility data).

On top of this analysis, we found that applying mcRigor to filter
out dubious metacells improved gene regulatory inference in two key
ways: (1) enhancing the identification of reliable gene-peak associa-
tions and (2) removing associations that were likely spurious. From the
metacell partition generated by SEACells in the original study33,
mcRigor identified 7 dubious metacells out of the 85 metacells (Sup-
plementary Fig. 5a). The effectiveness ofmcRigor in improvement (1) is
supported by the observation that gene-peak pairs consistently iden-
tified (adjusted p-value < 0.05 by the LinkPeaks function from the
Signac R package, version 1.13.0, using both all metacells and trust-
worthymetacells) displayed significantly higher gene-peak association
scores after dubious metacells were excluded (top left of Fig. 1f). For
instance, the association score between the key erythroid lineage
regulator TAL1 and its most correlated peak increased from 0.8266 to
0.8703 when dubious metacells were removed. Similarly, the associa-
tion score for another crucial erythroid factor, GATA2, with its highest
correlated peak, increased from 0.6904 to 0.7606 (bottom left
of Fig. 1f).

Furthermore, we demonstrated thatmcRigor could recover gene-
peak associations supported by the literature while filtering out unli-
kely associations (improvements (1) and (2)). By using the trustworthy
metacells identified by mcRigor, we identified 5551 highly correlated
gene-peak pairs, compared to the 5536 pairs identified using all
metacells. Although the increase in the number of gene-peak pairs was

small,mcRigor refined the associations by removingweakly supported
pairs and adding those with stronger data support. For instance,
although using all metacells and using trustworthy metacells both
identified 16 highly correlated peaks (HCPs) for the gene GATA2, the
specific peaks identified differed between the two approaches. When
dubious metacells were excluded, an additional peak was identified,
while one previously identified peak was removed. The newly identi-
fied peak, chr3-128532902-128533402, which overlaps with
LOC117038772 (chr3-128532862-128533362), is an enhancer for GATA2,
as supported by previous reports51,52. The peak’s correlation with
GATA2 expressionwas also evident at the single-cell level (bottomright
of Fig. 1f). In contrast, the peak not detected when using trustworthy
metacells, chr3-128409363-128409863, showed a minimal correlation
with GATA2 expression at single-cell resolution, and its accessibility
was extremely low across all cell types, providing insufficient evidence
for association (Fig. 1f and Supplementary Fig. 5b). These findings
confirm that mcRigor enhances regulatory analysis and, importantly,
helps pinpoint likely false positives.

Intuitively, using a lowgranularity levelmay reduce the number of
dubious metacells and yield reliable results even without mcRigor.
However, this strategyoften leaves sparsity unresolved, compromising
statistical power in downstream analyses. To illustrate this, we com-
pared results from a fine-grained metacell partition (SEACells with
γ = 5, without mcRigor) to those from a coarse-grained partition
(SEACells with γ = 90) followed by mcRigor filtering (Supplementary
Fig. 6). We observed clear advantages with the SEACells (γ = 90) +
mcRigor partition, which provided greater statistical power and iden-
tified more biologically supported enhancer-gene associations. For
example, the enhancer LOC117038771, previously reported to regulate
GATA251, was detected only with the trustworthy metacells from SEA-
Cells (γ = 90) +mcRigor, but not with SEACells (γ = 5) (Supplementary
Fig. 6a). Similarly, for TAL1, multiple HCPs were identified using SEA-
Cells (γ = 90) +mcRigor, but none were detected using SEACells (γ = 5)
or single-cell data, where sparsity limited detection power (Supple-
mentary Fig. 6b). These findings demonstrate that simply lowering γ is
insufficient and that mcRigor is essential for improving statistical
power while maintaining the reliability of metacell-based regulatory
analyses.

Assessment of mcRigor’s ability to optimize metacell
partitioning
Akey hyperparameter inmetacell partitioning is the granularity level γ,
defined as the ratio of the number of single cells to the number of
metacells (i.e., the average number of single cells per metacell). This
hyperparameter controls the extent of size reduction from single cells
to metacells, with a larger γ indicating a greater reduction34. If γ is too
large, heterogeneous single cells may be aggregated into metacells,
distorting downstream analyses. Conversely, if γ is too small, the
metacells closely resemble single cells, failing to address the sparsity
issue. Therefore, optimizing metacell partitioning is fundamentally
about balancing signal distortion and data sparsity.

To quantify this tradeoff and guide hyperparameter selection,
mcRigor introduces two metrics: DubRate and ZeroRate, which mea-
sure the level of distortion introduced and the remaining level of
sparsity, respectively (Fig. 2a). Intuitively, as γ increases, DubRate rises
while ZeroRate falls. mcRigor then calculates an evaluation score,
termed Score, for each γ, defined as one minus a weighted sum of
DubRate and ZeroRate (with the default weight set as 0.5), where a
higher Score indicates a better metacell partition. The γ value that
maximizes this score is considered to balance the preservation of
biological signals and the improvement of data sparsity.

We tested the effectiveness of Score as an optimization criterion
on the semi-synthetic dataset used previously and described in detail
in the “Methods” section, with the true granularity level as γ* = 50.
MetaCell was applied as the metacell partitioning method, with γ
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values ranging from 2 to 100, generating one metacell partition per γ
value. mcRigor was then used to evaluate the DubRate, calculate the
ZeroRate, and determine the final Score for each partition. We
observed thatDubRate exhibited anelbowpoint at the true granularity
level, and the highest Score was achieved precisely at γ = γ* (Fig. 2a).
Additionally, the optimized metacell partition closely matched the
ground-truth metacells defined in the simulation, containing only four
dubious metacells (Fig. 2a).

We similarly applied SEACells to identify metacell partitions and
used mcRigor for granularity level optimization. In this case, DubRate
displayed a less pronounced elbow around γ = 50, and mcRigor’s
optimized granularity level was 42, also close to the true γ* (Supple-
mentary Fig. 7). However, for SuperCell andMetaCell2, the optimal γ’s
selected by mcRigor (γ = 4 for both) are far away from γ*. This is
because most metacells built by these two methods were dubious,
resulting in high DubRate values even at small granularity levels
(Supplementary Fig. 7).

Since mcRigor’s optimization criterion, Score (ranging from 0
to 1), is comparable across metacell partitions regardless of the
partitioning method used, mcRigor can simultaneously determine
the optimal hyperparameter γ for each method and guide method
selection for a specific single-cell dataset. For the semi-synthetic
dataset, the maximal Score (i.e., the Score at the optimal γ for each
method) attained by MetaCell, SEACells, SuperCell, and MetaCell2
were 0.692, 0.642, 0.537, and 0.528, respectively (Supplementary
Fig. 7). Thus, the optimal configuration selected by mcRigor is
MetaCell with γ = 50, which best matched the ground truth. The
higher maximal Score values for MetaCell and SEACells compared
to SuperCell and MetaCell2 imply that MetaCell and SEACells pro-
duced better metacell partitions, with fewer dubious metacells and
a higher reduction of sparsity. This finding is consistent with our
observations on real single-cell data, where mcRigor often recom-
mends MetaCell and SEACells over SuperCell and MetaCell2. Nota-
bly, mcRigor is task-agnostic and does not rely on prior knowledge,
enabling its application to metacell-based data analysis and making
it an effective and unbiased benchmarking tool for metacell parti-
tioning methods.

mcRigor optimizes metacell partitioning to distinguish biolo-
gical and non-biological zeros
Single-cell data contain two types of zeros: biological zeros, which
indicate absent or extremely low gene expression, and non-biological
zeros, which result from gene expression being missed during the
sequencing process8. Ideally, biological zeros should be retained as
they provide valuable insights into the cells’ biological states, while
non-biological zeros should be filtered out to enhance data quality.
Metacell partitioningoffers a potential solution to this sparsity issueby
averaging the expression profiles of multiple cells assumed to share
the same biological state, thereby reducing the number of zeros.
However, currentmetacell partitioningmethods provide no guarantee
to achieve two critical objectives: (1) preserving biological zeros and
(2) removing non-biological zeros. This challenge arises due to the
inherent trade-off between these two objectives—when the granularity
level increases (i.e., more cells are merged into a metacell), the chance
of removing non-biological zeros improves, but the risk of inad-
vertently eliminating biological zeros also rises.

Despite this challenge, mcRigor helps to balance the two com-
petingobjectives,which are about distinguishing biological zeros from
non-biological zeros, by optimizing the granularity level for a metacell
partitioning method. The optimization approach of mcRigor essen-
tially minimizes the formation of dubious metacells (addressing
objective (1)) while maximizing the removal of non-biological zeros
(addressing objective (2)). Notably, minimizing the occurrence of
dubious metacells is crucial for objective (1), as a dubious metacell
contains cells from different states, where a gene may be expressed in

one state but not in another. Averaging such mixed states could
inadvertently eliminate biological zeros.

We evaluated whether mcRigor can effectively distinguish biolo-
gical zeros from non-biological ones using an scRNA-seq Drop-seq
dataset paired with single-molecule RNA fluorescence in situ hybridi-
zation (smRNAFISH) data for 16 genes from amelanoma cell line53. The
rationale for this approach is that smRNAFISH is widely considered the
gold standard for single-cell gene expressionmeasurement53,54, making
it reasonable to assume that all zeros in smRNAFISHdata are biological
zeros. We applied MetaCell, SEACells, and SuperCell to the scRNA-seq
dataset, varying the granularity level (γ = 2,…, 100), and calculated the
proportion of zeros for the 16 genes in the resulting metacell-by-gene
data matrix for each metacell partition. We then used mcRigor to cal-
culate a Score for each partition and identify the optimal γ that yielded
the best Score for each method (Supplementary Fig. 8a, b). Notably,
the γ value selected bymcRigor for eachmetacell partitioningmethod
resulted in a proportion of zeros that closely matched the proportion
of zeros in the smRNA FISH data (Fig. 2b and Supplementary Fig. 8c).
Compared to single-cell data, the expressiondistributions of each gene
derived from the optimal metacell partitions (one per metacell
method) closely approximated the corresponding distribution
observed in the smRNA FISH data (Supplementary Fig. 8d). These
results confirm thatmcRigor canhelp distinguish biological zeros from
non-biological zeros by optimizing metacell partitioning.

mcRigor optimizes metacell partitioning for DGE analysis
DGE analysis on scRNA-seq data often suffers from data sparsity,
leading to reduced statistical power. Aggregating single cells into
metacells is one strategy to mitigate the sparsity, but the reliability of
metacells is crucial. To evaluate whether mcRigor improves the relia-
bility of metacell-based DGE analysis, we faced the challenge of the
absence of ground-truth DE genes in scRNA-seq data. Therefore, we
adopted an indirect validation approach: comparing the consistency
of scRNA-seq DGE results with those from paired bulk RNA-seq data10.
We applied this strategy to validate mcRigor’s effectiveness, assessing
whether the optimizedmetacell partition improved the consistency of
DGE results with paired bulk RNA-seq data using a dataset obtained
from both bulk and scRNA-seq experiments on human embryonic
stem cells (ESC) and definitive endoderm cells (DEC)55.

We applied MetaCell, SuperCell, and SEACells with varying granu-
larity levels (γ= 2, …, 100) to generate metacell partitions from the
scRNA-seq data. mcRigor then calculated the Score value for each par-
tition and optimized γ for each method: γ =6 for MetaCell, γ =4 for
SuperCell, and γ = 13 for SEACells. Among the three methods, SEACells
with γ = 13 achieved the highest Score, making its metacell partition the
optimal choice (Supplementary Fig. 9). As the first validation step, we
used the DESeq2 method56 to identify DE genes from the bulk RNA-seq
data and assessed the concordance between the bulk and metacell
profiles based on the expression of the top 200 DE genes. The optimal
metacell partition showed the strongest concordancewith thebulkdata
(Pearson correlationρ =0.800) (toppanel of Fig. 2c). Concordancehere
is defined as the Pearson correlation between two expression vectors,
each representing the top 200 DE genes in the bulk data (average of
bulk samples) or the metacell partition (average of metacells).

Next, we evaluated mcRigor’s ability to identify the metacell
partition that could best recover the bulk DE genes from the paired
scRNA-seq data. We applied DESeq2 to the scRNA-seq data given each
metacell partition and recorded the DE genes identified at the false
discovery rate (FDR) threshold of 0.05. Treating the bulk DE genes
obtained from bulk data (also using a 0.05 FDR threshold) as the
standard, we then calculated an F-score (the harmonic mean of pre-
cision and recall) for themetacell DE genes for eachmetacell partition.
The metacell configuration selected by mcRigor (SEACells with γ = 13,
Supplementary Fig. 9) produced the highest F-score (0.400), which is
almost twice that of the F-score (0.204) for the single-cell DE genes
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without using metacells (bottom panel of Fig. 2c). These findings
indicate that the DE genes identified using the optimal metacell par-
tition had the best agreement with the bulk DE genes, thereby indir-
ectly affirming mcRigor’s optimization of metacell partitioning,
including the selection of the metacell method and its
hyperparameter value.

mcRigor’s optimized metacell partition better reveals temporal
immune cell trajectories
In oncogenesis, immune cells infiltrating tumors can be co-opted by
the immunosuppressive tumor microenvironment (TME), transition-
ing from a cytotoxic to a dysfunctional state with reduced antitumor
activity. To explore the transcriptomic dynamics of immune cells over
time, a new technology, Zman-seq, was developed to collect data from
2431 intratumoral T and NK cells in mouse glioblastoma, along with
time stamps documenting each cell’s exposure duration within the
tumor30. In the original study, the 2431 single cells were aggregated
into 37metacells using theMetaCell methodwith γ = 66, and temporal
trajectories were tracked among thesemetacells, whichwere expected
to represent distinct transcriptional states.

Specifically, the original study calculated a continuous tumor
exposure time (cTET) value for each metacell. This was defined as one
minus the normalized area under the curve (AUC) of the cumulative
distribution function (CDF) for the frequencies of single cells within
the metacell at three time points: 12 h, 24 h, and 36 h. In other words,
the CDF represents a three-value discrete distribution (if all single cells
in a metacell are from the 12 h time point, the AUC of the CDF is 1, and
the cTET is 0). The cTET valueswere then used as continuous temporal
labels for the metacells, where larger values indicated longer tumor
exposure times. Accordingly, the following transitional stages of NK
cells were expected to show increasing cTET values: NK chemotactic,
NK cytotoxic, NK intermediate, and finally NK dysfunctional cells.
However, in the original study, the cTETvalues of themetacells did not
clearly distinguish these stages (top right of Fig. 2d), suggesting that
some metacells might be dubious (containing a mix of NK cells of
different biological states).

We applied mcRigor to optimize the metacell method-
hyperparameter configuration and found that SEACells with γ = 43
provided the optimal metacell partition (Supplementary Fig. 10a, b).
Specifically, compared to the original metacell partition (with
DubRate = 0.222), the optimized partition had a significantly lower
DubRateof0.056.With this optimalmetacell partition, the cTET values
more effectivelydistinguished the four transitional stages, as indicated
by a greater cTET difference between the earliest- and latest-stage
metacells (0.718 vs 0.538 in the original study). Additionally, the cTET
values showed a stronger correlationwith the transitional stages of the
metacells (Spearman’s rank correlation =0.967 vs 0.954 in the original
study) (top panel of Fig. 2d). See the “Methods” section for further
details on this data analysis.

In the original study, subsequent analysis involved ordering
metacells based on their cTET values to identify genesmost correlated
with tumor exposure time. To evaluate the reliability of the metacell
partition optimized by mcRigor, we identified 75 DE genes (FDR =
0.05) between the 12 h and 36 h time points using the original single-
cell data and assessed whether these DE genes could be successfully
recovered at themetacell level. The rationale is thatwhile single-cell DE
analysis often lacks power due to data sparsity, the identified single-
cell DE genes should still be detectable from metacells, which are
expected to enhance the power of DE analysis. Our results showed that
these single-cell DE genes exhibited higher correlations with tumor
exposure time (mean correlation 0.633 vs 0.570 in the original study)
and lower p-values in DE analysis between 12h and 36h (mean adjusted
p-value 0.035 vs 0.118 in the original study) when using the metacells
from the optimal partition compared to the original partition (Sup-
plementary Fig. 10c). Furthermore, the DE p-values of these genes at

the metacell level were more consistent with the single-cell p-values
(Spearman’s correlation ρ =0.517 vs 0.452 in the original study). In
total, the optimal metacell partition, compared to the original parti-
tion, helped identify more genes that are significantly correlated with
tumor exposure time (260 vs 135 in the original study). These findings
indicate that by reducing dubious metacells, mcRigor helps preserve
biological signals in single-cell data, improving the reliability of
downstream analyses, and gaining more power in uncovering impor-
tant genes associated with time.

Additionally, mcRigor’s optimized metacell partition corrected
the questionable gene temporal patterns inferred from the metacells
in the original study (bottom panel of Fig. 2d). For instance, Lag3, a
gene associated with the suppression of antitumor functions57,58 and
known to act as a receptor for the ligand LSECtin59, blunting tumor-
specific immune responses,was incorrectly inferred to followapattern
of initial downregulation followed by upregulation in the original
study. In contrast, the optimized metacell partition identified a more
biologically plausible pattern, showing Lag3 as steadily upregulated
over time, consistent with single-cell observations and previous stu-
dies that found Lag3 increasingly expressed in NK cells as they pro-
gress towards a terminal intratumoral state60. Similarly, the optimized
metacell partition corrected the temporal pattern for Clspn, aligning
with both single-cell results and the known biology of the gene’s
human ortholog (gene CLSPN), which is typically upregulated in the
immune microenvironment of most cancer types61,62. This was in
contrast to the original study, where Clspn was incorrectly inferred to
bedownregulatedover time. Thesefindings demonstrate thenecessity
of using mcRigor to generate reliable metacell partitions, ensuring the
accuracy of temporal gene expression analysis.

It is also worth noting that despite the finer granularity (γ = 43 in
the optimized partition vs γ = 66 in the original partition), the opti-
mized partition still effectively resolved data sparsity and enhanced
biological signals. Specifically, the optimized partition successfully
recovered all the important temporally dynamic genes identified in the
original study (Supplementary Fig. 10d), including the upregulated
module (Pmepa1, Car2, Ctla2a, Xcl1, Itga1, Gzmc, etc.) and the down-
regulated module (S1pr5, Cx3cr1, Klrg1, Cma1, Ccl3, Gzmb, etc.).

To explicitly distinguish the contribution of mcRigor from that of
the underlying metacell methods themselves, we further conducted
direct comparisons between the results obtained from each method
with and without mcRigor—comparing MetaCell +mcRigor with
MetaCell alone (as used in the original study), and SEACells +mcRigor
(SEACells being the overall best-performing method selected by
mcRigor) with SEACells alone (Supplementary Fig. 11). In both com-
parisons, incorporating mcRigor led to noticeable improvements. For
instance, the MetaCell +mcRigor partition showed a greater cTET
difference between the earliest- and latest-stage metacells (0.600)
compared to MetaCell alone (0.538), as well as a stronger correlation
between cTET values and the transitional stages of metacells (Spear-
man’s rank correlation ρ =0.961 vs 0.954, Supplementary Fig. 11a).
Furthermore, adding mcRigor corrected questionable temporal
expression patterns initially inferred by MetaCell alone, resulting in
biologically consistent upregulation trends for genes including Lag3,
Tubb5, Tk1, and Clspn (Supplementary Fig. 11b). Consistent with these
findings, the single-cell DE genes exhibited stronger correlations with
tumor exposure time and lower adjusted p-values at the metacell level
when using MetaCell +mcRigor compared to MetaCell alone (Sup-
plementary Fig. 11c). Similar improvements were observed when
comparing SEACells +mcRigor to SEACells alone (Supplementary
Fig. 11), confirming that the enhanced downstream analysis results—
reflected by greater cTET distinctions and more biologically plausible
gene temporal expression patterns—are indeed attributable to the use
of mcRigor.

These results further underscore mcRigor’s ability to identify the
most suitable metacell method for a given dataset—not only by
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optimizing the granularity level within each method, but also by
selecting the most appropriate method. In this case, mcRigor selected
SEACells over MetaCell (Supplementary Fig. 11), and accordingly,
SEACells combinedwithmcRigor outperformedMetaCell alone, as our
results showed.

mcRigor’s optimized metacell partition improves data integra-
tion and better captures T cell response dynamics
Beyond improving analysis at the individual-sample level, metacells
represent structured and denoised analysis units that can potentially
facilitate integration across large, cohort-level single-cell datasets. This
strategy—integrating over metacells rather than single cells—is parti-
cularly valuable for large-scale datasets generated by consortia, which
often exhibit substantial batch effects and sparsity, since at the single-
cell level, biological differences can be difficult to distinguish from
technical noise, rendering integration results unreliable. However, the
effectiveness of metacell-based integration critically depends on the
choice of metacell granularity: overly coarse partitions may obscure
biologicallymeaningful variation even before integration, while overly
fine ones may fail to adequately reduce technical noise. By optimizing
the granularity level, mcRigor enables the construction of metacells
that are best suited for biologically faithful integration and down-
stream analyses.

To evaluate the effectiveness of mcRigor in improving integration
analysis, we reanalyzed a subset of the scRNA-seq dataset used in the
SEACells study33, comprising 96,466 PBMCs from 10 healthy donors
and 10 patients with COVID-19. We focused on this data subset rather
than the full dataset because, in large datasets, the impact of poor-
quality metacells may be negligible. In contrast, when working with
fewer cells, high-qualitymetacell partitioningbecomesmore critical, as
a small number of dubiousmetacells may have a large distortion effect
on biological signals if the total number of metacells is small. We
compared SEACellsmetacells constructed using thedefault granularity
level (γorg = 75) with those optimized by mcRigor (γopt = 49), hereafter
referred to as mcRigor metacells, and performed Harmony63 integra-
tion using the resulting metacell expression profiles. In the SEACells
study, the authors demonstrated that CD4 T cells from three different
collection sites exhibitmeaningful biological differences, and that such
variation should be preserved, not eliminated, during integration33.
Indeed, in the subset we analyzed, SEACells CD4T metacells con-
structed at the default granularity exhibited reduced similarities across
different sites (mLISI, the mean Local Inverse Simpson’s Index that
measures batch similarities, reduced from 1.528 for single cells to 1.474
for metacells based on collection site) (Supplementary Fig. 12, bottom
middle). However, the distinction between CD4 and CD8 T metacells
became less pronounced after integration (mLISI increased from 1.063
for single cells to 1.152 for metacells based on cell type) (Supplemen-
tary Fig. 12, topmiddle). In contrast, the mcRigor metacells, compared
with the unrefined SEACells metacells, better enhanced both site-
specific differences (mLISI reduced from 1.528 for single cells to 1.344
for metacells based on collection site) and maintained the separation
betweenCD4andCD8Tcells (mLISI reduced from1.063 for single cells
to 1.028 for metacells based on cell type) (Supplementary Fig. 12, left).
This suggests that data-driven granularity optimization, rather than a
fixed heuristic granularity level, can be essential for robust biological
signal recovery during integration.

We next investigated whether mcRigor metacells could more
effectively reveal T cell response dynamics in COVID-19 using the
integrated data. Following the analysis in the SEACells study33, we
further aggregated each set of metacells (SEACells metacells and
mcRigor metacells) into second-level meta2cells, each consisting of
tenmetacells, by reapplying SEACells to their Harmony-corrected low-
dimensional embeddings. From each meta2cell set, we then selected
three representative meta2cells corresponding to early, middle, and
late stages after COVID-19 onset (Supplementary Fig. 13a, b). Both

SEACells and mcRigor meta2cells captured temporal shifts in immune
gene expression, including type I interferon-stimulated genes (IRF7,
IRF9, ISG15, and IFITM1), inflammation-regulating genes (CCR10,
FOXP3, and IL2RA), and hallmark T17-related genes indicative of a
transition toward type III inflammation (RORC and CCR6). Notably,
mcRigor meta2cells exhibited more distinct temporal expression tra-
jectories, especially for genes such as IFITM1, FOXP3, and CCR6 (Sup-
plementary Fig. 13a). These results suggest that mcRigor’s data-driven
granularity optimization helps reveal the dynamic immune responses
over the course of disease progression.

To further investigate the temporal dynamics of CD4 T cell
responses, we extended our analysis to construct trajectories using all
CD4 meta2cells, beyond the three representative ones in each set
(SEACells and mcRigor meta2cells). Following a trajectory construc-
tion approach from a glioblastoma immune profiling study30, we first
clustered each set of meta2cells based on their Harmony63 batch-
corrected low-dimensional embeddings, varying the number of clus-
ters k ∈ [3, …, K], where K is the total number of CD4 meta2cells. For
each k, we constructed a trajectory by ordering the meta2cell clusters
based on their average time since disease onset, and then averaged the
resulting (K − 2) trajectories to generate a final temporal trajectory.
Along this trajectory, we computed smoothed gene expression pro-
files, revealing progressive activation of immune gene modules over
the course of COVID-19 infection (Supplementary Fig. 13c). Notably,
trajectories based on mcRigor meta2cells showed clearer temporal
progression and more coherent gene module expression patterns
(Supplementary Fig. 13c, left), aligning more closely with both single-
cell-level observations (Supplementary Fig. 13a, right) and established
biological knowledge. For example, KLRG1—a gene known to increase
in CD4 T cells during adaptive immune responses64—exhibited a con-
sistent upward trend in the mcRigor-based trajectory but a reversed
trend in the SEACells-based one. These results demonstrate that
mcRigor’s granularity optimization not only enhances data integration
but also improves the reconstruction of temporal immune processes.

Discussion
mcRigor is a novel statistical method designed to enhance the rigor of
metacell partitioning in single-cell data analysis, ensuring reliable
downstream analyses on metacells. By evaluating a given metacell
partition, mcRigor identifies dubious metacells through quantifying
per-metacell heterogeneity (i.e., the presence of mixed biological
states) using a feature-correlation-based statistic. This statistic is
assessed against a null distribution generated through a novel double
permutation mechanism. Our findings demonstrate that the dubious
metacells identified by mcRigor are indeed heterogeneous. Specifi-
cally, mcRigor can detect both dubious metacells that mix distinct
major cell types and those composed of closely related subtypes
within the samemajor type, capturing both broad and subtle forms of
cellular heterogeneity (Supplementary section “Performance of
mcRigor under varying cellular heterogeneity”; Supplementary
Fig. 14). Applications of mcRigor to real datasets show that removing
dubious metacells detected by mcRigor significantly enhances down-
stream analyses, such as gene co-expression studies and enhancer-
gene regulatory inference. This improvement is achieved by revealing
biological signals otherwise obscured by data sparsity and correcting
conclusions drawn from distorted signals provided by dubious meta-
cells. Leveraging its dubious metacell detection capability, mcRigor
further optimizes metacell partitioning by selecting the method-
hyperparameter configuration that best balances the trade-off
between reducing data sparsity (fewer, larger metacells) and preser-
ving biological signals (more, smaller metacells). This optimized con-
figuration has demonstrated improved performance across various
tasks, including distinguishing biological from non-biological zeros,
identifying DE genes, and elucidating temporal immune cell
trajectories.
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We anticipate that mcRigor will be a valuable computational tool
for single-cell researchers, enabling them to generate reliable meta-
cells for addressing key scientific questions with metacell-level data.
However, mcRigor has some limitations and open questions that
warrant further exploration. First, mcRigor detects dubious metacells
by constructing null values for the per-metacell mcDiv score through
double permutation, which is performed only once on the cell-by-
feature matrix of each metacell. From this double-permuted matrix, a
null value (mcDivnull) is computed for that metacell, and the mcDiv
threshold is determined by pooling the null values of metacells of
similar sizes. Future research could explore whether performing mul-
tiple rounds of double permutations, thereby generating multiple null
values for each metacell, could lead to more robust detection of
dubious metacells.

Second, while mcRigor can detect dubious metacells, it does not
offer a strategy for reorganizing these metacells into trustworthy
metacells; users are currently limited to removingdubiousmetacells in
downstream analysis. A more comprehensive approach could involve
recursively partitioning dubious metacells to achieve internal homo-
geneity, ensuring that all metacells are trustworthy without losing
individual cells. Developing such a recursive partitioning algorithm
remains an open question for future research. Furthermore, an inter-
esting direction would be to design a new metacell partitioning
method that constructs metacells directly from single cells based on
mcRigor’s evaluation criteria. Thismethod should focus on generating
trustworthy metacells from the outset, thereby minimizing the need
for post-generation filtering.

As a first step toward improving metacell reconstruction, we
developed a straightforward extension of mcRigor, termed mcRigor
two-step, as described in the Supplementary file (Supplementary sec-
tion “Performance of mcRigor under varying cellular heterogeneity”).
This approach first identifies more dubious metacells using a relaxed
mcDiv threshold—specifically, the 85th percentile of mcDiv null values
conditional onmetacell size, as opposed to the default 95th percentile
used in standardmcRigor—and then re-appliesmetacell partitioning to
the constituent cells of these dubious metacells, using a granularity
level optimized by mcRigor. Rather than discarding the dubious
metacells, mcRigor's two-step re-partitions their constituent cells,
thereby reducing information loss. We demonstrated that this
extension can further improve downstream analyses, including unco-
vering differential gene co-expression modules (Supplementary
Figs. 15 and 16) and distinguishing biological fromnon-biological zeros
(Supplementary Fig. 17), and more importantly, enables better detec-
tion of rare cell subpopulations (Supplementary Figs. 18 and 19),
whose cells are often mixed with others in dubious metacells due to
their small numbers. By reorganizing these cells into smaller, trust-
worthy metacells, mcRigor's two-step enhances mcRigor’s ability to
capture cellular heterogeneity and uncover biological states with
varying abundance levels. Nonetheless, mcRigor two-step remains an
initial attempt at refining metacell reconstruction—a more principled
redesign of metacell partitioning, building on mcRigor, will require
future, more deliberate method development.

Third,mcRigor couldbeenhanced tobetter handlemulti-modality
data (e.g., scRNA-seq and scATAC-seq). Currently, it operates on
metacell partitions derived from a single modality, requiring users or
the partitioning method to select which modality to prioritize. This
single-modality approach may lead to suboptimal metacell partitions
when modalities contain complementary biological signals. Therefore,
a key future direction is to extend mcRigor to integrate multiple
modalities in a data-driven manner. Additionally, our future work will
explore metacell partitioning beyond single-cell gene expression and
chromatin accessibility data. For example, the spatial niche concept in
spatial transcriptomics is related to, but distinct from, the metacell
concept, as spatial niches often encompass multiple cell types and
represent complex microenvironments rather than homogeneous cell

groupings. Defining reliable criteria for spatial niches remains an open
question. Expanding mcRigor’s capabilities to support additional
modalities and data types would increase its utility as a comprehensive
tool for addressing data sparsity in diverse genomics data analyses.

As previously mentioned, both metacell partitioning and impu-
tation aim to address data sparsity, and we consider them alternative
strategies. Metacell partitioning reduces technical zeros by aggregat-
ing similar cells into metacells, thereby averaging out noise, whereas
imputation attempts to recover technical zeros at the level of indivi-
dual cells. In response to the question of whether applying imputation
before metacell constructionmight better resolve sparsity, our view is
that doing so would be redundant and potentially counterproductive.
Imputation has been shown to introduce biases into the data65, which
may distort the underlying gene expression landscape and lead to the
formation of spurious metacell groupings—ultimately increasing the
number of dubious metacells rather than reducing them. Therefore,
we recommend choosing either metacell partitioning or imputation
based on the goals of downstream analysis, rather than applying both
in combination.

An additional note is that doublets (and multiplets) in the single-
cell droplet-based sequencing data should be removed before imple-
menting metacell partitioning and mcRigor. Here, a doublet (or mul-
tiplet) refers to two (ormore) cells being encapsulatedwithin the same
droplet during sequencing, resulting in them being tagged with the
same barcode and mistakenly identified as a single cell66. These
doublets (or multiplets) are highly unlikely to originate from the same
biological state, and their inclusion in metacells can introduce within-
metacell heterogeneity. Therefore, we recommend applying a doublet-
detection method67 before any metacell partitioning steps. That said,
dubious metacells may arise from two major sources: (1) the inclusion
of internally heterogeneous doublets or multiplets and (2) suboptimal
metacell partitioning that groups single cells from different biological
states. Although removing doublets and multiplets before metacell
partitioning canhelp reduce thenumber of dubiousmetacells from the
first source, those arising from the second source would still persist
and can be detected by mcRigor. Furthermore, the fact that doublets
or multiplets can lead to dubious metacells implies a potential addi-
tional role for mcRigor as a validation or benchmarking tool for
doublet removal methods. An effective doublet removal method,
whenpairedwith a reliablemetacell partitioningmethod, should result
in few or no dubious metacells. Exploring mcRigor’s utility for this
purpose represents an interesting direction for future research.

Regarding the trustworthiness of metacells, an intuitive belief is
that larger metacells are more likely to be dubious. While we observe
that metacells exhibit substantial variability in size at the same gran-
ularity level (Supplementary Figs. 5a and 10b), no clear relationship
exists between metacell size and trustworthiness (as determined by
mcRigor). This finding underscores that dubious metacells cannot be
reliably identified based solely on size. Moreover, metacell size dis-
tributions differ significantly across cell types and conditions (Sup-
plementary Figs. 20 and 21). Notably, smaller metacells are more
frequent in unstable biological states, such as in COVID-19 PBMCs
compared to healthy controls (Supplementary Fig. 20a). For another
example, in thebmcitedataset, progenitor cells are generally grouped
into smaller metacells, whereas T cells are aggregated into larger
metacells (Supplementary Fig. 21a). Hence, if we have a good under-
standing of the relative stability of biological conditions, metacell size
distributions can serve as a quick sanity check for the quality of the
metacell partitioning before applying mcRigor.

Methods
A statistical definition of metacells
As first introduced by ref. 17, a metacell is defined as a homogeneous
collection of single-cell profiles that could have been resampled from
the sameoriginal cell. Thismeans thatwithin ametacell, the single cells
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should be in the same biological state, exhibiting the same expected
expression levels of features (e.g., genes or chromatin regions) at
equilibrium, referred to as biological signals. Any differences in the
observed counts (of sequencing reads or uniquemolecular identifiers)
among these single cells should therefore be attributed to measure-
ment imperfections, known as technical variations. This definition
ensures that aggregating these single cells into ametacell by averaging
can reduce technical variations while preserving biological signals.

We formalize this metacell definition statistically by following the
observationmodel for single-cell sequencing data described in ref. 68.
In this model, the variations in observed counts can be decomposed
into two components: the biological variation, which reflects differ-
ences in biological signals across cells, and the technical variation,
introduced during the measurement process, including sequencing,
that obscures these biological signals. Hence, the observationmodel is
hierarchical, consisting of an expression model, which describes the
distribution of biological signals across cells (i.e., the biological varia-
tion), and a measurement model, which describes the distribution of
observed counts given these biological signals (i.e., the technical
variation).

Mathematically, we consider a total of n cells sequenced to mea-
sure the abundance of p features, such as genes or chromatin regions.
Regarding the biological signals, we let uij denote the number of
molecules presented in cell i, from feature j, ui+ =

Pp
j = 1uij denote the

total number of molecules in cell i, and λij = uij/ui+ denote the relative
abundance of feature j in cell i. It is commonly assumed that
Λ= ½λ1, . . . ,λn�> = ½λij � 2 Rn×p encapsulates all the biological signals
that can be estimated from sequencing data, as absolute abundance
information is not preserved in sequencing. Regarding the observed
counts, we write Y= ½yij � 2 Zn×p

≥0 , where yij denotes the observed count
in cell i of feature j, and yi+ denotes the total observed count (often
referred to as the cell library size) in cell i. First, the expression model
describes the distribution of λi, which typically depends on cell i’s
covariates, such as the cell type. Second, given λi, the measurement
model describes the distribution of yij, in a form such as

yijjλi �
ind

PoissonðciλijÞ, which implies ðyi1, . . . , yipÞ∣λi, yi + �ind

Mult ðyi+ , λi1, . . . , λipÞ
ð1Þ

where ci = E[yi+∣λi]. The measurement model reflects the technical
variation among cells.

Under this hierarchical observation model and following the
definition by ref. 17, we introduce a statistical definition: a metacell is a
group of cells that share the same λ. We will show in the “Justification
for the statistical definition of metacells” section that, under this
definition, aggregating cells into a metacell through averaging can
reduce the technical variance in Eq. (1) without introducing bias. In
contrast, if cellswith different λ are aggregated, the estimation of λwill
most likely be biased, leading to distorted inference of the biological
signals. Therefore, rigorous identification of metacells is crucial to
guarantee the reliability of downstream analysis. Based on our statis-
tical definition, we term metacells that satisfy this definition as trust-
worthy metacells, and those that do not are referred to as dubious
metacells.

The mcRigor algorithm
Detection of dubious metacells. The mcRigor algorithm begins by
distinguishing between trustworthy and dubious metacells given a
metacell partitioning. The premise is that, assuming cells share the
same library size, any pair of features should display a negligible cor-
relation among the cells within a trustworthy metacell. This lack of
correlation follows our definition of a trustworthy metacell: given the
same λ = ðλ1, . . . , λpÞ>, the variation among cells is purely technical, as
represented by themeasurementmodel Eq. (1). In the “Justification for

the statistical definition of metacells” section, we prove that under the
measurement model, features are nearly pairwise uncorrelated, with
onlyminimal correlations inducedby the constraint

Pp
j = 1λj = 1, and the

correlations decrease as p increases and become negligible when p is
large. Guided by this premise, mcRigor detects dubious metacells by
examining the p × p feature correlation matrix of each metacell, via a
statistical test for each metacell with the null hypothesis:

H0 : ðyi1, . . . , yipÞ∣λ, yi + �indMultðyi + , λ1, . . . , λpÞ , 8 cell i 2 metacell ,

ð2Þ
where λ= ðλ1, . . . , λpÞ> denotes the corresponding metacell feature
expression levels shared by all cells within the metacell, specifying the
measurementmodel forp features jointly as amultinomial distribution
with the cell library size as the total and λ as the p-dimensional
probabilities.

Specifically, given ann × p cell-by-feature datamatrix (after Seurat
V5 default normalization—the “LogNormalize” approach—and Seurat
V5 default feature selection that selects the top 2000 highly variable
features) and a metacell partition that defines M metacells, mcRigor
detects dubious metacells via the following four steps (Fig. 1a):

Step 1 (metacell divergence scores): mcRigor computes a
divergence score for each metacell separately; the divergence score is
essentially a test statistic that reflects deviation from the null
hypothesis H0. For the kth metacell, k = 1,…,M, we define its metacell
size asmk, the number of single cells it includes. ThenmcRigor uses the
originalmk × p datamatrix to calculate themetacell feature correlation
matrix using the Pearson correlation, denoted by Rk∈ [−1, 1]p×p. The
deviation of Rk from the identity matrix I 2 Rp×p is then calculated as
the Frobenius norm ∥Rk − I∥F. To obtain the baseline deviation value
under no feature correlation,mcRigor permutes themk × pdatamatrix
by within-feature (column-wise) permutation, i.e., independently
shuffling the values ofmk single cells for each feature. This results in a
within-feature permuted data matrix from which mcRigor calculates
the corresponding feature correlation matrix eRk . The metacell diver-
gence score, called “mcDiv”, is then defined as

mcDivk =
k Rk � IkF
k eRk � IkF

, ð3Þ

where dividing ∥Rk − I∥F by k eRk � IkF can be viewed as normalization.
Step 2 (null divergence scores): mcRigor constructs a null

divergence score for eachmetacell in a data-drivenmanner. These null
scores serve as negative controls for thresholding the divergence
scores of metacells, so as to determine the trustworthiness of meta-
cells. Specifically, for the kth metacell, mcRigor applies the same
procedure as in Step 1 to a within-cell permuted data matrix, obtained
by independently shuffling the values of p features for each of themk

single cells. Through within-cell (row-wise) permutation, the resulting
permuted cells retain the original cells’ library sizes. Let Πk denote the
correlation matrix of this within-cell permuted data matrix. Following
the same procedure as in Step 1, within-feature permutation is applied
to the within-cell permutated data matrix, resulting in eΠk , the corre-
lation matrix of the double-permuted data matrix (first within-cell,
then within-feature permutation). The null divergence score, called
“mcDivnull,” derived from the kth metacell, is defined as

mcDivnull
k =

k Πk � IkF
k eΠk � IkF

: ð4Þ

The double permutation (first within-cell, then within-feature permu-
tation) is necessary for the null score calculation, as the null hypothesis
(2) is conditional on the cell library sizes, and within-cell permutation
preserves these library sizes. Notably, we cannot simply compare the
numerators ∥Rk − I∥F and ∥Πk − I∥F while ignoring the denominator in
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themetacell divergence score definition. This is because Rk andΠk are
based on different sets of features (since within-cell permutation does
not preserve features) and are therefore not directly comparable.
Furthermore, the denominator k eRk � IkF, which is derived from
within-feature permutation, is not a valid null for the numerator
∥Rk − I∥F, as the cell library sizes are not preserved in the calculation ofeRk . We will present a result to demonstrate that within-feature
permutation is inappropriate in Note 1 (below Step 4).

From the M null divergence scores, mcDivnull
1 , . . . ,mcDivnull

M ,
mcRigor learns the thresholds for distinguishing between dubious and
trustworthy metacells based on their mcDiv scores in the
following step.

Step 3 (divergence score thresholds): an intuitive approach
might suggest classifying the metacells whose mcDiv scores exceed
the 95% quantile of mcDivnull

1 , . . . ,mcDivnull
M as the dubious metacells

and those below the quantile as trustworthy metacells. However, the
null divergence scores defined in Eq. (4) exhibit varying distributions
depending on the metacell size (Supplementary Fig. 2b). Hence,
mcRigor uses metacell-size-specific mcDiv thresholds instead of a
single 95% quantile value to determine the trustworthiness of a
metacell. Specifically, the threshold is metacell-specific and defined as
a function of the metacell size:

θðmkÞ=q0:95 mcDivnull
k0 : mk0 2 ½mk � h,mk +h�, k0 = 1, . . . ,M

n o� �
,

ð5Þ

whereq0.95( ⋅ ) computes the95%quantile andh stands for themetacell
size bandwidth (default h = 10). That is, mcRigor computes the
threshold for the kth metacell as the 95% quantile of the null diver-
gence scores from metacells whose sizes fall within the bandwidth
of mk.

Step 4 (dubious metacell detection): upon completion of the
previous three steps, mcRigor categorizes all M metacells as either
dubious or trustworthy. Specifically, for the kth metacell, if
mcDivk >θðmkÞ, it is classified as dubious, otherwise, it is considered
trustworthy.

Note 1: if we use the within-feature permutation instead of
the double permutation to find dubiousmetacell detection thresholds,
i.e., the kth metacell is considered dubious if k Rk � IkF >
q0:95ðfk eRk0 � IkF : mk0 2 ½mk � h,mk +h�, k0 = 1, . . . ,MgÞ, this approach
sets the threshold too low, leading to the false flagging of trustworthy
metacells as dubious. This issue arises because the magnitude of
∥Rk − I∥F may simply reflect variations in cell library sizes within the kth
metacell. However, such variations are not preserved in the within-
feature permutation, resulting in a smaller magnitude of k eRk � IkF
compared to ∥Rk − I∥F. In a simulation study,wedemonstrate thatmore
than 35% of ground-truth trustworthy metacells—comprising single
cells of the same cell state (according to our statistical definition)—are
incorrectly classified as dubious, leading to poor overall classification
performance (F-score <0.4) in distinguishing between trustworthy and
dubious metacells (Supplementary Fig. 22). This is in sharp contrast to
the performance of mcRigor based on the double permutation: of all
the ground-truth trustworthy metacells, mcRigor accurately identifies
over 98% as trustworthy, with less than 2% incorrectly classified as
dubious (Supplementary Fig. 22). Additionally, mcRigor’s F-score for
distinguishing between dubious and trustworthy metacells con-
sistently exceeds 0.9, highlighting its high detection accuracy.

Note 2: it is important to note that there is extensive literature on
high-dimensional covariance testing69–71, which might appear relevant
for detecting dubious metacells by testing whether the feature cov-
ariance matrix within a metacell significantly deviates from a diagonal
matrix. However, those tests are not applicable for two main reasons.
First, the metacell size is too small (commonly below 100) for the test
statistics to approximately follow their asymptotic null distributions.

Second, the null hypotheses in these tests do not account for cell
library sizes.

Optimization ofmetacell partitioning:method and hyperparameter
choices. Employing the dubious metacell detection procedure out-
lined in the previous subsection, mcRigor further assists users in
optimizing metacell partitioning by simultaneously identifying the
best-performing metacell method and the optimal hyperparameter(s)
for a particular single-cell dataset. In this work, we primarily focus on
optimizing the granularity level hyperparameter, γ, which means the
average number of single cells per metacell and is universally required
by all existing metacell partitioning methods (some methods use the
hyperparameter “target metacell number” instead, which is equal to
⌊n/γ⌋, with n as the number of single cells). While other hyperpara-
meters—such as the number of neighbors (k) in kNN graph construc-
tion and the number of principal components used—can also be
optimized by mcRigor, we omit their discussion here. We choose to
optimize γ, as these other parameters have been reported to have a
smaller impact on metacell partitioning and are not universally
required by metacell methods34.

As discussed in the “Results” section, the optimization ofmetacell
partitioning is, at its core, about balancing between data sparsity and
signal distortion, the latter being addressed by mcRigor’s first func-
tionality: the detection of dubious metacells. Intuitively, a smaller γ
value results in fewer dubious metacells and less signal distortion, as
aggregating a smaller number of cells lowers the chance of merging
cells of different states. However, the minimal value of γ = 1, which
retains single cells without aggregating them into metacells and
therefore avoids signal distortion, is not always desirable, as it leaves
the sparsity issue unresolved. Hence, an ideal metacell partitioning
should aggregate as many cells as possible, while ensuring that only
homogeneous cells are combined. To strike this balance, mcRigor
assesses the level of sparsity and signal distortion for each metacell
partition, enabling a quantitative tradeoff.

Specifically, for a given metacell method and hyperparameter,
mcRigor evaluates two competing factors that respectively reflect
signal distortion and data sparsity (Fig. 2a). First, mcRigor reports the
proportion of single cells that constitute dubious metacells, denoted
as the dubious rate: DubRate∈ [0, 1]. Second, to account for the
remaining sparsity level, mcRigor considers another metric, Zero-
Rate∈ [0, 1], which is the proportion of zeros in the M × p metacell
expression matrix after single cells are aggregated into M metacells.
Combining DubRate and ZeroRate, mcRigor defines an evaluation
score for a metacell partition:

Score= 1�w � DubRate� ð1�wÞ � ZeroRate 2 ½0, 1� , ð6Þ

where w∈ (0, 1) is the weight assigned to DubRate. Our recommen-
dation is the default w =0.5, a robust choice in our simulations, but
users can adjust w based on their desired emphasis on the two com-
peting factors. Based on this definition (6), a higher evaluation score
indicates a better metacell partition.

The evaluation score allows for universal comparison of metacell
partitions across varying hyperparameter values of different metacell
methods. For a particular dataset, mcRigor identifies the method-
hyperparameter configuration that maximizes the evaluation score
from a candidate set of metacell methods and hyperparameter values.
By default, four metacell methods are considered: SEACells, MetaCell,
MetaCell2, and SuperCell, with γ ranging from 2 to 100.

Justification for the statistical definition of metacells
A typical way of defining the metacell-by-feature expression matrix,
Z= ½zkj � 2 RM ×p, is averaging the assigned single cell profiles, namely,
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defining

zkj =
1
mk

X
i2mck

ψðyij=yi + Þ ð7Þ

where mck denotes the index set of single cells assigned to the kth
metacell (∣mck∣ =mk), and ψ( ⋅ ) is a function specified for a particular
normalization method. For ease of understanding, we consider the
simple case where ψ(x) = x.

If the kthmetacell satisfies our statistical definition, the single cells
assigned to the kth metacell share the same relative expression levels
λk = ðλk1, . . . , λkpÞ>. For cell i in the kth metacell, we have discussed in
(2) that conditional on cell library size yi+ and relative expression level
λk, the observed feature counts follow a multinomial distribution:

H0 : ðyi1, . . . , yipÞ∣λk , yi + �ind Mult ðyi+ , λk1, . . . , λkpÞ :

By the property of the multinomial distribution, we have

E zkj jλk ,yk +

h i
=

1
mk

X
i2mck

E yijjλk ,yk +

h i
yi+

= λkj ,

Var zkjjλk ,yk +

h i
=

1
m2

k

X
i2mck

Var
yij
yi +

����λk , yk +

� �
<

1
mk

�max
i2mck

Var
yij
yi+

����λk ,yk +

� �
< max

i2mck
Var

yij
yi+

����λk , yk +

� �
,

ð8Þ

where yk + = ðyi + Þi2mck
. This indicates that the obtainedmetacell profile

provides an unbiased estimate of the true expression level with
reduced variance.

Moreover, the sample covariance within the kthmetacell between
any pair of features j and ℓ is given by

bΣk, j‘ =
1

mk � 1

X
i2mck

yij
yi+

yi‘
yi +

� 1
mkðmk � 1Þ

X
i2mck

yij
yi+

X
i2mck

yi‘
yi +

, ð9Þ

whose expectation is the conditional covariance between features j
and ℓ given λk and yk+:

Σk, j‘jλk ,yk +
= E bΣk, j‘

���λk ,yk +

h i
=

1
mk � 1

X
i2mck

E
yij
yi +

yi‘
yi+

����λk ,yk +

� �
� 1
mkðmk � 1ÞE

X
i2mck

yij
yi +

X
i2mck

yi‘
yi +

������λk ,yk +

24 35
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1
mk � 1

X
i2mck

E
yij
yi +

����λk ,yk +

� �
E

yi‘
yi+

����λk ,yk +

� �
+

1
mk � 1

X
i2mck

Cov
yij
yi +

,
yi‘
yi +

����λk ,yk +

� �

� 1
mkðmk � 1Þ

X
i2mck

E
yij
yi+

����λk ,yk +

� � X
i2mck

E
yi‘
yi+

����λk ,yk +

� �
� 1

mkðmk � 1Þ
X
i2mck
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yij
yi +

,
yi‘
yi+

����λk ,yk +

� �
=

1
mk � 1

mkλkjλk‘ �
1

mk � 1

X
i2mck

λkjλk‘
yi+

� 1
mkðmk � 1Þmkλkjmkλk‘

+
1

mkðmk � 1Þ
X
i2mck

λkjλk‘
yi+

= � λkjλk‘
mk

X
i2mck

1
yi+

:

ð10Þ

Similarly, the sample variance of feature j within the kth metacell is
given by

bΣk, jj =
1

mk � 1

X
i2mck

yij
yi +

� �2

� 1
mkðmk � 1Þ

X
i2mck

yij
yi +

0@ 1A2

, ð11Þ

whose expectation is the conditional variance of feature j given λk and
yk+.

Σk, jjjλk , yk +
= E bΣk, jj

���λk , yk +
h i

=
λkjð1� λkjÞ

mk

X
i2mck

1
yi+

: ð12Þ

Thus, correspondingly, the conditional correlation within the kth
metacell between features j and ℓ is

Rk, j‘jλk ,yk +
=

Σk, j‘jλk , yk +ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Σk, jjjλk ,yk +

Σk, ‘‘jλk , yk +

q = �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λkj

1� λkj

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λk‘

1� λk‘

s
, ð13Þ

whose absolute value is under maxj = 1, ...,p
λkj

1�λkj
, a negligible value when

p is sufficiently large.

Justification for why dubious metacells bias co-expression analy-
sis. If some metacells appear as a mixed collection of single cells in
different biological states, the aggregated expressions of those meta-
cells are most likely biased, and inflated feature correlations may be
observed within the metacells. Whatmakes things worse is that such a
distortion could be carried to the inference of feature co-expression
using metacells. Let us consider a simple case for cell-type-specific co-
expression analysis where the single cells are of one cell type but
belong to N distinct cell states of balanced sizes. Let csk denote the
single cell index set of the kth cell state, and λ*

k = ðλ*k1, . . . , λ*kpÞ
>
denote

the corresponding cell-state feature expression levels.
Suppose we want to estimate the covariance between features j

and ℓ, Ωjℓ, from the metacell-by-feature expression matrix Z. If meta-
cells are correctly identified, i.e.,M =N and mck = csk for k = 1, …, M,

Ωj‘ =
1

M � 1

XM
k = 1

λ*kjλ
*
k‘ �

1
MðM � 1Þ

XM
k = 1

λ*kj
XM
k = 1

λ*k‘ , ð14Þ

and the estimate is

bΩj‘ =
1

M � 1

XM
k = 1

zkjzk‘ �
1

MðM � 1Þ
XM
k = 1

zkj
XM
k = 1

zk‘ : ð15Þ

This estimate is asymptotically unbiased since

E bΩj‘

h i
= E E bΩj‘

���λ*
1, . . . ,λ

*
M ,y1 + , . . . ,yM +

h ih i
= E

1
M � 1

XM
k = 1

E zkj
���λ*

k ,yk +

h i
E zk‘

��λ*
k ,yk +

h i
+
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XM
k = 1

Cov zkj , zk‘jλ*
k ,yk +

� �" #

� E
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E zkj
���λ*

k ,yk +

h iXM
k = 1

E zk‘
��λ*

k ,yk +
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1
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XM
k = 1

Cov zkj , zk‘jλ*
k ,yk +

� �#
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���λ*

k ,yk +
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��λ*

k ,yk +
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���λ*

k ,yk +
h iXM
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��λ*

k ,yk +

h i#
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1
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� �
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1
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k = 1

λ*kjλ
*
k‘ �

1
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XM
k = 1

λ*kj
XM
k = 1

λ*k‘

" #
+ o

1
Mp2

� �
=Ωj‘ + o

1
Mp2

� �
,

ð16Þ

where yk + = ðyi + Þi2mck
and the third equality (*) holds under the

assumptions maxj = 1, ...,pλkj =Oð1=pÞ, indicating that no single feature
dominates, andM = oðmk �mini2mck

yi+ Þ, indicating that the number of

metacells is of a lower order compared to the total number of feature
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counts within a metacell. We consider these two assumptions rea-
sonable based on empirical observations. Then we have

E
1

M � 1

XM
k = 1

Cov zkj , zk‘
���λ*

k ,yk +

� �
� 1

MðM � 1Þ
XM
k = 1

Cov zkj , zk‘
���λ*

k ,yk +
� �" #�����

�����
= E

1
M

XM
k = 1

Cov zkj, zk‘
���λ*

k ,yk +
� �" #�����

����� = E
1
M

XM
k = 1

1
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k

X
i2mck
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yij
yi +

,
yi‘
yi+

����λ*
k ,yk +

� �24 35������
������

= E � 1
M
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k = 1

1
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k

X
i2mck

λkjλk‘
yi+

24 35������
������≤ E 1
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1
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�
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j = 1, ...,p
λ2kj
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i2mck

yi+

264
375 = o

1
Mp2

� �
:

ð17Þ

However, this asymptotic unbiasedness may not hold if single cells of
different states are grouped into a metacell, creating a dubious meta-
cell. For example, let us consider a scenariowhere thefirst twometacells
are both equal mixtures of two distinct cell states. Let A1 represent the
index set of single cells belonging to the first cell state and assigned to
thefirstmetacell, andB1 represent the index set of single cells belonging
to the second cell state and assigned to the first metacell. Namely, we
assume mc1 =A1∪B1 and mc2 = cs1 ∪ cs2⧹mc1, where A1⊂ cs1, B1⊂ cs2,
and ∣A1∣ = ∣B1∣ =m1/2, ∣cs1∣ = ∣cs2∣ = (m1 +m2)/2. Then we have

z1j =
1
m1

X
i2A1

yij
yi+

+
1
m1

X
i2B1

yij
yi+

,

z2j =
1
m2

X
i2cs1nA1

yij
yi +

+
1
m2

X
i2cs2nB1

yij
yi+

,
ð18Þ

whose conditional expectations are E z1j
���λ*

1,λ
*
2, y1 +

h i
=

E z2j
���λ*

1,λ
*
2, y2 +

h i
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*
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� �
=2, and a similar derivation as in ref. 16
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ð19Þ

This indicates that the covariance estimate is biased, and the bias
1

2ðM�1Þ E λ*1jλ
*
2‘ + λ

*
2jλ

*
1‘ � λ*1jλ

*
1‘ � λ*2jλ

*
2‘

h i
is non-negligible if the number

of dubiousmetacells is in the same order ofM (so the bias does not go
down to zero as M becomes large). An extreme example is that the
covariance estimate would have expectation 0 when all single cells
from various cell states are indiscriminately merged into equal-sized
metacells, regardless of the true covariance value.

Semi-synthetic data generation for simulation
We generated a semi-synthetic dataset with true granularity level
γ* = 50 in a reference-based manner, making use of the
scDesign3 simulator38. The reference data is a scRNA-seq dataset from
n = 13,408 bone marrow mononuclear cells of one donor processed
using CITE-seq, which can be accessed from the dataset bmcite in the
RpackageSeuratData, and the topp = 2000highly variable genes are
considered as features. We use the variable xi∈ {1, 2, 3, 4, 5} to denote
the cell type of cell i, which is one-dimensional and consists of five
categories, including B cells, T cells, progenitor cells, NK cells, and
monocytes or dendritic cells (Mono/DC).

Model fitting. Specifically, we followed scDesign338 to model the dis-
tribution of yij, the count of feature j in cell i, as a Negative Binomial

(NB) distribution with the mean parameter, μij, and the dispersion
(size) parameter, σij, conditional on the cell type variable xi. For each
feature j,

yijjxi �
ind

NB ðμij , σijÞ
logðμijÞ=αj0 + f jðxiÞ+ logðyi + Þ
logðσijÞ=βj0 + gjðxiÞ

8>><>>: : ð20Þ

Since the NB distribution models both the biological and technical
variations, we decompose it into the expression model and the mea-
surement model for feature j:

yijjxi �
ind

NB ðμij , σijÞ ()
θijjxi �ind Gamma ðσij , 1=σijÞ
yijjθij , xi �ind Poisson ðμijθijÞ

8<: ,

ð21Þ

where θij denotes the biological variation around the true expression
level μij given xij. Note that μijθij = ciλij in (1).

The distribution of yij∣xi in (20) is fitted by the function gamlss()
in the R package gamlss (version 5.4-22), which provides the esti-
mated parameters ûij and σ̂ij , which are needed for the measurement
model and expression model, respectively. For convenience of nota-
tion in the following description, we denote the CDF of feature j’s
expressionmodel Gamma(σij, 1/σij) as Fj( ⋅ ∣xi) and, accordingly, the CDF
of the fitted distribution Gamma ðσ̂ij , 1=σ̂ijÞ as F̂ jð�jxiÞ.

With a slight modification to scDesign3, we fitted a joint expres-
sion model of the p features conditional on the cell type variable,
denoted by the CDF Fð�jxiÞ : Rp ! ½0, 1�, using a Gaussian copula:

FðθijxiÞ=Φp Φ�1 F1ðθi1jxiÞ

 �

, � � � ,Φ�1 FpðθipjxiÞ
� �

;RðxiÞ
� �

,

where θi = ðθi1, . . . ,θipÞ>, Φ�1 denotes the inverse of the CDF of the
standard Gaussian distribution, and Φpð�;RðxiÞÞ : Rp ! ½0, 1� denotes
the CDF of a p-dimensional Gaussian distribution with a zero
mean vector and a covariance matrix equal to the correlation
matrixR(xi). To estimate the copula, we adopted the plug-in approach,
where R̂ðxiÞ is calculated as the sample correlation matrix
of fðΦ�1ðF̂1ðyi01=μ̂i01jxi0 ÞÞ, . . . ,Φ�1ðF̂pðyi0p=μ̂i0pjxi0 ÞÞÞ

>
: xi0 = xig, which

includes all cells of the same type as cell i. The estimated joint CDF is
thus

F̂ðθijxiÞ=Φp Φ�1 F̂1 θi1jxi

 �� �

, � � � ,Φ�1 F̂p θipjxi

� �� �
; R̂ðxiÞ

� �
: ð22Þ

Sampling from the fitted model. Next, we generated the semi-
synthetic data by sampling from the fitted expression and measure-
mentmodels.We started by generatingM = ⌊n/γ*⌋ synthetic metacells,
each representing a different cell state, by sampling without replace-
ment from the n real cells.We kept theM sampled real cells’ parameter
estimates for the Poissonmeanparameter (of themeasurementmodel
for feature j = 1,…, p) in (21) as f~μkjgMk = 1 � fμ̂ijgni= 1 and their cell types as
f~xkgMk = 1 � fxigni= 1 for theM syntheticmetacells,where ~xk 2 f1, 2, 3, 4, 5g.
Then we independently sampled the biological variation of the kth
synthetic metacell, ~θk , from the joint expression model
F̂ð�j~xkÞ, k = 1, . . . ,M (22). In detail, to sample the kth syntheticmetacell,
given its cell-type covariate ~xk , we independently sampled a p-
dimensional vector from the estimated p-dimensional Gaussian dis-
tribution:

ðvk1, . . . , vkpÞ> �indΦp �; R̂ð~xkÞ
� �

, k = 1, . . . ,M :

Then, based on the fitted expression model F̂ jð�j~xkÞ of feature
j = 1, …, p, we calculated the expression level of feature j in the kth
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synthetic metacell:

~θkj = F̂
�1
j ΦðvkjÞ

���~xk

� �
, j = 1, . . . ,p :

The sizes of synthetic metacells, denoted bym1,…,mM, are randomly
generated integers from the range 20–80with the restriction that their
mean equals to γ* = 50. We then independently sampled synthetic
single-cell feature counts from the fitted measurement model:

yi0 j � Poisson �;ωi0 j~μkj
~θkj

� �
, i0 2 mck ,

where ωi0 j is the amplification factor for the synthetic cell i0 within the
kth synthetic metacell, allowing for varying cell library sizes within the
metacell, and mck denotes the index set of single cells assigned to the
kth metacell (∣mck∣ =mk). To ensure that the cell library sizes in the
semi-synthetic dataset closely resemble those in the reference dataset,
we independently sampled ωi0 j from the empirical distribution
fμ̂ij=~μkj : xi = ~xk ; i= 1, . . . ,ng for the kth metacell, where μ̂ij is the
parameter estimate for the ith real cell, of the same type as the
metacell, in the reference dataset, and ~μkj is the parameter of the kth
metacell.

As a result of the above steps, the generated semi-synthetic
dataset highlymimics the reference dataset (Supplementary Fig. 1b, c).

Sensitivity analysis of the number of features used
mcRigor requires as input a metacell partition to evaluate and the
single cell sequencing data represented as an n × p cell-by-feature data
matrix, where p is the number of highly variable features selected
(following Seurat V5 default feature selection) and can be viewed as a
hyperparameter of mcRigor. Intuitively, a larger p results in a sparser
data matrix, making the computation of metacell feature correlation
matrices in Steps 1 and 2 of mcRigor more challenging. Conversely, a
smaller p retains less information, potentially omitting important
features and leading to unreliable results. The default setting in
mcRigor is p = 2000, consistent with Seurat’s default feature selec-
tion. In this section, we conduct a sensitivity analysis on p and
demonstrate that this default value is reasonable.

Sensitivity analysis for scRNA-seqdata.Wefirst investigated how the
choice of p affects mcRigor’s performance on scRNA-seq data. Speci-
fically, we applied mcRigor using p = 100, 200, 300, 500,
1000, 1500, 2000, 2500, 3000, 3500, 4000, 4500, and 5000 highly
variable genes, selected by the R package Seurat (v5.1.0), to the bone
marrowmononuclear cell CITE-seq dataset (bmcitedataset39 from the
R package SeuratData). We used the metacell partition generated by
SEACells, which by default selects 2000 features via the Python
package Scanpy. For each value of p, we evaluated the number of
dubious metacells detected by mcRigor, the number of single cells
composing these dubious metacells, and the Score computed by
mcRigor for γ = 2, 3,…, 100 (Supplementary Fig. 23a). As expected, the
number of dubious metacells and their constituent single cells
increased with γ across all values of p. Notably, for p ≥ 1000, these
quantities exhibit stable patterns across γ, whereas smaller values of p
yield more erratic behavior (Supplementary Fig. 23a, top left and
middle). Similarly, the Score values for larger values of p (p ≥ 1000)
were consistent, with their maxima occurring at the same γ (Supple-
mentary Fig. 23a, top right). These results suggest that mcRigor pro-
duces stable outputs when used with sufficiently large values of p
(p ≥ 1000). Furthermore, we computed the Jaccard indices between
the sets of dubious metacells identified at different values of p and
observed strong agreement for p ≥ 1500 (Supplementary Fig. 23a,
bottom left), indicating that the default setting of p = 2000 yields

results comparable to those obtained with larger p. These findings
support the choice of p = 2000 as a reasonable default.

To further assess the sensitivity of mcRigor and our double per-
mutation approach to the choice of p, we examined the distributions
of mcDiv and mcDivnull at each p for the SEACells metacell partition
with γ = 50. We observed that as p increases, the mcDiv distribution
becomes more concentrated, and mcDivnull follows a similar trend
(Supplementary Fig. 23a, bottom middle and right). This parallel
behavior indicates that the influence of p on mcDiv is effectively cap-
tured by the corresponding mcDivnull distribution, supporting the
validity of our double permutation approach as a reliable method for
constructing the null distribution of mcDiv.

We performed similar analyses on the bmcite dataset using
metacell partitions generatedby SuperCell andMetaCell, andobtained
consistent results (Supplementary Fig. 24). Based on thesefindings, we
conclude that mcRigor is robust to the number of selected features p,
provided that p is not too small (p ≥ 1500), and that our default choice
of p = 2000 is appropriate.

Sensitivity analysis for scATAC-seq data. scATAC-seq data typically
exhibits higher dimensionality and greater sparsity than scRNA-seq
data, due to its binary nature and lower detection efficiency for reg-
ulatory elements. As a result, the number of selected features, p, is
expected to have a more pronounced impact on the performance of
mcRigor for scATAC-seq data than for scRNA-seq data. In this sub-
section, we assessed the impact.

Following the analysis described in the previous subsection, we
appliedmcRigor with p = 100, 200, 300, 500, 1000, 1500, 2000, 2500,
3000, 3500, 4000, 4500, and 5000 to the scATAC-seq modality of a
single-cell multiome dataset comprising 6881 HSPCs33. Using the
metacell partition generated by SEACells—the same partition used in
the “Results” section “mcRigor empowers and rectifies gene regulatory
inference on single-cell multiome data”—we evaluated, for each value
of p, the same three mcRigor-derived metrics: the number of dubious
metacells, the number of single cells comprising these dubious
metacells, and the Score, across an extended range of γ values
(γ = 2, 3, …, 200). Similar to the results for scRNA-seq data, these
metrics remained stable forp ≥ 1000 (Supplementary Fig. 23b, top). To
assess the adequacy of the default p = 2000, we computed the Jaccard
indices between sets of dubiousmetacells identified at different values
of p and observed strong concordance among results for large p
(p ≥ 1000) (Supplementary Fig. 23b, bottom left). These findings con-
firm that mcRigor’s performance is robust as long as p is sufficiently
large (p ≥ 1000), and they support the use of p = 2000 as a reasonable
default.

As in the previous subsection, the validity of the double permu-
tation approach is further supported by the observation that the
mcDivnull distribution exhibits the same trend as themcDivdistribution
as p increases (Supplementary Fig. 23b, bottom middle and right),
indicating that the effect of p on divergence score computation is
effectively accounted for by the null distribution.

Execution time of mcRigor
We report the execution time of mcRigor on an Intel Xeon E5-2660
v3 system with 2.6 GHz CPU and 90.64GB RAM (Table 1). mcRigor’s
computational cost for detecting dubious metacells is low, con-
sistently under 2min for all datasets. While optimizing metacell con-
figuration takes longer—typically under 2 h for a large dataset of
around 10,000 cells—the computation cost remains manageable and
can be significantly reduced by employing parallel computing across
different γ values. Additionally, the cost can be further lowered by
using a smaller candidate pool of γ values, such as γ = 5, 10, …, 100
instead of γ = 2, 3, …, 100. This is a reasonable approach in practice
since close γ values often yield similar partitionings34.
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Implementation of metacell partitioning methods
In our analysis, we implemented four different metacell partitioning
methods—SEACells33, MetaCell17, MetaCell231, and SuperCell32—all of
whichmcRigor is compatible with. The SEACellsmethodwas executed
using the Python package SEACells (version 0.3.3), following the
detailed vignette available at https://github.com/dpeerlab/SEACells/
blob/main/notebooks/SEACell_computation.ipynb. MetaCell was
implemented with the R package metacell (version 0.3.7) following
the vignette at https://tanaylab.github.io/metacell/articles/a-basic_
pbmc8k.html, and MetaCell2 was implemented using the Python
package metacells (version 0.9.5). The SuperCell method was car-
ried out with the R package SuperCell (version 1.0).

Note that originally, only the SEACellsmethod could be applied to
identify metacell partitions for the scATAC-seq modality. To adapt the
SuperCell method for scATAC-seq, we modified it by replacing its
original normalization and dimensionality reduction steps with term
frequency-inverse document frequency (TF-IDF) and singular value
decomposition (SVD), respectively. However, since these two steps are
built within the MetaCell and MetaCell2 methods, we were not able to
modify them to accommodate scATAC-seq. Consequently, we used
only SEACells and SuperCell for the scMultiome (RNA +ATAC) data
(Table 1).

Projection of metacells onto the single-cell space for
visualization
We visualized single cells with the identified metacells overlaid (Fig. 1c
and Supplementary Figs. 4, 5a, and 7–10b). Specifically, single cells
were first plotted based on their two-dimensional embeddings (UMAP
or t-SNE) using the geom_point() function from the R package
ggplot2 (v3.6.6). Eachmetacell was then positioned at the centroid of
the single cells it encompasses in the two-dimensional embedding
space and colored according to the predominant cell type within it.
The dot size for eachmetacell reflects its actual metacell size, which is
the number of single cells it includes.

Data analysis
Cell line data for cell cycle analysis. We considered five scRNA-seq
datasets, each from one cell line. Three of these datasets, from cell
lines A549, H2228, and HCC827, were generated using scRNA-seq with
the 10× Chromium protocol72. The other two datasets, from cell lines
HEK293T and Jurkat, were sequenced using the Illumina HiSeq2500
Rapid Run V2 platform3. Raw sequencing data for A549, H2228, and
HCC827 are available at the NCBI Gene Expression Omnibus (GEO)
with accession code GSE126906, while the raw data for HEK293T and
Jurkat can be accessed at http://support.10xgenomics.com/single-cell/
datasets under the titles “293T Cells” and “Jurkat Cells,” respectively.
These five datasets from cell lines A549, H2228, HCC827, HEK293T,
and Jurkat contain 1237, 744, 567, 2885, and 3258 single cells,
respectively.

Cell-cycle phase annotation. we assigned each single cell to a specific
cell-cycle phase using canonical genemarkers provided by ref. 43. This
cell-cycle phase annotation was performed with the CellCy-
cleScoring function from the Seurat R package (version 5.1.0). The
corresponding R code is: CellCycleScoring(Seurat.obj,
s.features = s.genes, g2m.features = g2m.genes), where
s.genes and g2m.genes represent the canonical gene markers for
the S and G2M phases, respectively. Each metacell was annotated with
the cell-cycle phase that contained the highest fraction of single cells
within this metacell.

COVID-19 PBMC data for gene co-expression analysis. The data
were collected by applying scRNA-seq through the Seq-Well platform73

to profile PBMCs from seven patients hospitalized for COVID-19 and 6
healthy controls46. The processed count data and correspondingTa
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metadata can be accessed from the COVID-19 Cell Atlas (https://www.
covid19cellatlas.org/index.patient.html) under the label PBMCs. Raw
sequencing data are available at NCBI GEO with accession code
GSE150728. The processed data contains 44,721 single cells, among
which 28,094 are from COVID-19 patients and 16,627 are from healthy
controls. We used a subset of this process data, all the cells annotated
as B cells, for metacell partitioning and gene co-expression analysis.
Note that both metacell partitioning and gene co-expression calcula-
tion were performed on the COVID-19 group (3028 cells) and the
healthy group (1994 cells) separately.

Gene module co-expression enrichment testing: for each gene
module with g genes, we viewed the g × g gene correlation values as
observations. Between the two conditions (COVID-19 vs healthy), we
applied the Wilcoxon rank-sum test to determine if the average cor-
relation in the COVID-19 group was significantly higher than in the
healthy group. A gene module was considered enriched in co-
expression for COVID-19 if the Wilcoxon rank-sum test yielded a
small one-sided p-value. We note that while we used the p-value to
indicate enrichment (with smaller p-values representing stronger
enrichment), we acknowledge that the use of the Wilcoxon rank-sum
test in this context is ad hoc, as the correlation values are not inde-
pendent nor identically distributed.

Single-cell multiome data for gene regulatory inference. This
single-cell multiome (scMultiome) dataset, generated by ref. 33, is
archived at NCBI GEO with accession code GSE200046. Data were
collected by performing single-cell multiome ATAC + gene expression
on cryopreserved bone marrow stem/progenitor CD34+ cells from a
healthy donor, utilizing the 10X Genomics Chromium system and the
Chromium Next GEM Single Cell Multiome Reagent Kit. The pre-
processed dataset consists of 6881 HSPCs from healthy bone marrow,
sorted for the pan-HSPC marker CD34.

Peak-gene associations: gene-peak pairs were identified using
the LinkPeaks function from the Signac R package (version 1.13.0).
For each gene, this function computes a correlation score and p-value
between gene expression and the accessibility of each peak within a
specified distance (set at 100,000 base pairs) from the gene’s tran-
scription start site (TSS).

Paired scRNA-seq and smRNA FISH cell line data for distinguishing
between biological and non-biological zeros. Data were generated
by ref. 53 using scRNA-seq via the Drop-seq platform on 8498 cells
from a melanoma cell line. Paired smRNA FISH data were obtained
from the same cell line, measuring 26 drug resistance markers and
housekeeping genes across 7000–88,000 cells. These paired datasets
are available at NCBI GEO with accession code GSE99330. Sixteen
genes overlap between the two datasets, including seven drug-
resistance markers (C1S, FGFR1, FOSL1, JUN, RUNX2, TXNRD1, and
VCL) and nine housekeeping genes (BABAM1, GAPDH, LMNA, CCNA2,
KDM5A, KDM5B, MITF, SOX10, and VGF). Since our focus is on the
number of zero counts, no normalization was performed to account
for the technical differences between the platforms.

Zero proportion calculation: for the 16 overlapping genes as a
whole, the zero proportion was calculated as the proportion of zeros
within the observation-by-genematrix (spatial spot-by-genematrix for
the smRNA FISH data or metacell-by-genematrix for the metacell data
derived from scRNA-seq data). For each individual gene, the zero
proportion was calculated as the proportion of zeros within the vector
of that gene’s counts across all observations (spatial spots for the
smRNA FISH data or metacells for the metacell data derived from
scRNA-seq data).

Paired scRNA-seq and bulk data of human progenitor cells for DGE
analysis. This dataset was obtained by performing scRNA-seq on
snapshots of lineage-specific progenitor cells differentiated from H1

human embryonic stem cells (H1 hESC)55. The original dataset,
archived at NCBI GEO with accession code GSE75748, contains
1018 single cells and 19 bulk RNA-seq samples from snapshot pro-
genitors. We used a subset of this dataset comprising 350 scRNA-seq
cells—212 fromH1 hESC and 138 fromDEC—and six corresponding bulk
RNA-seq samples (four from H1 hESC and two from DEC). Due to the
small total cell number, we considered smaller granularity levels
(γ = 2, …, 50) for metacell partitioning optimization.

Identification of DE genes: the FindMarkers function from the
Seurat R package (version 5.1.0) was used to identify DE genes
between the two cell types—H1 hESC and DEC. For fair comparison, we
employed the DESeq2 method to identify DE genes in both the bulk
and scRNA-seq data. The R code used is: FindMarkers(Seurat.obj,
ident.1= 'H1 hESC', ident.2= 'DEC', test.use = 'DESeq2',
min.cells.group = 2).

Zman-seqdata for temporal trajectory analysis. This data, generated
by ref. 30, profiles immune cells in mouse glioblastoma using the
Zman-seq technology, which tracks transcriptomic dynamics over
time by introducing fluorescent time stamps into immune cells. Pro-
cessed data andmetadata, including time stamps, are available atNCBI
GEO with accession code GSE232040. We used a subset of the pro-
cessed data consisting of 2431 intratumoral T and NK cells.

Metacell annotation: we annotated each metacell by first exam-
ining the highest fraction of single cells within this metacell that ori-
ginated from the same cell type. If this fraction is above 80%, the
metacell is annotated with the corresponding major cell type. Other-
wise,manual annotationwas performedusingmarker genes suggested
by ref. 30, including S1pr5+ for NK Chemotactic; Prf1+, Gzma+, and
Gzmb+ for NK Cytotoxic; Itga1+, Xcl1+, Eomes−, and Pmepa1+ for NK
Dysfunctional.

Identification of time-dependent genes: following the pipeline
from ref. 30, we identified time-dependent genes and generated
heatmaps for smoothed gene expression over time. The R functions
for this analysis, along with step-by-step guidance, are available at
https://github.com/kenxie7/ZmanR. Specifically, after the cTET value
is obtained for each metacell, we identified top genes significantly
correlated with cTET using Spearman’s rank correlation. Over the
obtained p-values (from the Spearman’s rank correlation test), we then
applied Benjamini–Hochberg (BH) correction to adjust for multiple
testing and identify significant time-dependent genes (FDR =0.05).
Gene expression was smoothed across cTET using loess fitting and
normalized to range from 0 to 1 across all metacells. With these
smoothed expressions, the Heatmap function from the R package
ComplexHeatmap (version 2.18.0) was used to visualize and cluster
genes with similar temporal patterns.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The datasets used in this paper are all publicly available. The COVID-19
PBMC dataset is available at the NCBI GEO under accession code
GSE150728. The scMultiomedataset is available at theNCBIGEOunder
accession code GSE200046. The Dropseq + smRNA FISH dataset is
available at the NCBI GEO under accession code GSE99330. The
scRNA-seq + bulk ESC dataset is available at the NCBI GEO under
accession code GSE75748. The Zman-seq dataset is available at the
NCBI GEO under accession code GSE232040. For the cell line datasets,
raw data for A549, H2228, and HCC827 are available at the NCBI GEO
under accession code GSE126906, and the raw data for HEK293T and
Jurkat can be accessed at the 10x Genomics website [http://support.
10xgenomics.com/single-cell/datasets] under the titles “293T Cells”
and “Jurkat Cells,” respectively. Source Data files sufficient to generate
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the figures and Supplementary Figs. are provided with this paper
through Zenodo [https://doi.org/10.5281/zenodo.16309527].

Code availability
The mcRigor R package is available at the GitHub repository [https://
github.com/JSB-UCLA/mcRigor] (Zenodo [https://doi.org/10.5281/
zenodo.16436345])74. Implementations of SEACells, MetaCell, Meta-
Cell2, and Supercell, as well as the generated semi-synthetic dataset,
are also included in the GitHub repository. The source code for
reproducing the results are available at https://github.com/chrystal23/
mcRigor_reproduce.
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