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Abstract 

Background:  Spatially resolved transcriptomics offers unprecedented insight by ena-
bling the profiling of gene expression within the intact spatial context of cells, effec-
tively adding a new and essential dimension to data interpretation. To efficiently detect 
spatial structure of interest, an essential step in analyzing such data involves identifying 
spatially variable genes (SVGs). Despite researchers having developed several com-
putational methods to accomplish this task, the lack of a comprehensive benchmark 
evaluating their performance remains a considerable gap in the field.

Results:  Here, we systematically evaluate 14 methods using 96 spatial datasets and 6 
metrics. We compare the methods regarding gene ranking and classification based 
on real spatial variation, statistical calibration, and computation scalability and investi-
gate the impact of identified SVGs on downstream applications such as spatial domain 
detection. Finally, we explore the applicability of the methods to spatial ATAC-seq data 
to examine their effectiveness in identifying spatially variable peaks (SVPs). Overall, 
SPARK-X outperforms other benchmarked methods and Moran’s I achieves a competi-
tive performance, representing a strong baseline for future method development. 
Moreover, our results reveal that most methods are poorly calibrated, and more special-
ized algorithms are needed to identify spatially variable peaks.

Conclusions:  Our benchmarking provides a detailed comparison of SVG detection 
methods and serves as a reference for both users and method developers.

Keywords:  Benchmarking, Spatially variable genes, Simulation, Spatial omics, Visium, 
MERFISH

Background
Recent years have witnessed significant progress in spatially resolved transcriptome 
profiling techniques that simultaneously characterize cellular gene expression and their 
physical position, generating spatial transcriptomic (ST) data. The application of these 
techniques has dramatically advanced our understanding of disease and developmental 
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biology, for example, tumor-microenvironment interactions [1], tissue remodeling fol-
lowing myocardial infarction [2], and mouse organogenesis [3], among others.

Spatial transcriptome profiling methods are broadly categorized into two groups, i.e., 
sequencing-based (including 10 × Visium [4]; Slide-seq [5, 6]; HDST [7]; STARmap [8]) 
and imaging-based (including seqFISH [9] and MERFISH [10]) (Fig.  1a). They vary in 
terms of the number of genes and spatial resolution. Specifically, sequencing-based 
assays usually provide genome-wide gene expression measurements through spots pro-
filing multiple cells, thus precluding the possibility of delineating expression at the sin-
gle-cell level. At the same time, the imaging-based methods can generate sub-cellular 
resolution data but can only detect a subset of genes (30–300). Due to these differences 

Fig. 1  Overview of spatially variable gene identification, data simulation, evaluation metrics, and statistics 
of datasets. a Left: schematic showing different protocols for profiling spatially resolved transcriptomics. 
Middle: visualization of gene expression with various expression patterns in spatial space using real-world 
and simulated data. Right: computational methods to rank genes based on measured spatial variability. 
b Workflow of using scDesign3 and real-world data to generate realistic spatial transcriptomics data with 
controlled spatial variability. cVisualization of real-world and simulated data using 10 × Visium or Slide-seq 
V2 as reference. The first column shows real expression, and the other columns show simulated expression 
ordered by spatial variability. d Summarization of the 50 real-world datasets used to simulate data. Bar plots 
show the number of spots, the number of genes, and the sparsity for each dataset. e Methods are evaluated 
by different metrics, including ranking accuracy, classification accuracy, statistical calibration, clustering 
accuracy, computational scalability, effectiveness for spatial ATAC-seq, and overall performance. f Benchmarks 
of SVG detection methods at the Open Problems in Single-Cell Analysis platform
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in the number of genes and spatial resolution, distinct computational methods and 
algorithms are required for the downstream analysis of each data type. In the case of 
sequencing-based profiles, an important task involves associating cell types with spatial 
locations through cell-type deconvolution, often leveraging paired single-cell RNA-seq 
data to compensate for the low spatial resolution [11–13]. On the other hand, for imag-
ing-based profiles, the initial step involves performing cell segmentation to accurately 
delineate the boundaries of individual cells [14].

One common task for all ST profiles, regardless of the employed protocols, is to iden-
tify genes that show significant associations between the spatial distribution of the cells 
and their expression levels [15] (Fig.  1a). These genes are defined as spatially variable 
genes (SVGs). Identifying SVGs from ST data has helped researchers better understand 
developmental gradients, cell signaling pathways, and tumor microenvironments. Addi-
tionally, SVGs have become critical to downstream tasks such as identifying and detect-
ing spatial domains within tumors and tissues [16]. To detect SVGs, researchers have 
developed various computational methods by incorporating the spatial context into the 
analysis [17–22]. As the number of methods keeps increasing, it becomes challenging for 
users to select the most effective approach for identifying SVGs from their respective ST 
profiling technique (e.g., 10 × Visium, MERFISH). Previous benchmarking studies have 
typically compared no more than seven computational methods [23–25], significantly 
fewer than the currently available approaches (n > 14) and not covering comprehensively 
all the available spatial profiling technologies. Furthermore, since obtaining ground truth 
from real-world ST profiles is not feasible, these studies have relied on simulation data to 
evaluate the accuracy of each method in detecting SVGs. However, the simulation data 
were generated either using predefined spatial clusters [26, 27] or with a limited num-
ber of expression spatial patterns, e.g., spots where the expression forms round contours 
and linear where the expression forms rectangular shapes [24]. Consequently, the simu-
lated data generated in these studies do not fully capture observed biological patterns 
nor account for the variability across tissue types and spatial technologies. Therefore, 
these approaches led to inflated performance metrics compared to those that might be 
obtained in more realistic settings. Taken together, there is a clear need for comprehen-
sive benchmarking that incorporates more methods and employs enhanced and realistic 
simulation strategies to capture biologically plausible patterns of interest. For these rea-
sons, we want to provide here a more robust and unbiased evaluation of the available 
methods for detecting SVGs in ST profiles, enabling researchers to make informed deci-
sions when selecting the most appropriate computational methods for their analyses.

In this work, we benchmarked 14 computational methods for identifying SVGs (see 
Table 1). To evaluate these methods, we simulated a number of realistic datasets with 
diverse patterns derived from real-world ST data using scDesign3 [28], a state of the art 
simulation framework for single cell assays. We compared the methods regarding gene 
ranking and classification based on real spatial variation, statistical calibration, and com-
putation scalability. We also investigated the impact of identified SVGs on downstream 
applications such as spatial domain detection. Finally, we explored the applicability of the 
methods to spatial ATAC-seq data to examine their effectiveness in identifying spatially 
variable peaks (SVPs). Our benchmarking results revealed that, on average, SPARK-X 
was the best-performing method across our six metrics. Interestingly, we observed that 



Page 4 of 26Li et al. Genome Biology          (2025) 26:285 

all methods except for SPARK and SPARK-X produced inflated p-values, indicating that 
they are statistically poorly calibrated. Regarding scalability, SOMDE performed the best 
across memory usage and running time. Additionally, we found that using SVGs gener-
ally improved spatial domain detection compared to highly variable genes. Moreover, 
all methods but SpatialDE2 performed poorly in detecting spatial variable peaks (SVPs) 
for spatial-ATAC-seq, indicating the need for more specialized methods for this task. 
The results are also available on the Open Problems, a living and extensible benchmark-
ing platform (https://​openp​roble​ms.​bio/​resul​ts/​spati​ally_​varia​ble_​genes). Overall, our 
benchmarking provides a detailed comparison of SVG detection methods and serves as 
a reference for both users and method developers.

Results
Overview of computational methods for detection of spatially variable genes

The identification of spatially variable genes (SVGs) in spatial transcriptomics data 
requires computational methods that integrate both gene expression levels and spatial 
information (cellular or subcellular level), unlike the detection of highly variable genes 
(HVGs) in traditional single-cell RNA sequencing data. A common and straightforward 
approach is to build a k-nearest-neighbor (KNN) graph where each node represents a 
spatial spot, and the edges between nodes represent the spatial proximity of spots. SVGs 
are identified by combining this spatial neighbor graph with gene expression profiles. 
For instance, Moran’s I, a classic spatial autocorrelation metric, estimates the correla-
tion coefficient of the expression between a spot and its neighbors [29, 30]. Similarly, 
Spanve quantifies the divergence in gene expression distributions between randomly and 
spatially sampled locations using Kullback–Leibler (KL) divergence [31]. A higher corre-
lation or distribution divergence indicates that the gene is more likely to have a non-ran-
dom spatial pattern. scGCO utilizes a hidden Markov random field (HMRF) to capture 

Table 1  Overview of computational methods for identification of spatially variable genes

We grouped the methods based on the underlying spatial model. KL, Kullback–Leibler; GP, Gaussian Process; FDR, false 
discovery rate; HFRM, hidden Markov random field; CSR, complete spatial randomness, FSV, fraction of spatial variance; 
BFDR, Bayesian false discovery rate; PPI, posterior probabilities of inclusion; LR, likelihood ratio.

Method Spatial model Core 
methodology

Significance 
test

Input Gene ranking Language Refs

Moran’s I Graph Correlation Permutation Norm Moran’s I Python [29][30],

Spanve Graph Sampling G-test Norm KL divergence Python [31]

scGCO Graph Graph cuts CSR model Norm FDR Python [21]

SpaGCN Graph Clustering Wilcoxon test Norm FDR Python [22]

SpaGFT Graph Fourier trans-
form

Wilcoxon test Norm GFT score Python [33]

Sepal Graph Diffusion model NA Norm Sepal score Python [34]

SpatialDE Kernel GP Chi-square Norm FSV Python [18]

SpatialDE2 Kernel GP NA Norm FSV Python [35]

SPARK Kernel GP Chi-square Counts Adj. p-value R [19]

SPARK-X Kernel Covariance test Chi-square Counts Adj. p-value R [20]

BOOST-GP Kernel GP BFDR Counts PPI R [37]

GPcounts Kernel GP Chi-square Counts LLR Python [38]

nnSVG Graph & Kernel GP LR test Norm LR statistics R [39]

SOMDE Graph & Kernel GP Chi-square Counts Adj. p-value Python [40]

https://openproblems.bio/results/spatially_variable_genes
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the spatial dependence of each gene’s expression levels and uses a graph cut algorithm 
to identify the SVGs [21]. SpaGCN first builds a graph by integrating gene expression, 
spatial location, and histology information (when available) and then clusters the spots 
using a graph convolutional network (GCN) [32]. SVGs are identified by differential 
expression (DE) analysis on the obtained clusters [22]. SpaGFT constructs a KNN graph 
of spots based on their spatial proximity and then transforms each gene’s expression to 
the frequency domain; genes with low-frequency signals tend to have less random spa-
tial patterns [33]. Sepal uses a diffusion model to assess the degree of randomness of 
each gene’s spatial expression pattern and ranks the genes accordingly [34].

Another strategy to incorporate spatial information involves utilizing a kernel func-
tion that takes spatial distance as input and computes a covariance matrix to capture the 
spatial dependency of gene expression across locations. This covariance matrix repre-
sents a prior of the underlying spatial pattern. One of the pioneer methods is SpatialDE 
[18], which models the normalized expression data using non-parametric Gaussian Pro-
cess (GP) regression and tests the significance of the spatial covariance matrix for each 
gene by comparing the fitted models with and without the spatial covariance matrix. 
SpatialDE2 [35] further extends this framework by providing technical innovations and 
computational speedups. SPARK [19] proposes another extension by modeling the raw 
counts with a generalized linear model based on the over-dispersed Poisson distribution. 
It provides a more robust statistical approach (based on the Cauchy combination rule 
[36]) to assess the significance of the identified SVGs. In contrast, BOOST-GP uses a 
zero-inflated negative binomial (ZINB) distribution to model the read counts and infers 
the model parameters via a Markov Chain Monte Carlo (MCMC) algorithm [37]. Simi-
larly, GPcounts [38] models the counts with a negative binomial (NB) distribution and 
estimates the model parameters using variational Bayesian inference to improve compu-
tational efficiency. Notably, SPARK-X stands as an exception by directly comparing the 
expression covariance matrix and the spatial distance covariance matrix, yielding sub-
stantial computational efficiency gains [20].

In addition, two hybrid methods, namely nnSVG and SOMDE, have been developed 
to integrate graph and kernel approaches to capture the spatial dependence between 
spatial spots. The nnSVG method utilizes a hierarchical nearest-neighbor GP to model 
the large-scale spatial data [39], providing computational efficiency gains over the stand-
ard GP used in SpatialDE. On the other hand, SOMDE employs a self-organizing map 
(SOM) to cluster neighboring cells into nodes and subsequently fits node-level spatial 
gene expression using the GP model to identify SVGs [40]. Both methods reduce the 
computational complexity of kernel approaches by leveraging a spatial graph, which sig-
nificantly improves their scalability. We summarized the key features of the 14 methods 
in Table 1.

Generating realistic benchmarking datasets for spatial transcriptomics analysis

The primary challenge in benchmarking methods for detecting SVGs is the lack of estab-
lished datasets with ground truth in real-world tissues and cells. Hence, we focused on 
devising a strategy to simulate ST data, an approach grounded in precedent studies [19–
21, 31, 39]. However, these studies have several limitations regarding the quality of the 
simulation in recapitulating biological reality and in simulating a diverse set of spatial 
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patterns. Specifically, they often relied on pre-defined spatial clusters and, hence, failed 
to capture the rich diversity of spatial patterns observed in real biological systems. To 
address these limitations, we employed the recent scDesign3 framework, significantly 
advancing the realism and biological relevance of our simulations. Using real data as ref-
erences, our simulation approach generates more biologically realistic and representa-
tive data. Specifically, we modeled the expression of each gene as a function of spatial 
locations with a GP model. Next, we randomly shuffled the mean parameters to remove 
spatial correlation between spots, obtaining a non-spatial model for the expression of a 
given gene. Finally, we synthesized data by mixing the GP and non-spatial model to gen-
erate gene expressions with various spatial variability (Fig. 1b).

To account for the diversity of spatial patterns, we collected 50 real-world ST data-
sets, encompassing nine different ST profiling technologies, 18 tissue types (e.g., heart, 
brain, kidney, lung), and different tissue of origin and conditions (e.g., healthy and can-
cer) (Fig. 1c–d; Additional file 1: Fig. S1). Using these datasets as references, we gener-
ated simulation data based on the approach described above. For each method, we used 
these simulated datasets to assess its ranking and classification accuracy based on the 
Kendall correlation and the area under the Precision-Recall curve (auPRC), respectively 
(Fig. 1d). Additionally, we examined whether the p-values calculated by the methods are 
statistically calibrated. We also investigated the computational scalability of the methods 
by measuring memory requirement and running time with different numbers of spots. 
Importantly, we assessed the impact of SVGs on spatial domain detection analysis, an 
important downstream task. The results were evaluated based on clustering analysis 
using the spatial chaos score (CHAOS) metrics, which was originally developed to quan-
tify image segmentation performance in mass spectrometry imaging and here measures 
the spatial continuity of the detected spatial domains by calculating the average pairwise 
distance between spots within each cluster [16]. A lower CHAOS score indicates more 
spatially coherent clusters and thus better spatial domain detection performance. We 
further explored the possibilities of applying these methods to emerging spatial ATAC-
seq assays for detecting spatially variable peaks (SVPs). The overall benchmarking met-
rics are presented in Fig. 1e. Finally, we created a language-agnostic pipeline hosted at 
the Open Problems in Single-Cell Analysis platform to make our benchmarking frame-
work publicly available to the field (Fig. 1f ).

Comprehensive evaluation of SVG detection methods: accuracy, robustness, 

and pattern‑specific performance

To rigorously assess the performance of the 14 SVG detection methods, we conducted a 
multi-faceted analysis using our 50 simulated datasets, focusing on their ability to accu-
rately rank genes based on spatial variation, their computational robustness, and their 
effectiveness across diverse spatial patterns. Notably, we observed that not all meth-
ods could successfully output final results across all the datasets (Fig. 2a). For example, 
we encountered errors when running SOMDE and Sepal for Stereo-seq datasets and 
SpaGCN on Slide-seq V2 datasets. Additionally, BOOST-GP could not be completed 
within a week for three datasets with a high number of spots. These observations under-
score the limitations of these methods regarding their numerical stability and computa-
tional scalability.
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Different methods provide varying scores to rank the genes, reflecting diverse 
approaches to capturing spatial variability, each with its own strengths in detecting par-
ticular types of spatial patterns. For example, SpatialDE and SpatialDE2 use the fraction 
of spatial variance (FSV) estimated by the GP regression model. In contrast, SpaGFT 
defines a GFT score based on the sum of the low-frequency Fourier coefficients. We 
assessed if these methods could correctly rank the genes based on the Kendall correla-
tion, which measured the ordinal association between estimated and true spatial vari-
ability for each gene. Remarkably, we found that SPARK-X consistently outperformed 
other methods with the highest average correlation (0.88), followed by SpatialDE2 (aver-
age correlation = 0.81) and nnSVG (average correlation = 0.8) (Fig. 2a; Additional file 2: 
Table  S1). Note that these methods model spatial information using multiple kernel 
functions (n = 11 for SPARK-X, n = 5 for SpatialDE2) with different parameters, which 
allows for identification of a wide variety of spatial expression patterns. Interestingly, 
our evaluation revealed that Moran’s I statistic, which solely relies on auto-correlation 
between spots and their neighbors, showed the fourth-best performance with a mean 
correlation of 0.76, despite its relative simplicity compared to other competitors. We also 
evaluated if the methods could distinguish SVGs from non-SVGs based on the estimated 
scores by computing the auPRC, a widely used metric for benchmarking classification 
tasks. Similarly, we observed that SPARK-X showed the highest average auPRC across all 
datasets (Additional file 1: Fig. S2; Additional file 2: Table S2).

Next, we assessed whether the methods showed different accuracies for different spa-
tial patterns. We selected a 10 × Visium dataset from the mouse brain and clustered the 

Fig. 2  Benchmarking the accuracy using simulated datasets. a Heatmap showing the ranking accuracy of 
each method across all simulated datasets measured by the Kendall correlation. Each row corresponds to 
a computational method, and each column represents a simulation dataset. A gray color indicates that the 
method did not produce an output for that dataset. The methods are ordered by their average correlation 
across all datasets, as shown by the bar plot on the right. The annotations at the top of the heatmap provide 
details on the spatial technology, tissue type, and biological conditions associated with each dataset. b 
Clustering of genes based on spatial correlation for 10 × Visium data from mouse brain. c Visualization of 
different spatial expression patterns. d Boxplot showing the Kendall correlation for each method across 
different spatial patterns
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genes by spatial correlation, identifying four major patterns (Fig. 2b–c). We compared 
the ranking accuracy within each method across the patterns. Interestingly, we found 
many methods (e.g., SPARK-X, nnSVG, Moran’s I, and Spanve) exhibited low accuracy 
for pattern 1, where genes were highly expressed in a small area and absent elsewhere. 
Conversely, SpatialDE2, SPARK, and Sepal showed high performance in pattern 1 but 
low performance in pattern 4. This analysis revealed that different methods display var-
ied performance across distinct spatial patterns. Moreover, these pattern-specific per-
formance differences underscore the importance of considering the expected spatial 
patterns in a dataset when selecting an SVG detection method and suggest that a combi-
nation of methods might be optimal for comprehensive SVG identification.

Assessing statistical rigor: calibration analysis of SVG detection methods

In addition to providing different scores for ranking genes, the methods (except for Spa-
tialDE2 and Sepal) also determine statistical significance based on distinct statistical 
tests, allowing users to select SVGs ad hoc. For example, SpaGCN and SpaGFT use the 
Wilcoxon test, while the GP-based methods (e.g., SpatialDE, SPARK, BOOST-GP) typi-
cally use the Chi-squared test. Notably, Moran’s I, implemented by Squidpy, provided 
three approaches to calculate p-values based on the normality assumption of the score 
test, the permutation test, or the standard normal approximation from permutations 
[30].

On the other hand, Statistical calibration is crucial for the reliable identification of 
SVG, as it directly impacts the accuracy and interpretability of results. In this section, we 
evaluated the statistical robustness of the various SVG detection methods, focusing on 
their ability to produce well-calibrated p-values under null conditions, i.e., assuming that 
gene expression is independent of the spatial location. We used a 10 × Visium mouse 
olfactory bulk dataset and randomly shuffled the spots to create non-spatially variable 
expression profiles. A quantile–quantile plot comparing the observed p-values against 
the expected p-values showed that SPARK-X and SPARK produced well-calibrated p-val-
ues. In contrast, other methods showed poor calibration by producing either overlay lib-
eral p-values (too small) or conservative p-values (too large) (Fig.  3a). Specifically, six 
methods (SpatialDE, Spanve, SOMDE, scGCO, nnSVG, and BOOST-GP) generated over-
conservative p-values, indicating a failure to control type II error. Conversely, four meth-
ods (SpaGFT, GPcounts, SpaGCN, and Moran’s I) generally overestimated the p-values, 
failing to control type I errors.

To quantitatively compare the statistical calibration across the methods, we meas-
ured the Kolmogorov–Smirnov (K–S) distance between the distribution of the observed 
p-values and the uniform distribution. The rationale is that a well-calibrated model 
should produce uniformly distributed p-values between 0 and 1 under the null condi-
tion. Therefore, a smaller K–S distance indicates a better-calibrated approach. Our 
results showed that SPARK and SPARK-X demonstrated significantly better calibra-
tion among the methods, which can be attributed to their use of the recently developed 
Cauchy p-value [41] combination rule to generate final p-values from different kernels 
(Fig. 3b). We performed the same analysis using a 10 × Xenium dataset profiling human 
colon cancer and observed similar results, again suggesting that besides SPARK and 
SPARK-X, most methods were poorly calibrated (Additional file 1: Fig. S3).
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Scalability analysis of SVG detection methods

Next, we evaluated the space and time scalability of the analyzed methods. Given 
that all methods independently estimate the spatial variability for each gene, the 
scalability, in theory, is primarily influenced by the number of spatial locations. To 
benchmark this aspect, we generated ten simulation datasets, each consisting of the 
same number of genes (n = 100) but varying the number of spots, ranging from 100 
to 40,000. We applied every method to the ten simulation datasets and recorded the 
memory consumption and running time as performance metrics (see Methods).

Our analysis of memory usage revealed that most methods displayed moderate 
memory requirements, typically staying below 32 GB, even for datasets with 40,000 
spots (Fig.  4a; Additional file 2: Table S3). This finding suggests that these methods 
can be even executed on modern laptops without encountering memory constraints. 

Fig. 3  Comparison of statistical calibration of the methods. a Quantile–quantile plot of the observed 
p-values against the expected p-values under the null condition from different approaches. b Barplot 
comparing the K-S distance between observed p-values under null conditions and uniform distribution. A 
lower value represents a better-calibrated model
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Among them, SOMDE exhibited the most efficient memory usage across all bench-
marking datasets, followed by Spanve and SPARK-X. In contrast, both SPARK and 
SpatialDE exhibited significant increases in memory demand as the number of spots 
in the dataset increased. For instance, when applied to a dataset with 20,000 spots, 
SPARK necessitated approximately 250 GB of memory, while SpatialDE consumed 
roughly 150 GB when dealing with a dataset containing 40,000 spots. These high 
memory requirements can be attributed to their use of Gaussian Process regression, 
which requires the estimation of a covariance matrix across all spots, leading to cub-
ing scaling with the number of spots.

Regarding running time, we observed that SOMDE again achieved the best scalabil-
ity, closely followed by SPARK-X and scGCO. Notably, most methods completed their 
computations within a reasonable timeframe of about 2 h (Fig. 4b), making them suit-
able for practical usage. Both BOOST-GP and GPcounts exhibited poor scalability with 
increasing numbers of spots. For instance, BOOST-GP’s computational time escalated 
significantly, requiring 3 days to process a dataset containing 15,000 spots and failing 
to produce results within 5 days for datasets with 20,000 and 40,000 spots. GPcounts, 
despite running on a GPU, still required approximately 40 h to process the largest data-
sets. In summary, our analysis revealed that SOMDE and SPARK-X exhibited the most 
favorable scalability when handling datasets with increasing spots, balancing efficiency 
in both memory usage and running time. These findings highlight the importance of 
considering computational efficiency when selecting methods for large-scale spatial 
transcriptomics studies.

Benchmarking the impact of identified SVGs on spatial domain detection

One of the important applications of spatially resolved transcriptomics is the identifica-
tion of tissue or region substructures through clustering analysis. For scRNA-seq data, it 
is a standard practice to utilize HVGs as features for cell clustering [42]. Here, we evalu-
ated whether using SVGs could similarly benefit spatial domain detection. For this task, 
we obtained the human dorsolateral prefrontal cortex (DLPFC) dataset, which included 
12 samples profiled by the 10 × Genomics Visium platform [43]. Each sample was 

Fig. 4  Scalability of the methods. a Line plot showing the memory scalability of the methods. The x-axis 
represents the number of spots (log10) of the input datasets with 100 genes. The y-axis represents consumed 
memory (measured as GB) by each method. The red dash Line denotes 32 GB. b Same as a for time scalability. 
The y-axis represents each method’s consumed time (measured as hours)
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manually annotated as one of the six prefrontal cortex layers (L1-6) and white matter 
(WM). We also obtained 12 samples from HPV-negative oral squamous cell carcinoma 
(OSCC) [44] and 8 samples from HER2-positive breast tumors (HER2) [45]. Both data-
sets were annotated by expert pathologists based on tissue morphology. Visualization of 
these datasets with ground truth are available in Additional file 1: Fig. S4.

We next applied the 14 SVG detection methods to these 32 samples and selected the 
top 2000 SVGs for each sample based on the estimated scores by each method. To estab-
lish a baseline for comparison, we also used the top 2000 HVGs identified by scanpy. 
Next, we clustered the spots using three different clustering algorithms, including Lei-
den (resolution = 1), BayesSpace [46], and Banksy [47]. Of note, BayesSpace and Banksy 
were specifically designed for spatial transcriptomics data by leveraging spatial infor-
mation. The clustering results were evaluated against the annotated spatial domains 
using the Adjusted Rand Index (ARI), which measures the similarity between two data 
clustering results of the same data. To ensure a fair comparison across diverse samples 
and clustering methods, we computed ranks of the SVG detection methods within each 
sample-clustering method combination based on their ARI scores (Fig.  5; Additional 

Fig. 5  Impact of detected SVGs on spatial domain detection analysis. a Heatmap showing the clustering 
performance as evaluated using ARI. Each row represents a benchmarked SVG detection method, and each 
column represents a sample clustered by an algorithm. The colors refer to rank of the SVG detection method 
within the corresponding sample-clustering method combination. b Left: Visualization of true labels for 
sample 151,509 and the clustering results using the Leiden algorithm based on SVGs from the benchmarked 
methods. ARIs are shown on the top.Right: visualization forsample 151,675 using the Banksy algorithm for 
clustering
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file 2: Table S4). Notably, we observed that most SVG detection methods consistently 
improved spatial clustering accuracy relative to HVG-based feature selection, underly-
ing the value of incorporating spatial information to gene selection for this specific anal-
ysis. Only a few methods (SpaGCN, scGCO, BOOST-GP, SOMDE, and Sepal) failed to 
outperform HVGs in this benchmarking, which indicates potential limitations in their 
sensitivity across tissue architectures. Interestingly, Moran’s I achieved the best perfor-
mance with a mean rank of 6.5, closely followed by SpatialDE2 (mean rank = 6.6) and 
nnSVG (mean rank = 6.8), showcasing their effectiveness in capturing informative genes 
for identifying spatial domains. Overall, these findings underscore the utility of SVG-
based feature selection for spatial domain detection and reveal that simpler statistical 
approaches like Moran’s I can be highly effective in practice.

Benchmarking SVG detection methods with spatial ATAC‑seq profiles

Recent technological advances have allowed for profiling spatially-resolved chromatin 
accessibility [48, 49]. However, specific methods for detecting spatially variable open 
chromatin regions (i.e., spatially variable peaks, abbreviated as SVPs) are currently lack-
ing. In this section, we aimed to investigate the feasibility of applying methods devel-
oped for SVG detection to analyze spatial chromatin accessibility profiles. For this, we 
downloaded spatial ATAC-seq data from mouse gestational development at embryonic 
days of E12.5, E13.5, and E15.5 [49]. Following data processing, we obtained a cell-by-
peak matrix for each of the samples and applied the methods to detect SVPs. However, 
given that these methods were not specifically designed for this task, we encountered 
several challenges. For example, BOOST-GP and GPcounts failed to produce results even 
after 120 h of running because the number of peaks substantially exceeded the number 
of genes, highlighting the limitation of these two methods in terms of scalability. Addi-
tionally, SPARK encountered memory issues and did not yield any results.

As in the previous section, we wanted to investigate if SVPs recovered from these 
procedures could boost spatial clustering. We selected the top 20,000 peaks for each 
method and used Leiden-based clustering analysis to group the spots and evaluate the 
quality of the SVPs. Because the ground truth is unavailable in this dataset, we measured 
the spatial continuity and locality of the clusters using the spatial chaos score (CHAOS) 
[16]. The underlying assumption is that a more accurate identification of SVPs would 
yield more continuous and cohesive clusters [16]. We also included the results gener-
ated using all the peaks as a baseline. Interestingly, we observed that SpatialDE2 out-
performed other methods (mean CHAOS = 0.104), indicating that it has the potential 
to identify biologically meaningful SVPs (Fig. 6a–c; Additional file 1: Fig. S5). Moreover, 
our analysis revealed that using all peaks yielded the second-best performance (mean 
CHAOS = 0.105). This finding suggests that more specialized methods are required 
to analyze spatial chromatin accessibility data. Such methods would be invaluable for 
advancing our understanding of spatial gene regulation and chromatin dynamics in 
complex tissues.

Overall performance of SVG detection methods

Finally, we summarized our benchmarking results by comparing the methods across 
various metrics, including gene ranking accuracy, statistical calibration, memory 



Page 13 of 26Li et al. Genome Biology          (2025) 26:285 	

usage, and running time scalability, and their impact on spatial RNA-seq and ATAC-
seq clustering. For ranking accuracy, we evaluated the methods for each spatial tech-
nology using the average Kendall correlation. Statistical calibration was assessed by 
ranking the methods based on the K-S distance between the observed and expected 
p-values under the null hypothesis. Scalability was evaluated by ranking the methods 
for each dataset based on memory usage and running time with different numbers 
of spots. For spatial RNA-seq clustering, methods were ranked for each clustering 
algorithm (Leiden, BayesSpace, and Banksy) and dataset (DLPFC, OSCC, and HER2) 
combination using the mean rank of ARI values across the samples. For spatial ATAC-
seq clustering, methods were ranked for each dataset based on the CHAOS score. To 

Fig. 6  Benchmarking the methods on spatial ATAC-seq data. a Boxplot showing the spatial CHAOS score 
across different methods. A lower value indicates a better performance for spatial clustering. b Image of a 
mouse embryo at days of E12.5. c Visualization of obtained clusters using spatially variable peaks identified by 
different methods

Fig. 7  Overall performance. Heatmap summarizing the overall performance of the methods in terms of their 
ability to accurately rank genes based on estimated spatial variation, statistical calibration of p-values under 
null conditions, memory usage and running time requirement for different dataset sizes, impact on clustering 
of spatial RNA-seq and ATAC-seq data. The colors and numbers denote the ranking of each method for each 
specific metric, with the average rank shown on the right. The black colors indicate that the results are not 
available
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determine overall performance, we calculated the average ranking for each method 
across all these metrics (Fig. 7).

Our analysis revealed SPARK-X as the top-performing method, with an average rank-
ing of 4.3. It demonstrated the best performance in correctly ranking genes based on 
estimated spatial variation for six out of nine ST profiling techniques, showcasing its 
robust performance. Additionally, SPARK-X produced well-calibrated p-values and 
exhibited second-best scalability for large-scale ST datasets (e.g., > 20,000 spots), 
mostly attributed to the fact that it directly compared the expression and spatial dis-
tance covariance matrix rather than using GP regression to estimate spatial variation, 
unlike its predecessor SPARK. SpaGFT ranked the second best with an average rank-
ing of 5.4, performing well in ranking accuracy, statistical calibration, and computation 
scalability. Unlike SPARK-X, which uses multiple kernel functions to model spatial pat-
terns, SpaGFT represents the spatial data as a graph and employs the Fourier transform 
to estimate spatial variation. Surprisingly, Moran’s I, a simple method based on autocor-
relation between spots and their spatial neighbors, achieved the third-best performance. 
This method demonstrated a good gene ranking ability and competitive computational 
efficiency, notably outperforming other methods in spatial domain detection. The strong 
performance of this classic metric, which has been largely overlooked in recent bench-
marking [26] and methodology development efforts [19, 20, 22, 33, 34, 38–40], suggests 
that it should be included as a baseline in future studies.

Guideline for method selection

Our comprehensive benchmarking of 14 computational methods revealed that no single 
approach consistently outperforms others across all evaluation metrics. As such, method 
selection for detecting SVGs should be tailored to the specific goals and constraints of a 
study. Below, we provide recommendations based on usability, performance, scalability, 
and downstream utility.

In practice, usability is a key factor in method adoption. Among the evaluated tools, 
only a few Python-based methods, Moran’s I, Sepal, and Spanve, can be directly applied 
to the AnnData object, a widely used data structure in the Python-based single-cell anal-
ysis ecosystem. Of these, Moran’s I, implemented within the Squidpy framework, stands 
out as the most accessible and user-friendly. By contrast, R-based tools such as BOOST-
GP, nnSVG, SPARK, and SPARK-X require custom input formats or additional preproc-
essing steps, making them less convenient to integrate into R-based existing analysis tool 
(e.g., Seurat).

If the primary goal is to rank genes based on spatial variability to prioritize candidate 
regulators or inform downstream functional studies, methods employing multi-ker-
nel Gaussian Process models consistently achieve superior performance. In particular, 
SPARK-X demonstrated the highest overall ranking accuracy across diverse datasets and 
spatial patterns (Fig. 2a). For more exploratory analyses, Moran’s I offers a lightweight 
alternative with competitive accuracy. Therefore, we recommend SPARK-X for compre-
hensive analyses, and Moran’s I for preliminary analysis.

Regarding scalability, our benchmarking on datasets containing up to 40,000 spatial 
spots revealed that SOMDE is the most computationally efficient method, exhibiting 
low memory usage and fast runtime (Fig. 4). SPARK-X also performed well, achieving 
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a strong balance between accuracy and scalability by avoiding the cubic computational 
burden associated with Gaussian Process regression. Accordingly, we recommend 
SOMDE or SPARK-X for high-throughput spatial transcriptomics applications where 
computational resources and memory are a limiting factor.

When performing spatial domain detection, the choice of method significantly influ-
ences clustering performance. Our analysis using DLPFC, OSCC, and HER2 tumor 
datasets showed that most SVG-based selections improved clustering over HVGs, and 
Moran’s I achieved the best overall performance followed by SpatialDE2 and nnSVG 
(Fig.  5). These methods were particularly effective in identifying informative features 
that capture tissue architecture. Therefore, for analyses focused on spatial domain detec-
tion, especially in histologically structured tissues, we recommend using Moran’s I, Spa-
tialDE2, or nnSVG.

Finally, our evaluation of statistical calibration revealed that most methods produced 
poorly calibrated p-values, meaning they tended to systematically under- or overesti-
mate the true statistical significance of spatial variability (Fig. 3). Such miscalibration can 
result in inflated false positive rates or missed true spatial signals, undermining the reli-
ability of downstream analyses. To mitigate this issue, we recommend selecting SVGs 
based on a fixed ranking threshold (e.g., the top 2000 genes by score) rather than relying 
on significance.

Discussion
Over a dozen computational methods have recently been developed to identify spatially 
variable genes (SVGs) in spatial transcriptomics data. These methods diverge substan-
tially in several aspects, including the assumptions in modeling spatial relationships 
between cells (graph vs. kernel); the algorithms to estimate spatial variation (e.g., auto-
correlation vs. Gaussian Process regression vs. graph cut); the statistical tests to deter-
mine significances (e.g., permutation test vs. Wilcoxon test vs. Chi-square test); the 
choice of input data (raw counts vs. normalized data); and the programming languages 
(Python vs. R) (Table 1). These differences complicate the user selection process, further 
exacerbated by the lack of realistic benchmarking to evaluate the performance of these 
methods.

A major challenge in SVG evaluation is the lack of gold-standard datasets. Previous 
studies often used simulated data by generating non-SVG profiles, which oversimpli-
fies the distinction between SVGs and non-SVGs into a binary classification. Since spa-
tial variability is a continuous measure, evaluating results within a binary framework is 
highly problematic. To address this, we proposed a novel strategy using scDesign3 and 
real-world spatial transcriptomics data to create biologically realistic datasets with vary-
ing degrees of spatial variation. This simulation and evaluation approach represents an 
advancement in realistic modeling and more accurate benchmarking of spatial tran-
scriptomics data. However, our approach has certain limitations and opens up new ave-
nues for future research. For instance, the strategy requires pre-selection of genes with 
high spatial variation, which could introduce biases favoring certain methods. Addition-
ally, our evaluation computes the Kendall rank correlation within each gene, which does 
not directly compare methods for detecting different spatial patterns. Future research 
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should refine these approaches and further enhance the robustness and applicability of 
benchmarking methods in spatial transcriptomics.

Another limitation of our current benchmarking framework is that we did not evalu-
ate the rotation invariance properties of these SVG detection methods or assess their 
sensitivity to spatial orientation. In practice, tissue positioning during sample prepara-
tion can vary considerably, and the same biological tissue may be oriented differently 
across experiments or datasets. Future benchmarking efforts should therefore investi-
gate whether SVG detection methods maintain consistent performance regardless of tis-
sue rotation or spatial transformation.

We demonstrated that using SVGs generally improved spatial domain detection com-
pared to relying solely on HVGs. This was shown through different clustering methods 
applied to three distinct datasets with well annotated domains. These findings under-
score the importance of incorporating spatial information, which enhances clustering 
analysis by providing a more comprehensive understanding of the architecture of com-
plex tissues. As novel technologies like Slide-Tags [50] emerge, enabling the simultane-
ous acquisition of single-cell measurements and spatial data, we anticipate a surge in 
the adoption and popularity of SVG identification tools in various downstream analysis 
tasks.

Compared to transcriptomic data, spatial ATAC-seq data present unique and sub-
stantial analytical challenges that our benchmarking empirically confirms, making 
the identification of spatially variable peaks a difficult and unresolved problem. In our 
benchmarking, we found that using all peaks led to better clustering performance than 
most methods, as measured by the CHAOS score. This surprising result likely reflects 
several inherent limitations of spatial ATAC-seq data: (i) the data are extremely sparse, 
with a large proportion of peaks exhibiting zero counts across most spatial locations, 
which hampers reliable estimation of spatial variability; (ii) the signal is often binary or 
near-binary, contrasting sharply with the continuous and over dispersed nature of RNA-
seq data, and thus requires fundamentally different statistical modeling; and (iii) the high 
dimensionality of peak matrices (20,000–70,000 peaks compared to typical gene counts 
of 2000–5000) increases the risk of overfitting and further complicates model inference. 
Indeed, these computational challenges were evident in our benchmarking: BOOST-GP 
and GPcounts failed to complete even after 120 h, while SPARK encountered memory 
failures.

Collectively, these characteristics may underlie the poor performance of current meth-
ods when applied to spatial chromatin accessibility data. Moving forward, there is a 
pressing need to develop new algorithms specifically tailored to the sparsity, distribu-
tional properties, and data structure of spatial ATAC-seq to fully leverage its potential in 
dissecting spatial epigenomic regulation.

While our study focuses on spatial transcriptomics and spatial ATAC-seq, other 
spatially resolved omics data, such as spatial proteomics, are also emerging. To inter-
pret biological activity within spatial contexts for various modalities—such as genes, 
proteins, peaks, and motifs—specialized approaches and dedicated gold-standard 
datasets are needed. Our study showed that some methods could be applied to spa-
tial ATAC-seq, aiding in the identification of potential SVPs. We refer to them as 
“potential” due to the absence of ground truth data. Instead, we utilized SVPs for 
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clustering and evaluated the spatial locality and continuity of the resulting clusters. 
It is important to note that not all methods were capable of detecting SVPs due to 
limitations in memory or algorithmic complexity. Tools focused on discerning SVPs 
can potentially reveal the regulatory elements that govern gene expression profiles 
within specific spatial sub-regions. This, in turn, can enhance our understanding of 
the regulatory mechanisms governing SVGs and, consequently, the spatial organiza-
tion of tissues and tumors. In the future, integrating SVGs and SVPs through novel 
algorithms holds tremendous potential to facilitate the construction of accurate spa-
tially aware gene regulatory networks.

Compared to previous benchmarking studies [23–25], our work introduces several 
important innovations that distinguish it in both scope and methodological rigor. 
First, while prior benchmarks primarily treated SVG detection as a binary classifi-
cation task, we formulated it as a gene ranking problem, which better reflects how 
existing methods are applied in practice. Based on this formulation, we implemented 
a novel simulation framework using scDesign3 that generates gene-level spatial vari-
ability derived from real-world data. This allowed us to more accurately assess the 
ability of each method to rank genes by true spatial variability across a continuum, 
rather than relying on artificial or binary ground truths. Second, our study includes 
more computational methods (n = 14) and covers a wider range of spatial tran-
scriptomics technologies, spanning 50 datasets across 9 platforms, compared to ≤ 7 
methods in prior studies. As a result, to our knowledge, this represents the largest 
and most comprehensive benchmarking effort to date for SVG detection.

Despite these differences in scope and design, we observed several consistent 
findings with prior studies. For example, both our study and previous benchmarks 
identified SPARK-X and nnSVG as top-performing methods in terms of sensitivity 
and specificity. In addition, through quantitative evaluation, we found that p-value 
estimates produced by most methods tend to be poorly calibrated, which was also 
observed in prior works and represents a critical limitation for biological interpreta-
tion. However, our broader evaluation also revealed additional insights not captured 
in earlier work. Notably, we found that Moran’s I, a simple spatial autocorrelation 
statistic, demonstrated competitive performance across a wide range of datasets and 
downstream tasks, particularly in spatial domain detection. This is the first bench-
marking study to identify Moran’s I as a top performer, suggesting that this method 
may have been underappreciated in prior evaluations. Our findings also revealed the 
need for specialized methods for spatial ATAC-seq data, as most existing approaches 
showed poor performance on chromatin accessibility profiles.

A lack of standardized evaluation workflow often leads to different assessment 
results of the same methods [51]. To overcome this issue, we created a living bench-
marking pipeline for the community to allow for continuously integrating new meth-
ods, datasets, and metrics (https://​github.​com/​openp​roble​ms-​bio/​task_​spati​ally_​
varia​ble_​genes). We envision that this will drive the development of more robust and 
accurate methods for SVG detection. Taken together, our study provides a detailed 
evaluation of various SVG detection methods across simulated and real-world data-
sets of spatial transcriptomics and spatial-ATAC-seq.

https://github.com/openproblems-bio/task_spatially_variable_genes
https://github.com/openproblems-bio/task_spatially_variable_genes
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Conclusions
In this study, we performed a comprehensive benchmarking of computational methods 
for identifying spatially variable genes (SVGs) and peaks (SVPs) across a wide range of 
spatial omics platforms. By reframing SVG detection as a gene-ranking task and leverag-
ing biologically realistic simulations generated with scDesign3, we established a frame-
work that better reflects real-world analysis workflows compared to approaches. Our 
results revealed substantial differences in method performance, driven by divergent sta-
tistical assumptions and algorithmic designs. Notably, we found that simple statistical 
approaches, including Moran’s I, can perform competitively with more complex meth-
ods and may be underutilized in current workflows. Our evaluation also exposed major 
limitations of existing methods when applied to spatial ATAC-seq data, underscoring 
the pressing need for algorithms specifically tailored to the sparsity and binary nature of 
chromatin accessibility profiles. To facilitate ongoing development and reproducibility, 
we provide an open and extensible benchmarking framework capable of integrating new 
methods, datasets, and evaluation metrics. As spatial omics technologies continue to 
evolve, the joint analysis of SVGs, SVPs, and other spatially variable molecular features 
will be critical for building accurate, spatially resolved models of gene regulation and tis-
sue organization.

Methods
Simulation of biologically realistic spatial data with various spatial variability

We used scDesign3 to generate biologically realistic data with various spatial variabil-
ity using real-world spatial transcriptomics data as a reference. Specifically, we modeled 
the marginal distribution of expression for each gene using the function fit_marginal 
(mu_formula = “s(spatial1, spatial2, bs = ‘gp,’ k = 500),” sigma_formula = “1,” fam-
ily_use = “nb”) which fitted the data with a generalized GP model under the Negative 
Binomial distribution. The joint distribution of genes was modeled using the function 
fit_copula (family_use = “nb,” copula = “gaussian”). Next, we extracted the mean param-
eters for each gene across all spots, denoted by µs(s), and randomly shuffled the param-
eters to remove spatial correlation between the spots, generating a non-spatially variable 
mean function µns(s) . We used the function simu_new to generate simulation data as 
follows:

where α denotes the fraction of spatial variability in simulated gene expression. When 
α = 0 , the expression was sampled from a randomly shuffled distribution without spa-
tial correlation (i.e., non-spatially variable genes). while for α = 1 , the expressions were 
generated from the GP model with the same spatial variability as the reference data. By 
varying α , we were able to generate biologically realistic data with various spatial vari-
ability for each gene. We used 21 different values for α between 0 and 1 for simulation.

To account for the diversity of spatial data and patterns, we collected a total of 50 
real-world datasets across 17 different tissue types and nine technologies, including 
10 × Visium (n = 20), Slide-seqV2 (n = 5), Slide-tag (n = 4), DBiT-seq (n = 6), Stereo-seq 
(n = 5), 10 × Xenium (n = 2), MERFISH (n = 5), seqFISH (n = 1), and STARmap (n = 2). 

µ(s) = α · µs(s)+ (1− α) · uns(s)
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We filtered mitochondrial and lowly expressed genes for each dataset, and generated a 
corresponding simulation dataset using the above framework. We used these datasets to 
evaluate the performance of the methods.

Simulation of spatial data with different number of spots

To evaluate the computational scalability of the methods with the number of spatial 
spots, we first defined a covariance matrix K ∈ Rm×m as follows:

where m is the number of spots, x(a) and x(b) denote two spatial locations, N  is the 
number of kernels, βn is the weight of the n th kernel and is sampled from a Dirichlet 
distribution, and ln denotes the length scale. By sampling β for each gene, we obtained 
different spatial covariance matrices, thus creating different spatial patterns. We next 
sampled expression �j ∈ Rm for a gene j across all locations from a multivariate normal 
distribution (MVN) as follows:

Because some methods can only work on raw counts, we next converted the data to 
counts as follows:

where s denotes the Library size and is set to 10,000 for all locations. We generated ten 
simulation datasets as described above. Each dataset had the same number of genes 
(n = 100) and a different number of spots (n = 100, 500, 1000, 2000, 5000, 7500, 10,000, 
15,000, 20,000, 40,000).

Human dorsolateral prefrontal cortex (DLPFC) datasets

We downloaded human dorsolateral prefrontal cortex (DLPFC) spatial transcriptomics 
data from https://​resea​rch.​libd.​org/​spati​alLIBD/. This included 12 samples profiled by 
the 10 × Genomics Visium platform [43]. Each sample was manually annotated as one 
of the six prefrontal cortex layers (L1-6) and white matter (WM). This dataset has been 
commonly used to evaluate the algorithms for spatial clustering and domain detection 
analysis in the field [46, 47, 52]. In this study, we used these datasets to test the impact of 
detected SVGs on spatial domain detection analysis.

Identify SVGs with computational methods

Below, we describe the details of running the methods to identify SVGs.

K (a, b) =
N

n=1
βn · exp

||x(a)− x(b)||2

2 · ln
2

(β1,β2, · · · ,βN ) ∼ Dirichlet(1/N , · · · , 1/N )

log(�j) ∼ MVN (µ,K )

�ij′ =
�ij

∑

j=1 �ij

yij ∼ Poisson(s · �ij′)

https://research.libd.org/spatialLIBD/
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Moran’s I

 Moran’s I measures the correlation of gene expression between a spatial location and its 
neighbors [29]. We identified spatial neighbors using the function spatial_neighbors and 
computed the Moran’s I score using the function spatial_autocorr (n_perms = 100) from 
Squidpy (v1.2.3) [30].

Spanve

Spanve (Spatial Neighborhood Variably Expressed Genes) is a non-parametric statistical 
approach for detecting SVGs [31]. Similar to Moran’s I, this method uses the difference 
between a location and its spatial neighbors to estimate the spatial variation. Specifi-
cally, for each gene, it computes Kullback–Leibler divergence between space-based and 
randomly sampled expressions. The significance is calculated by the G-test. We installed 
Spanve (v0.1.0) and ran the method by following the tutorial: https://​github.​com/​zjupgx/​
Spanve/​blob/​main/​tutor​ial.​ipynb.

SpaGFT

 SpaGFT is a hypothesis-free Fourier transform model to identify SVGs [33]. It decom-
posed the signal from the spatial domain to the frequency domain based on a spatial 
KNN graph and estimated a GFTscore per gene on the Fourier coefficient for low-fre-
quency signals. We installed SpaGFT (v0.1.1.4) and ran it by following the tutorial: 
https://​spagft.​readt​hedocs.​io/​en/​latest.

SpaGCN

 SpaGCN is a graph convolutional network (GCN)-based approach that integrates gene 
expression, spatial location, and histology to identify SVGs [22]. It first identifies spatial 
domains through clustering and then detects SVGs that are enriched in each domain. 
We installed SpaGCN (v1.2.5) and ran the method by following the tutorial: https://​
github.​com/​jianh​uupenn/​SpaGCN/​blob/​master/​tutor​ial/​tutor​ial.​ipynb.

scGCO

scGCO (single-cell graph cuts optimization) utilizes a hidden Markov random field 
(HMRF) with graph cuts to identify SVGs [21]. We installed scGCO (v1.1.0) and exe-
cuted the method by following the tutorial: https://​github.​com/​WangP​eng-​Lab/​scGCO/​
blob/​master/​code/​Tutor​ial/​scGCO_​tutor​ial.​ipynb.

Sepal

Sepal assesses the degree of randomness exhibited by the expression profile of each gene 
through a diffusion process and ranks the genes accordingly [34]. We computed the 
Sepal score using Squidpy (v1.2.3) by following the tutorial: https://​squid​py.​readt​hedocs.​
io/​en/​stable/​auto_​examp​les/​graph/​compu​te_​sepal.​html.

SpatialDE

SpatialDE is one of the pioneer methods for identifying SVGs [18]. It models the nor-
malized spatial gene expression using the Gaussian process regression and estimates the 
significance by comparing the models with and without spatial covariance. We installed 

https://github.com/zjupgx/Spanve/blob/main/tutorial.ipynb
https://github.com/zjupgx/Spanve/blob/main/tutorial.ipynb
https://spagft.readthedocs.io/en/latest
https://github.com/jianhuupenn/SpaGCN/blob/master/tutorial/tutorial.ipynb
https://github.com/jianhuupenn/SpaGCN/blob/master/tutorial/tutorial.ipynb
https://github.com/WangPeng-Lab/scGCO/blob/master/code/Tutorial/scGCO_tutorial.ipynb
https://github.com/WangPeng-Lab/scGCO/blob/master/code/Tutorial/scGCO_tutorial.ipynb
https://squidpy.readthedocs.io/en/stable/auto_examples/graph/compute_sepal.html
https://squidpy.readthedocs.io/en/stable/auto_examples/graph/compute_sepal.html
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SpatialDE ~ (v1.1.3) with pip and processed the data with the functions NaiveDE.stabi-
lize and NaiveDE.regress_out. The results were obtained by running the function Spa-
tialDE.run.

SpatialDE2

SpatialDE2 is a flexible framework for modeling spatial transcriptomics data that refines 
SpatialDE by providing technical innovations and computational speedups [35]. We 
obtained the source code from https://​github.​com/​PMBio/​Spati​alDE and estimated spa-
tial variance using the function SpatialDE.fit.

SPARK

SPARK extended the computation framework proposed in SpatialDE by directly mod-
eling the raw count data using a generalized linear spatial model (GLSM) based on Pois-
son distribution [19]. We obtained SPARK (v1.1.1) from https://​github.​com/​xzhou​lab/​
SPARK and ran the method by following the tutorial https://​xzhou​lab.​github.​io/​SPARK/​
02_​SPARK_​Examp​le.

SPARK‑X

SPARK-X is a non-parametric covariance test method based on multiple spatial ker-
nels for modeling sparse count data from spatial transcriptomic experiments [20]. We 
ran SPARK-X (v1.1.1) by following the tutorial: https://​xzhou​lab.​github.​io/​SPARK/​02_​
SPARK_​Examp​le.

BOOST‑GP

 BOOST-GP is a Bayesian hierarchical model to analyze spatial transcriptomics data 
based on zero-inflated negative binomial distribution and Gaussian process [37]. We 
downloaded the source codes of BOOST-SP from https://​github.​com/​Minzhe/​BOOST-​
GP and ran the function boost.gp by setting the parameters iter to 100 and burn to 50.

GPcounts

 GPcounts implemented Gaussian process regression for modeling counts data using a 
negative binomial likelihood function [38]. We obtained the source codes of GPcounts 
from https://​github.​com/​Manch​ester​Bioin​feren​ce/​GPcou​nts and followed the tuto-
rial https://​github.​com/​Manch​ester​Bioin​feren​ce/​GPcou​nts/​blob/​master/​demo_​noteb​
ooks/​GPcou​nts_​spati​al.​ipynb. We ranked the genes by the log-likelihood ratio (LLR), 
representing the ratio between the dynamic and constant (null) models. We noted that 
GPcounts sometimes failed to generate results for certain genes. In this case, we set the 
LLR as 0.

nnSVG 

nnSVG is a method built on nearest-neighbor Gaussian processes to identify SVGs [39]. 
We installed the package (v1.2.0) from Bioconductor and ran the method by following 
the tutorial https://​bioco​nduct​or.​org/​packa​ges/​relea​se/​bioc/​vigne​ttes/​nnSVG/​inst/​doc/​
nnSVG.​html.

SOMDE

https://github.com/PMBio/SpatialDE
https://github.com/xzhoulab/SPARK
https://github.com/xzhoulab/SPARK
https://xzhoulab.github.io/SPARK/02_SPARK_Example
https://xzhoulab.github.io/SPARK/02_SPARK_Example
https://xzhoulab.github.io/SPARK/02_SPARK_Example
https://xzhoulab.github.io/SPARK/02_SPARK_Example
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SOMDE

 SOMDE uses a self-organizing map (SOM) to cluster neighboring locations into 
nodes and then uses a Gaussian process to fit the node-level spatial gene expression 
to identify SVGs [40]. We installed SOMDE (v0.1.7) and followed the tutorial https://​
github.​com/​Whirl​First/​somde/​blob/​master/​slide_​seq08​19_​11_​SOM.​ipynb to run the 
method.

Benchmarking accuracy for ranking and classification

We applied each method to the simulated datasets to rank the genes. Next, we calculated 
the ranking accuracy based on the Kendall rank correlation for each gene using the esti-
mated and true spatial variability as follows:

The correlation has a maximum value of 1 if the two ranks perfectly agree with each 
other, and otherwise, a minimum value of − 1. To test whether the methods can dis-
tinguish spatially vs. non-spatially variable genes, we also computed the classification 
accuracy based on the area under the precision-recall curve (auPRC) using the function 
pr.curve from the R package PRROC [53].

Benchmarking statistical calibration

We used 10 × Visium data generated from mouse olfactory bulb consisting of 1185 spa-
tial spots and to assess the statistical calibration, in line with previous study [19]. We 
filtered the genes by the number of expressed spots (n = 500). We permuted the spots 
to obtain non-spatially variable expressions. We applied each method to this permuted 
data and obtained the estimated p-values under null conditions. Note that SpatialDE2 
and Sepal were excluded from this evaluation because they do not estimate statistical 
significance. We then plotted the Q-Q plot between expected and observed p-values to 
visualize the calibration. To quantitatively compare the statistical calibration between 
different methods, we calculated the Kolmogorob–Smirnov (K–S) distance between 
observed p-values and uniform distribution from 0 to 1. A lower distance indicates a 
better-calibrated estimation of p-values.

Benchmarking scalability with the number of spatial spots

We used the Snakemake [54] workflow (v7.25.2) management system to evaluate the 
scalability of each method with the number of spatial spots. We ran each method on a 
dedicated HPC node with an AMD EPYC 7H12 64-core Processor using the same com-
putational resource (1TB memory, 120 h, and 10 CPUs) defined by the Snakemake pipe-
line. For methods (i.e., GPcounts and SpatialDE2) that require a graphics processing unit 
(GPU) for running, we used an A100 with 40GB of memory. We measured the mem-
ory usage and running time using the benchmark directive provided by the Snakemake 
tool (–benchmark). We could not run SPARK for datasets with 40,000 spots because of 

τ =
(number of concordant pairs)− (number of discordant pairs)

number of pairs

https://github.com/WhirlFirst/somde/blob/master/slide_seq0819_11_SOM.ipynb
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memory issues. Moreover, BOOST-GP did not generate results for datasets with 20,000 
and 40,000 spots within 120 h.

Benchmarking the impact of identified SVGs on spatial domain detection analysis

We utilized the Human DLPFC datasets to evaluate the impact of identified SVGs on 
spatial domain detection. For ran the methods and selected the top 2000 SVGs based 
on the ranking (see Table  1). The HVGs were identified using the function scanpy.
pp.highly_variable_genes, and the top 2000 genes were used as our baseline for compari-
son. We used these genes as features for clustering with the following algorithms.

Leiden. We used the function scanpy.tl.pca with the default parameters to per-
form dimension reduction and the function scanpy.pp.neighbors to generate a 
k-nearest-neighbor graph. The spots were clustered by the function scanpy.tl.leiden 
(resolution = 1).

BayesSpace. BayesSpace is a tool designed for clustering and enhancing the resolution 
of spatial gene expression profiles 46. We installed BayesSpace (v1.1.4) from Bioconduc-
tor and followed the tutorial (https://​www.​ezsta​tcons​ulting.​com/​Bayes​Space/​artic​les/​
mayna​rd_​DLPFC.​html) to run BayesSpace by using different features as input.

Banksy. Banksy is an algorithm that embeds cells in a product space of their own and 
the local neighborhood. We obtained the Banksy R package (v0.99.12) from https://​
github.​com/​prabh​akarl​ab/​Banksy and executed it with the default setting. Specifically, 
the counts were normalized using the function NormalizeData from Seurat. The matrix 
was subset by only keeping the SVGs as identified by each method. Next, we computed 
the component neighborhood matrices using the function computeBanksy. We then ran 
the functions runBanksyPCA and clusterBanksy with the default settings to obtain final 
clustering results.

After clustering the data using different features and the above algorithms, we com-
pared the obtained clusters with the annotated layers using Adjusted Rand Index (ARI). 
A higher ARI indicates a better clustering result.

Benchmarking the methods for spatial ATAC‑seq data

We downloaded spatial ATAC-seq data of mouse embryos at stages E12.5, E13.5, and 
E15.5 from GEO with accession number GSE214991. We first identified open chroma-
tin regions by peak calling on all the spots using MACS2[55] (–nomodel–nolambda–
shift − 75 –extsize 150) and obtained 34,460 (E12.5), 31,099 (E13.5), and 69,896 (E15.5) 
peaks for each sample, respectively. We next built a cell-by-peak count matrix using the 
fragments and peaks as input based on the function FeatureMatrix from the Signac [56] 
package. We only retained the spots that were located on the tissue.

We ran each method on the cell-by-peak matrix of spatial ATAC-seq data from mouse 
embryos to detect spatially variable peaks. For those methods that require normalized data 
as input, we used TF-IDF (Term Frequency—Inverse Document Frequency) for normal-
ization. Of note, BOOST-GP and GPcounts failed to produce results after 120 h, and we 
could not obtain results from SPARKdue to memory issues. Therefore, these three meth-
ods were excluded from this evaluation. We selected the top 20,000 peaks as the spatially 
variable peaks for each method and used these peaks to cluster the spots. We also used all 
peaks to obtain a baseline for comparison. Because the true clusters were unavailable, we 

https://www.ezstatconsulting.com/BayesSpace/articles/maynard_DLPFC.html
https://www.ezstatconsulting.com/BayesSpace/articles/maynard_DLPFC.html
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evaluated the clustering performance by following ref[16]. the spatial chaos score (CHAOS) 
as follows:

where dkij is the Euclidean distance between the spots i and j in the cluster k and N  is 
the total number of spots. A lower CHAOS indicates better spatial continuity.
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