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The central dogma of molecular biology

2018 marks the 60th anniversary of the central dogma:
DNA makes RNA makes proteins.

Francis Crick speaking at the 1963 CSH Symposium [Cobb, PLoS Biology, 2017]
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The central dogma of molecular biology

In transcription, a particular segment of DNA (combinations of exons) is
copied into RNA segments.
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Understanding genome functions
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Alternative splicing

In alternative splicing, particular exons of a gene may be included into or
excluded from a mature RNA isoform [Chow et al., Cell, 1977].
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Alternative splicing

In alternative splicing, particular exons of a gene may be included into or
excluded from a mature RNA isoform [Chow et al., Cell, 1977].
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ity in RNA isoform structures

Abnormal splicing can lead to genetic diseases.
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rsity in RNA isoform structures

Abnormal splicing can lead to genetic diseases.
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Understanding genome functions
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RNA sequencing (RNA-seq) technology
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RNA sequencing (RNA-seq) experiment
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RNA sequencing (RNA-seq) experiment
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RNA sequencing (RNA-seq) experiment
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Mapping RNA-seq reads to the reference genome
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Mapping RNA-seq reads to the reference genome
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Mapping RNA-seq reads to the reference genome
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Reference-based RNA-seq data analysis

1. Align RNA-seq reads to a reference genome

2. Analyze aligned reads at three levels

RNA-seq reads

S~
—

o

_{L_{L}n P

a — =
gene-level:__—_ Ea Ea

—
— i } Qi

b exon-level: b;
A } n2’z ™~ +n2

—
I

1 transcrip

t-level: ~ ambiguous

(&5} ‘

—===<C E—

11



Single-cell (sc) vs. bulk RNA-seq at the gene level
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Bulk RNA-seq: transcript/isoform discovery
& quantification



AIDE: annotation-assisted isoform discovery
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Isoform discovery: which isoforms are expressed?

e More than 90% genes undergo alternative splicing in mammals

[Hooper, Human Genomics, 2014].

e At least 35% genetic diseases involve abnormal splicing
[Manning et al., Nature Reviews Mol. Cell Biol. 2017].
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Isoform discovery: which isoforms are expressed?

RNA-seq data
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Challenge 1: large number of candidate isoforms

Variable size (# of candidate isoforms) = 2% of eons _ 1

RNA-seq data
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For this 4-exon gene, 2% — 1 = 15 candidate isoforms
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Challenge 2: great information loss

e RNA-seq reads are very short compared with full-length isoforms.

e Most RNA-seq reads do not uniquely map to a single isoform.
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Challenge 2: great information loss

e RNA-seq reads are very short compared with full-length isoforms.

e Most RNA-seq reads do not uniquely map to a single isoform.
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e Technical biases introduced into RNA-seq experiments.
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Existing isoform discovery methods

State-of-the-art methods for isoform discovery:

e SIIER [Jiang et al., Bioinformatics, 2009]

o Cufflinks [Trapnell et al., Nature Biotechnology, 2010]
e SLIDE [Li et al., Proc. Natl. Acad. Sci. 2011]

e StringTie [Pertea et al., Nature Biotechnology, 2015]

® - - -
Limitations:

1. Low accuracy for genes with complex splicing structures.

2. Difficult to improve isoform-level performance.

[Kanitz et al., Genome Biology, 2015]

3. Usage of annotations results in false positives.

18



Usage of annotations results in false positives

Annotated isoforms are experimentally validated:

gene

annotated isoforms

e Ensembl database: 203,903 isoforms
[Zerbino et al., Nucleic Acids Research, 2017]
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Usage of annotations results in false positives

Annotated isoforms are experimentally validated:

gene

annotated isoforms

e Ensembl database: 203,903 isoforms
[Zerbino et al., Nucleic Acids Research, 2017]
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False positives — false discoveries
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[Scannell et al., Nat. Rev. Drug Discov. 2012]  ,4



Highlights of the AIDE method

1. Selectively leverage annotation information to increase the precision
and robustness of isoform discovery.
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hlights of the AIDE method

1. Selectively leverage annotation information to increase the precision
and robustness of isoform discovery.

2. Practical probabilistic model to account for technical biases.

3. Conservatively identify isoforms that make statistically significant
contributions to explaining the observed RNA-seq reads.

4. First method to control false discoveries by employing a statistical
testing procedure.

(prior knowledge, inaccurate)

Annotation .
(precise)

(unobserved, truth) (observed, with noises) ) AIDE model —} Identified isoforms

Expressed isoforms | —Jp RNA-seq reads
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The stepwise selection in AIDE: two stages

annotated isoforms: non-annotated isoforms:
o o — cr—r——
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Stage 1: candidates are annotated isoforms only

Initialization ~ —>»  Forwardstep ==  Backward step
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The stepwise selection in AIDE: two stages
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The stepwise selection in AIDE: two stages

annotated isoforms: non-annotated isoforms:
e e C—
— s s |
e s i |

Stage 1: candidates are annotated isoforms only

Initialization —>  Forward step <= Backward step

output
IS I — —

Stage 2: candidates are all possible isoforms

Initialization —>  Forward step <= Backward step
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AIDE outperforms state-of-the-art methods

e Human embryonic stem cells
Input: lllumina RNA-seq data
e Evaluation: PacBio and Nanopore ONT RNA-seq data
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AIDE effectively reduces false discoveries in real data

e Data: breast cancer RNA-seq samples
e Six genes:

e isoforms identified only by Cufflinks but not by AIDE
e experimental validation (PCR)
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AIDE effectively reduces false discoveries in real data

e Data: breast cancer RNA-seq samples

e Six genes:
e isoforms identified only by Cufflinks but not by AIDE
e experimental validation (PCR)

e Four genes:
the isoforms uniquely predicted by Cufflinks were false positives

a MTHFD2 b NPC2
1
B0 I |PCR AIDE|Cufflinks | . P E-IPCR AIDE Cufflinks
MTHFD2-201 + o+ |+ NPC2-207 + o+ |+
MTHFD2-203 - - + NPC2-205 - - +
d RBM7 d cD164
| == 3 I J|PCR AIDE [Cufflinks I . ] } - IPCR AIDE Cufflinks
RBM7-203 + + | + CD164-003 + + | +
RBM7-208 - -+ CD164-210 - -+
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AIDE discovers isoforms with biological significance

gene IH-HH-HE--H | <}l PCR AIDE Cufflinks

isoform + -+ -
control experiments (suppress expression of the isoform)
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BT549 ‘,‘
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Summary of the AIDE method

e The first isoform discovery method that directly controls false
discoveries by implementing the statistical model selection principle.

(prior knowledge, inaccurate)

4
(oonasin ) e
(unobserved, truth) (observed, with noises) ) AIDE model —} Identified isoforms

Expressed isoforms | —Jp RNA-seq reads

e Software: https://github.com/Vivianstats/AIDE

e Manuscript:

AIDE: annotation-assisted isoform discovery and abundance estimation
from RNA-seq data

Wei Vivian Li, Shan Li, ©2 Xin Tong, Ling Deng, ‘=) Hubing Shi, Jingyi Jessica Li
doi: https://doi.org/10.1101/437350
. 27
Under review at Genome Research.


https://github.com/Vivianstats/AIDE

Isoform quantification: what are the isoform expression levels?

e More than 90% genes undergo alternative splicing in mammals

[Hooper, Human Genomics, 2014].

e At least 35% genetic diseases involve abnormal splicing
[Manning et al., Nature Reviews Mol. Cell Biol. 2017].

gene
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isoforms [AACGUCGU[GCUG[ CCG [AAUCAA [AACGUCGU[ CCG [AAUCAN
isoform A isoform B
(exon 2 included) (exon 2 excluded)
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Motivation: multiple human ESC RNA-seq samples

chrl; gene: TPR

sample 1

sample 2

sample 3

sample 4

sample 5

sample 6
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Coordinates
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How to combine multiple RNA-seq samples?

Given D RNA-Seq (technical or biological) replicate samples and gene
annotations, how to estimate the abundance of each annotated isoform
for every gene?
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How to combine multiple RNA-seq samples?

Given D RNA-Seq (technical or biological) replicate samples and gene
annotations, how to estimate the abundance of each annotated isoform
for every gene?

e Apply a single-sample method to each sample separately and then
average the estimated isoform abundance across multiple samples?

e This does not fully use the multi-sample information to reduce the
variance in estimating isoform abundance

e Apply a single-sample method to a pooled sample from the D
samples?

e The estimated isoform abundance may be biased by outlier samples
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Joint Modeling of Multiple RNA-seq Samples for Accurate Isoform
Quantification
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e It is necessary to consider the heterogeneity of different samples to
make robust isoform quantification
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e It is necessary to consider the heterogeneity of different samples to
make robust isoform quantification

e MSIQ is able to identify a consistent group of samples that are most
representative of the biological condition

e MSIQ increases the accuracy of isoform quantification by
incorporating the information from multiple samples

e Our proposed hierarchical model is an umbrella framework that are
generalizable to incorporate more delicate consideration of read
generating mechanisms
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Paper and Software

MSIQ: joint modeling of multiple RNA-seq samples for accurate
isoform quantification

by Wei Vivian Li, Anqi Zhao, Shihua Zhang, and Jingyi Jessica Li
Annals of Applied Statistics 12(1):510-539

R package MSIQ

http://github.com/Vivianstats/MSIQ
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Single-cell RNA-seq: dropout imputation




scRNA-seq vs. bulk RNA-seq at the gene level
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Dropout events in scRNA-seq

High-magnitude
outlier

Overdispersion

Log,o(RPM) in cell 1

Dropout events

Log,o(RPM) in cell 2

from [Kharchenko et al., Nature methods, 2014]
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Dropout events in scRNA-seq

e A dropout event occurs when a transcript is expressed in a cell but is
entirely undetected in its mRNA profile

Dropout events occur due to low amounts of mRNA in individual
cells

The frequency of dropout events depends on scRNA-seq protocols
e Fluidigm C1 platform: ~ 100 cells, ~ 1 million reads per cell
e Droplet microfluidics: ~ 10,000 cells, ~ 100K reads per cell [Zilionis
et al., Nature Protocols, 2017]

Trade-off: given the same budget, more cells, more dropouts
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Statistical methods for scRNA-seq data analysis

e Clustering / cell type identification
e SNIN-Cliq [Xu et al., Bioinformatics, 2015]: uses the ranking of
genes to construct a graph and learn cell clusters
e CIDR [Lin et al., Genome Biology, 2017]: incorporates implicit
imputation of dropout values

e Cell relationship reconstruction
e Seurat [Satija et al., Nature biotechnology, 2015]: infers the spatial
origins of cells from their scRNA-seq data and a spatial reference
map of landmark genes, whose expressions are imputed based on
highly variable genes

e Dimension reduction

e ZIFA [Pierson et al., Genome biology, 2015]: accounts for dropout
events based on an empirical observation: dropout rate of a gene
depends on its mean expression level in the population

37



Genome-wide explicit imputation for dropouts

Why do we need genome-wide explicit imputation methods?

Downstream analyses relying on the accuracy of gene expression
measurements:

e differential gene expression analysis
e identification of cell-type-specific genes

e reconstruction of differentiation trajectory

It is important to adjust/correct the false zero expression values due to
dropouts
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Genome-wide imputation methods for scRNA-seq

MAGIC [Dijk et al., Cell, 2018]:

e the first method for explicit and genome-wide imputation of
scRNA-seq gene expression data

e imputes missing expression values by sharing information across
similar cells

e creates a Markov transition matrix, which determines the weights of
the cells

SAVER [Huang et al., Nature Methods, 2018]:
e borrows information across genes using a Bayesian approach
Drimpute [Kwak et al., bioRxiv, 2017]:

e borrows information across cells by averaging multiple imputation
results

and several other recent methods available on bioRxiv
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Genome-wide imputation methods for scRNA-seq

Limitations of aforementioned methods:

e |t is not ideal to impute all gene expressions
e imputing expressions unaffected by dropout would introduce new bias
e could also eliminate meaningful biological variation

e It is inappropriate to treat all zero expressions as missing values

e some zero expressions may reflect true biological non-expression
e zero expressions can be resulted from gene expression stochasticity
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Genome-wide imputation methods for scRNA-seq

Limitations of aforementioned methods:

e |t is not ideal to impute all gene expressions
e imputing expressions unaffected by dropout would introduce new bias
e could also eliminate meaningful biological variation

e It is inappropriate to treat all zero expressions as missing values

e some zero expressions may reflect true biological non-expression
e zero expressions can be resulted from gene expression stochasticity

How to determine which values are affected by the dropout events?
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Our method: sclmpute

1. For each gene, to determine which expression values are most likely
affected by dropout events

2. For each cell, to impute the highly likely dropout values by borrowing
information from the same genes’ expression in similar cells

cellj selected cells other cells cell j

genesetA-. .DD.D.. D expres§ion
‘'H HEOR OEE ]

H EEER : D..Withselerc&s
gereset 5; [l [N - Bl
I EEEE EEE

imputation

41



Example 1: ERCC spike-ins

sclmpute recovers the true expression of the ERCC spike-in transcripts,
especially low abundance transcripts that are impacted by dropout events

e 3,005 cells from the mouse somatosensory cortex region
e 57 ERCC transcripts

. cell 1 cell 2 cell 3 cell 4

-

+ 41

— 34 =
S 2 g
O 11

o ]

®

S 4 8
£ 3 3
o 21 S
=1
9o 0

1234 1234 1234 1234
log10(ERCC concentration)
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Example 2: cell clustering

4,500 peripheral blood mononuclear cells (PBMCs) from
high-throughput droplet-based system 10x genomics [Zheng et al., Nature

communications, 2017]

Proportion of zero expression is 92.6%

sclmpute

1a

*B
* Cytotoxic T (CT)
» Helper T (HT)
= Monocyte (M)
* Memory T (MT)
Naive cytotoxic T (NcT)
s Natural killer (Nk)
» Naive T (NT)
» Regulatory T (RT)
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Example 3: gene expression dynamics

Bulk and single-cell time-course RNA-seq data profiled at 0, 12, 24, 36,
72, and 96 h of the differentiation of embryonic stem cells into definitive
endorderm cells [Chu et al., Genome biology, 2016]

time point 00h 12h 24h 36h 72h 96h | total
scRNA-seq (cells) 92 102 66 172 138 188 | 758
bulk RNA-seq (replicates) | 0 3 3 3 3 3 15
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Example 3: gene expression dynamics

Correlation between gene expression in single-cell and bulk data

0.84
5 07 method
8 raw
<l
S sclmpute
(8]

0.6

0.5

12h 24h 36h 72h 96h
time
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Example 3: gene expression dynamics

Imputed read counts reflect more accurate gene expression dynamics
along the time course

o raw sclmpute raw sclmpute
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Conclusions

e sclmpute is a flexible and easily interpretable statistical method that
addresses the dropout events prevalent in scRNA-seq data

e sclmpute focuses on imputing the missing expression values of
dropout genes, while retaining the expression levels of genes that are
largely unaffected by dropout events

e sclmpute is compatible with existing pipelines or downstream
analysis of scRNA-seq data, such as normalization, differential
expression analysis, clustering and classification

e sclmpute scales up well when the number of cells increases
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Paper and Software

An accurate and robust imputation method sclmpute for single-cell
RNA-seq data

by Wei Vivian Li and Jingyi Jessica Li

Nature Communications 9:997

R package scImpute

https://github.com/Vivianstats/scImpute
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Real vs. semi-synthetic data

® Huang et al.
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Real vs. semi-synthetic data
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real data before imputation scimpute (published version 0.0.3) MAGIC SAVER
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Benchmark standard

labels used in Huang et al .
0 1 2 3 4 5 6

CA1-Pyramidal 442 | 20 | 289 1 4 42 | 40
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