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RNA sequencing (RNA-seq) technology
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RNA sequencing (RNA-seq) experiment
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RNA sequencing (RNA-seq) experiment
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Mapping RNA-seq reads to the reference genome
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Reference-based RNA-seq data analysis

1. Align RNA-seq reads to a reference genome

2. Analyze aligned reads at three levels
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Single-cell (sc) vs. bulk RNA-seq at the gene level

_

Tissue

scRNA-se bulk RNA-seq

genes

cells tissue



Bulk RNA-seq: transcript/isoform discovery &
qguantification



AIDE: annotation-assisted isoform discovery

!




Isoform discovery: which isoforms are expressed?

e More than 90% genes undergo alternative splicing in mammals

[Hooper, Human Genomics, 2014].

e At least 35% genetic diseases involve abnormal splicing
[Manning et al., Nature Reviews Mol. Cell Biol. 2017].
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Isoform discovery: which isoforms are expressed?

RNA-seq data
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Challenge 1: large number of candidate isoforms

Variable size (# of candidate isoforms) = 2% of exons _ 1

RNA-seq data
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For this 4-exon gene, 2* — 1 = 15 candidate isoforms



Challenge 2: great information loss

o RNA-seq reads are very short compared with full-length
isoforms.

e Most RNA-seq reads do not uniquely map to a single isoform.
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e Technical biases introduced into RNA-seq experiments.
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Existing isoform discovery methods

State-of-the-art methods for isoform discovery:

e SIIER [Jiang et al., Bioinformatics, 2009]

e Cufflinks [Trapnell et al., Nature Biotechnology, 2010]
e SLIDE [Li et al., Proc. Natl. Acad. Sci. 2011]
e StringTie [Pertea et al., Nature Biotechnology, 2015]
[ ] ...

Limitations:

1. Low accuracy for genes with complex splicing structures.

2. Difficult to improve isoform-level performance.
[Kanitz et al., Genome Biology, 2015]

3. Usage of annotations results in false positives.
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Usage of annotations results in false positives

Annotated isoforms are experimentally validated:

gene

annotated isoforms

e Ensembl database: 203,903 isoforms
[Zerbino et al., Nucleic Acids Research, 2017]

expressed isoforms in normal brain

expressed isoforms in

. N Parkinson's brain
expressed isoforms i

Alzheimer's brai isoforms

12



False positives — false discoveries
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[Scannell et al., Nat. Rev. Drug Discov. 2012] 13



Highlights of the AIDE method

1. Selectively leverage annotation information to increase the
precision and robustness of isoform discovery.
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Practical probabilistic model to account for technical biases.

3. Conservatively identify isoforms that make statistically

significant contributions to explaining the observed RNA-seq
reads.
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Highlights of the AIDE method

1. Selectively leverage annotation information to increase the
precision and robustness of isoform discovery.

2. Practical probabilistic model to account for technical biases.

3. Conservatively identify isoforms that make statistically
significant contributions to explaining the observed RNA-seq
reads.

4. First method to control false discoveries by employing a
statistical testing procedure.

(prior knowledge, inaccurate)

A
(unobserved, truth) (observed, with noises) ) AIDE model —} Identified isoforms

Expressed isoforms | —Jp RNA-seq reads
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The stepwise selection in AIDE: two stages
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The stepwise selection in AIDE: two stages
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The stepwise selection in AIDE: two stages

annotated isoforms: non-annotated isoforms:
T C—
— T 1 I o —
[ ] s o |

Stage 1: candidates are annotated isoforms only

Initialization —>  Forward step <= Backward step

output&A
[T —
s |

Stage 2: candidates are all possible isoforms

Initialization =~ = Forwardstep &=~ Backward step

16



AIDE outperforms state-of-the-art methods

e Human embryonic stem cells
Input: lllumina RNA-seq data
e Evaluation: PacBio and Nanopore ONT RNA-seq data

ONT PacBio
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AIDE effectively reduces false discoveries in real data

e Data: breast cancer RNA-seq samples

e Six genes:
e isoforms identified only by Cufflinks but not by AIDE
e experimental validation (PCR)
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AIDE effectively reduces false discoveries in real data

e Data: breast cancer RNA-seq samples
e Six genes:
e isoforms identified only by Cufflinks but not by AIDE
e experimental validation (PCR)
e Four genes:
the isoforms uniquely predicted by Cufflinks were false

positives
a MTHFD2 b NPC2
1
I | | B e | I [PCR AIDE|Cufflinks | | | I I J-|PCR AIDE ufflinks
MTHFD2-201 + + + NPC2-207 + + -+
MTHFD2-203| - - + NPC2-205 - - +
C RBM7 d CD164
| = ] J|PCR AIDE [Cufflinks | e ] 1 | - )1 IIPCR AIDE Cufflinks
RBM7-203 + + + CD164-003 + + +
RBM7-208 - - + CD164-210 - - +
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AIDE discovers isoforms with biological significance

FGFR1
gene IH-HHHE--H | [<1-1-1HI PCR AIDE Cufflinks
isoform + e -

control experiments (suppress expression of the isoform)
MCF-7
sample
BT549
sample
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Summary of the AIDE method

e The first isoform discovery method that directly controls false
discoveries by implementing the statistical model selection
principle.

e Software: https://github.com/Vivianstats/AIDE

e Manuscript:

= bioRxiv

THE PREPRINT SERVER FOR BIOLOGY

AIDE: annotation-assisted isoform discovery and abundance estimation
from RNA-seq data

Wei Vivian Li, Shan Li, ©2 Xin Tong, Ling Deng, () Hubing Shi, Jingyi Jessica Li
doi: https://doi.org/10.1101/437350

In press at Genome Research.
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https://github.com/Vivianstats/AIDE

Isoform quantification: what are the isoform expression levels?

e More than 90% genes undergo alternative splicing in mammals

[Hooper, Human Genomics, 2014].

e At least 35% genetic diseases involve abnormal splicing
[Manning et al., Nature Reviews Mol. Cell Biol. 2017].

gene
laltemative splicing
isoforms ~ [AACGUCGUGCUG]CCGIAAUCAR [AAcGuCGU] CCG [AAUCAA
isoform A isoform B
(exon 2 included) (exon 2 excluded)
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Motivation: multiple human ESC RNA-seq samples

chrl; gene: TPR

-

sample

sample 2

sample 3

sample 4

sample 5

sample 6

186, 310, 00 186, 320, 000 186, 330, 00C 186, 340, 000

Coordinates

annotation

486,330,000 '
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How to combine multiple RNA-seq samples?

Given D RNA-Seq (technical or biological) replicate samples and
gene annotations, how to estimate the abundance of each
annotated isoform for every gene?
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Given D RNA-Seq (technical or biological) replicate samples and
gene annotations, how to estimate the abundance of each
annotated isoform for every gene?

e Apply a single-sample method to each sample separately and

then average the estimated isoform abundance across multiple
samples?
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How to combine multiple RNA-seq samples?

Given D RNA-Seq (technical or biological) replicate samples and
gene annotations, how to estimate the abundance of each
annotated isoform for every gene?

e Apply a single-sample method to each sample separately and
then average the estimated isoform abundance across multiple
samples?

e This does not fully use the multi-sample information to reduce
the variance in estimating isoform abundance

e Apply a single-sample method to a pooled sample from the D
samples?
e The estimated isoform abundance may be biased by outlier
samples
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Joint Modeling of Multiple RNA-seq Samples for Accurate Isoform
Quantification

24



e |t is necessary to consider the heterogeneity of different
samples to make robust isoform quantification
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e |t is necessary to consider the heterogeneity of different

samples to make robust isoform quantification

e MSIQ is able to identify a consistent group of samples that
are most representative of the biological condition
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e |t is necessary to consider the heterogeneity of different
samples to make robust isoform quantification

e MSIQ is able to identify a consistent group of samples that
are most representative of the biological condition

e MSIQ increases the accuracy of isoform quantification by
incorporating the information from multiple samples
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It is necessary to consider the heterogeneity of different
samples to make robust isoform quantification

MSIQ is able to identify a consistent group of samples that
are most representative of the biological condition

MSIQ increases the accuracy of isoform quantification by
incorporating the information from multiple samples

Our proposed hierarchical model is an umbrella framework
that are generalizable to incorporate more delicate
consideration of read generating mechanisms
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Paper and Software

MSIQ: joint modeling of multiple RNA-seq samples for
accurate isoform quantification

by Wei Vivian Li, Angi Zhao, Shihua Zhang, and Jingyi Jessica Li
Annals of Applied Statistics 12(1):510-539

R package MSIQ

http://github.com/Vivianstats/MSIQ
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Single-cell RNA-seq: dropout imputation &
experimental design




scRNA-seq vs. bulk RNA-seq at the gene level
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Dropout events in scRNA-seq

High-magnitude
outlier

Overdispersion

Dropout events

Log,o(RPM) in cell 1

Log,o(RPM) in cell 2

from [Kharchenko et al., Nature methods, 2014] 28



Dropout events in scRNA-seq

e A dropout event occurs when a transcript is expressed in a cell
but is entirely undetected in its mRNA profile

e Dropout events occur due to low amounts of mRNA in
individual cells

e The frequency of dropout events depends on scRNA-seq
protocols

e Fluidigm C1 platform: ~ 100 cells, ~ 1 million reads per cell
e Droplet microfluidics: ~ 10,000 cells, ~ 100K reads per cell
[Zilionis et al., Nature Protocols, 2017]

e Trade-off: given the same budget, more cells, more dropouts

29



Genome-wide explicit imputation for dropouts

Why do we need genome-wide explicit imputation methods?

Downstream analyses relying on the accuracy of gene expression
measurements:

o differential gene expression analysis
e identification of cell-type-specific genes

e reconstruction of differentiation trajectory

It is important to adjust/correct the false zero expression values
due to dropouts

30



Genome-wide explicit imputation for dro

Key points to consider:

e |t is not ideal to impute all gene expressions
e imputing expressions unaffected by dropout would introduce
new bias
e could also eliminate meaningful biological variation

e |t is inappropriate to treat all zero expressions as missing
values
e some zero expressions may reflect true biological
non-expression
e zero expressions can be resulted from gene expression
stochasticity
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Genome-wide explicit imputation for dro

Key points to consider:

e |t is not ideal to impute all gene expressions
e imputing expressions unaffected by dropout would introduce
new bias
e could also eliminate meaningful biological variation

e |t is inappropriate to treat all zero expressions as missing
values

e some zero expressions may reflect true biological
non-expression

e zero expressions can be resulted from gene expression
stochasticity

How to determine which values are affected by the dropout events?
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Our method: sclmpute

1. For each gene, to determine which expression values are most
likely affected by dropout events

2. For each cell, to impute the highly likely dropout values by
borrowing information from the same genes' expression in

similar cells

cellj selected cells other cells cellj

genesetA-. .DD.D.. D
'S EIEEE §Em ., B §

i &

B

[

expression
high

: i selectad Bl
H EEEE EEm

]
gene set Bj . .D.. ..D .
0 EEEE mE= []
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sclmpute steps

1. Detection of cell subpopulations and outlier cells

2. ldentification of dropout values
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sclmpute steps

3. Imputation of gene expression cell by cell

cell j

gene set Aj .

(missing) .

genesetB; [
(non-missing) D
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IDDIT
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BEEE
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]
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Example 1: ERCC spike-ins

sclmpute recovers the true expression of the ERCC spike-in
transcripts, especially low abundance transcripts that are impacted
by dropout events

e 3,005 cells from the mouse somatosensory cortex region
e 57 ERCC transcripts

cell 1 cell 2 cell 3 cell 4

Mmel

andwijos

log10(read count + 1)
Q2RND D @RV

1234 1234 1234 1234
log10(ERCC concentration)
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Example 2: cell clustering

4,500 peripheral blood mononuclear cells (PBMCs) from

high-throughput droplet-based system 10x genomics [Zheng et al.,
Nature communications, 2017]

Proportion of zero expression is 92.6%

raw sclmpute

2 *B
* Cytotoxic T (CT)
» Helper T (HT)
= J & « Monocyte (M)
S ;\n\" * Memory T (MT)

* Naive cytotoxic T (NcT)
» Natural killer (Nk)

s Naive T (NT)

» Regulatory T (RT)

-40 -20 [} 20 -40 20 [} 20
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Example 3: gene expression dynamics

Bulk and single-cell time-course RNA-seq data profiled at 0, 12,
24, 36, 72, and 96 h of the differentiation of embryonic stem cells
into definitive endorderm cells [Chu et al., Genome biology, 2016]

time point 00h 12h 24h 36h 72h 96h | total
scRNA-seq (cells) 92 102 66 172 138 188 | 758
bulk RNA-seq (replicates) | 0 3 3 3 3 3 15
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Example 3: gene expression dynamics

Correlation between gene expression in single-cell and bulk data

0.8 1

c
method

2 071
< raw
o
S sclmpute
o

0.6

0.5

12h 24h 36h 72h 96h
time
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Example 3: gene expression dynamics

Imputed read counts reflect more accurate gene expression

dynamics along the time course

sclmpute

sclmpute
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Conclusions

e sclmpute is a flexible and easily interpretable statistical
method that addresses the dropout events prevalent in
scRNA-seq data

e sclmpute focuses on imputing the missing expression values of
dropout genes, while retaining the expression levels of genes
that are largely unaffected by dropout events

e sclmpute is compatible with existing pipelines or downstream
analysis of scRNA-seq data, such as normalization, differential
expression analysis, clustering and classification

e sclmpute scales up well when the number of cells increases
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Paper and software

An accurate and robust imputation method sclmpute for
single-cell RNA-seq data

by Wei Vivian Li and Jingyi Jessica Li

Nature Communications 9:997

R package scImpute

https://github.com/Vivianstats/scImpute
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Real vs. semi-synthetic data

e Huang et al.

— real data
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Real vs. semi-synthetic data

real data
real data before imputation scmpute (published version 0.0.3) MAGIC SAVER
50
25
N
z
G o
-25
-25 0 25 -25 0 25
tSNE1
©  Astrocytes © Endothelial © Interneurons ©  Mural ©  S1-Pyramidal
© CA1-Pyramidal e Ependymal Microglia e Oligodendrocytes
Huang et al. semi-synthetic data
semi-synthetic dara before imputation ~ sclmpute (pre-publication version 0.0.2) MAGIC SAVER
20
~
zZ o
]
-20
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Benchmark standard

labels used in Huang et al .

0 1 2 3 4 5 6

CA1-Pyramidal 442 | 20 | 289 1 4 42 40
3 S1-Pyramidal 2 273 1 1 0 32 11
g Oligodendrocytes 0 0 0 282 0 62 2
"é Interneurons 5 7 2 0 220 | 6 1
§ Endothelial 0 0 0 0 1 0 14
g Microglia 0 0 0 0 0 0 6
% Mural 0 1 0 0 0 0 0
< |ependymal ol o|o|o]|o]| o] 7

Astrocytes 0 1 0 2 0 1 20
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scDesign: statistical simulator for experimental design

Simulation-based scRNA-seq experimental design

Advantages of scDesign:

e Protocol-adaptive and data-adaptive: learn from

e Public scRNA-seq data
e Pilot-study data

e Generate synthetic data that well mimic real data under a
pre-specified experimental setting

e Assist experimental design & method development
e Flexible in accommodating user-specific analysis needs

e No experimental cost
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Generative framework of scDesign

Legend
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Experimental design for gene differential expression

Astrocytes vs. Oligodendrocytes (Fluidigm C1)
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scDesign paper

Bioinformatics, 35, 2019, i41-i50
doi: 10.1093/bioinformatics/btz321
ISMB/ECCB 2019

A statistical simulator scDesign for rational
scRNA-seq experimental design
Wei Vivian Li' and Jingyi Jessica Li @ "2*

"Department of Statistics, University of California, Los Angeles, CA 90095-1554, USA and 2Department of Human
Genetics, University of California, Los Angeles, CA 90095-7088, USA

*To whom correspondence should be addressed.
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Bulk RNA-seq

e |soform identification: AIDE

e Isoform quantification: MSIQ

Single-cell RNA-seq

e Dropout imputation: sclmpute

e Simulator & experimental design: scDesign
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