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Single Cell RNA Sequencing (scRNA-seq)

Single Cell RNA Sequencing Workflow
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scRNA-seq vs. Bulk RNA-seq
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Dropout Events in scRNA-seq

High-magnitude
outlier

Overdispersion

Log,y(RPM) in cell 1

Dropout events

Log,o(RPM) in cell 2

from [Kharchenko et al., 2014] Nature Methods



Dropout Events in scRNA-seq

= A dropout event occurs when a transcript is expressed in a cell but is
entirely undetected in its mRNA profile

= Dropout events occur due to low amounts of mRNA in individual
cells

= The frequency of dropout events depends on scRNA-seq protocols

= Fluidigm C1 platform: ~ 100 cells, ~ 1 million reads per cell
= Droplet microfluidics: ~ 10,000 cells, ~ 100K reads per cell
[Zilionis et al., 2017]

= Trade-off: given the same budget, more cells, more dropouts ®



Statistical Methods for scRNA-seq Data

No Imputation or Implicit Imputation for Dropouts

= Clustering / cell type identification
CIDR: incorporates implicit imputation of dropout values
[Lin et al., 2017]
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CIDR: incorporates implicit imputation of dropout values
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= for each cell /, find a threshold T;
= entries larger than T; are expressed entries
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= fit empirical dropout rate vs. average expressed entries: Is(u)



Statistical Methods for scRNA-seq Data

No Imputation or Implicit Imputation for Dropouts

= Clustering / cell type identification
CIDR: incorporates implicit imputation of dropout values
[Lin et al., 2017]
= for each cell /, find a threshold T;
= entries larger than T; are expressed entries
= entries smaller than T; are candidate dropouts
= fit empirical dropout rate vs. average expressed entries: Is(u)
= for gene k and each pair of cells / and j,
X = (1 = P(Xiy)) Xy + P(Xig)Xii
= calculate dissimilarity measure between X.; and X ;



Statistical Methods for scRNA-seq Data

No Imputation or Implicit Imputation for Dropouts
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Statistical Methods for scRNA-seq Data

No Imputation or Implicit Imputation for Dropouts

= Cell relationship reconstruction

= Seurat: infers the spatial origins of cells from their scRNA-seq data
and a spatial reference map of landmark genes, whose expressions
are imputed based on highly variable genes [Satija et al., 2015]

= Dimension reduction

= ZIFA: accounts for dropout events based on an empirical
observation: dropout rate of a gene depends on its mean expression
level in the population [Pierson and Yau, 2015]

= Dropout rate p = exp(—Au?).



Genome-wide Explicit Imputation for Dropouts

Why do we need genome-wide explicit imputation methods?

Downstream analyses relying on the accuracy of gene expression
measurements:

= differential gene expression analysis
= identification of cell-type-specific genes

= reconstruction of differentiation trajectory

It is important to correct the false zero expression due to dropout events.

&
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Genome-wide Imputation Methods for scRNA-seq

MAGIC: the first method for explicit and genome-wide imputation of
scRNA-seq gene expression data [van Dijk et al., 2017]

= imputes missing expression values by sharing information across
similar cells

e Distj y2
= similarity between two cells A; = e (=)
= transform the similarity matrix A into a Markov transition matrix M

= raise the Markov matrix to the power of t: M, which determines
the weights of the cells

&
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Genome-wide Imputation Methods for scRNA-seq

SAVER:

= borrows information across genes using a Bayesian approach
[Huang et al., 2017]

Drlmpute:

= borrows information across cells by averaging multiple imputation
results [Kwak et al., 2017]
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Genome-wide Imputation Methods for scRNA-seq

Limitations of aforementioned methods:

= [t is not ideal to impute all gene expressions.

= imputing expressions unaffected by dropout would introduce new bias
= could also eliminate meaningful biological variation

= |t is inappropriate to treat all zero expressions as missing values

= some zero expressions may reflect true biological non-expression
= zero expressions can be resulted from gene expression stochasticity

&
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Genome-wide Imputation Methods for scRNA-seq

Limitations of aforementioned methods:

= [t is not ideal to impute all gene expressions.

= imputing expressions unaffected by dropout would introduce new bias
= could also eliminate meaningful biological variation

= |t is inappropriate to treat all zero expressions as missing values

= some zero expressions may reflect true biological non-expression
= zero expressions can be resulted from gene expression stochasticity

How to determine which values are affected by the dropout events?

&
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sclmpute



1. For each gene, to determine which expression values are most likely
affected by dropout events

2. For each cell, to impute the highly likely dropout values by borrowing
information from the same genes’ expression in similar cells

cellj  selected cells other cells cellj

gene set A; . .DD. EE: E ex.prezsic;n
'H HEON i

imputation

. .... : |:l..withselercals.
gene set B; . .D.. ..D .
0 BEEE EE= ]



Data Preprocessing

Input: A normalized and log transformed gene expression matrix X«

= [ genes
= Jcells
= Expression of gene i in cell j: Xj; >0
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Three example mouse genes and the distributions of their expressions across ®
268 single cells [Deng et al., 2014]
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sclmpute Step I: Detection of Cell Subpopulations and Outliers

1. Perform PCA (principal component analysis) on matrix X for
dimension reduction.
2. Calculate the Euclidean distance matrix D between the cells.
3. Detect outlier cells based on the distance matrix.
= The outlier cells could be a result of technical error or bias.
= The outlier cells may also represent real biological variation as rare
cell types.
4. Cluster the cells (excluding outliers) into K groups by spectral
clustering.

= The candidate neighbor set of cell j is denoted as N,.

&
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sclmpute Step Il: Iden ation of Dropout Values
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Observed expression distribution under three cell conditions in the human ESC ®
data [Chu et al., 2016].
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sclmpute Step IlI: Identification of Dropout Values

1. For each gene i, we model its expression in cell population k as a
random variable with density function
fuw (x) = /\,(-k)Gamma (X; Oé,(k),ﬁ,-(k)) + (l — /\Ek)> Normal (X; p(k), crf”) ,

i

. )\Ek) is gene i's dropout rate in cell population k.
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sclmpute Step IlI: Identification of Dropout Values

1. For each gene i, we model its expression in cell population k as a
random variable with density function

i i

f>¢“(X) - /\,(-k)Gamma (X;O‘Ek)vﬂfk)) + (1 = /\Ek)> Normal (x; p(k),a(k)> ;

. )\Ek) is gene i's dropout rate in cell population k.
= z; =1 if gene i is a dropout in cell j; z; = 0 otherwise.
- Plzj=1)= X"
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sclmpute Step IlI: Identification of Dropout Values

1. For each gene i, we model its expression in cell population k as a
random variable with density function

i i

f>¢“(X) - /\,(-k)Gamma (X;O‘Ek)vﬂfk)) + (1 = /\Ek)> Normal (x; p(k),a(k)> ;

. )\Ek) is gene i's dropout rate in cell population k.
= z; =1 if gene i is a dropout in cell j; z; = 0 otherwise.
- Plzj=1)= X"

log-likelihood = szk; {H{ij:1} log (Gamma (Xij' O‘,('k)» i(k)>>

+ I{zj—0} log (Normal (X,-j; nes Ufk))) }

&
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sclmpute Step IlI: Identification of Dropout Values

2. After estimation with the Expectation-Maximization (EM) algorithm,
the dropout probability of gene iin cell j can be estimated as

S\(k)Gamma (X fk),ﬂf )>
3‘ Gamma ( k 5(k)> ( S\Ek ) Normal (Xij; ﬁﬁk’,afk)) '

d; =

&
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sclmpute Step IlI: Identification of Dropout Values

2. After estimation with the Expectation-Maximization (EM) algorithm,
the dropout probability of gene iin cell j can be estimated as

S\(k)Gamma (X,-j;&
3‘ Gamma ( k 5(k)> ( — k)) Normal (Xij; ﬁﬁk’,afk)) '

d; =

= Each gene j has an estimated overall dropout rate 3\,-, which does not
depend on individual cells.

= The estimated dropout probabilities dj; (j = 1,2,..., Jk) may vary
among different cells.

&

20



sclmpute Step IlI: Identification of Dropout Values
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Observed and fitted expression distribution under three cell conditions in the ®
human ESC data [Chu et al., 2016].
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sclmpute Step Il: Iden ation of Dropout Values

1. For each cell j, we select a gene set A; in need of imputation:
Aj:{ild,'jzt},

where t is a threshold on dropout probabilities. This also results in a
gene set

Bi={i:dj<t},
that have accurate gene expression with high confidence and do not

need imputation.

cell 1 cell 2 cell 3 cell 4

proportion of genes

000 025 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 025 0.50 0.75 1.00
dropout probability

The distribution of dropout probabilities in four randomly selected cells ®

from the mouse embryo data [Deng et al., 2014].
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sclmpute Step Ill: Imputation of Gene Expressions Cell by Cell

2. We learn which cells in the candidate neighbor set /\/; are similar to

cell j from the gene set B; by the non-negative least squares (NNLS)
regression:

BY = argmin || X5, — XBJ.,NJ.BU)H%, subject to Y > 0.
30
where

= Xp, jis a vector representing the B; rows in the j-th column of X
= Xg, y; is a sub-matrix of X with dimensions |B;| x |Nj|

= cell min the neighbor set is selected to impute cell j only if B,(;’,) >0

&
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sclmpute Step Ill: Imputation of Gene Expressions Cell by Cell

2. We learn which cells in the candidate neighbor set /\/; are similar to
cell j from the gene set B; by the non-negative least squares (NNLS)
regression:

BY = argmin || X5, — XB,-,NjﬁU)H%, subject to Y > 0.
30
where

= Xp, jis a vector representing the B; rows in the j-th column of X
= Xg, y; is a sub-matrix of X with dimensions |B;| x |Nj|
= cell min the neighbor set is selected to impute cell j only if B,(;’,) >0

3. The estimated coefficients B(j) from the set B; are used to impute
the expression of gene set A; in cell j:

5( _ X,_, i€ Bj,
/ )(,'J\/j.,ém7 i€ Aj. ®
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Results



sclmpute Recovers the Dropout Events

sclmpute recovers the true expression of the ERCC spike-in transcripts,
especially low abundance transcripts that are impacted by dropout
events.

= 3,005 cells from the mouse somatosensory cortex region
= 57 ERCC transcripts

cell 1 cell 2 cell 3 cell 4

Mmel

andwi|os

log10(count+1)
O—=NWh O=NDW>H

1234 1234 1234 12334 &
log10(concentration)
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sclmpute Recovers the Dropout Events

sclmpute correctly imputes the dropout values of cell-cycle genes.

= 892 annotated cell-cycle genes

= 182 embryonic stem cells (ESCs) that had been staged for cell-cycle
phases (G1, S and G2M)

AA960436 Cdc25b Cdc25¢
Hrre (T
! : B Gi(raw)
= [1G1(scimpute)
30 - B G2M(raw)
k) B Gam(scimpute)
=] Katnb1 Mad1l1 Troap B s(raw)
B

N

ULvDi i

o

&
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sclmpute Recovers the Dropout Events

Settings

= Three cell types ¢1, ¢, and ¢z, each with 50 cells

= Among a total of 20,000 genes, 810 genes are truly differentially
expressed, with 270 having higher expression in each cell type

Procedures

= complete data: simulate gene expression values from normal
distributions and shift the mean expression of DE genes.

= raw data: zero values are randomly introduced into the count
matrix. The dropout rate of gene i is

Ai=exp (—0.1 x (X;)?) ,
as assumed in [Pierson and Yau, 2015] ®
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sclmpute Recovers the Dropout Events

a complete raw sclmpute MAGIC SAVER
g 3 1)
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= The relationships among the 150 cells are clarified after we apply
scilmpute.
n

The imputed data by scimpute lead to a clearer comparison between ®
the up-regulated genes in different cell types.
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sclmpute Helps Define Cell Types in Real Data

268 single cells from mouse preimplantation embryos [Deng et al., 2014]

zygote (4 cells)

early 2-cell stage (8 cells)
middle 2-cell stage (12 cells)
late 2-cell stage (10 cells)
4-cell stage (14 cells)

8-cell stage (37 cells)

16-cell stage (50 cells)

early blastocyst (43 cells)

© © N o 0 s~ w D=

middle blastocyst (60 cells)

—
S

late blastocyst (30 cells)

70.0% entries in the gene expression matrix are 0 8
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sclmpute H

Define Cell Types in Real Data

raw sclmpute MAGIC SAVER
50 0
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sclmpute Helps Define Cell Types in Real Data

4,500 peripheral blood mononuclear cells (PBMCs) from
high-throughput droplet-based system 10x genomics [Zheng et al., 2017]

Proportion of zero expression is 92.6%

» B

Cytotoxic T
Helper T
Monocyte
Memory T

Naive cytotoxic T
Natural killer
Naive T

» Regulatory T

dim2
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sclmpute Helps Define Cell Types in Real Data

raw sclmpute

Ta

*B

* Cytotoxic T (CT)

» Helper T (HT)

» Monocyte (M)

* Memory T (MT)

* Naive cytotoxic T (NcT)
» Natural killer (Nk)

* Naive T (NT)

» Regulatory T (RT)

dim2

-40 20 [} 20 40 20 [} 20

dim1 dim1

The first two dimensions of the t-SNE results calculated from raw and imputed
PBMC dataset.
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sclmpute Assists Differential Gene Expression Analysis

Both single-cell and bulk RNA-seq data from human embryonic stem cells
(ESC) and definitive endorderm cells (DEC) [Chu et al., 2016]

= 6 samples of bulk RNA-seq (4 in H1 ESC and 2 in DEC)
= 350 samples (cells) of scRNA-seq (212 in H1 ESC and 138 in DEC)

The percentage of zero gene expression

= 14.8% in bulk data
= 49.1% in single-cell data

Differentially expressed (DE) genes are identified using DESeq2 and MAST

&
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Differential gene expression analysis

Fscore precision recall
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sclmpute Assists Pattern Recognition in Timecourse

scRNA-seq Data

Bulk and single-cell time-course RNA-seq data profiled at 0, 12, 24, 36,
72, and 96 h of differentiation during DEC emergence [Chu et al., 2016]

time point 00h 12h 24h 36h 72h 96h | total
scRNA-seq (cells) 92 102 66 172 138 183 | 758
bulk RNA-seq (replicates) | 0 3 3 3 3 3 13
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sclmpute Assists Pattern Recognition in Timecourse

scRNA-seq Data

Correlation between gene expression in single-cell and bulk data

0.8 1
5 0.7 method
® raw
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S sclmpute
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12h 24h 36h 72h 96h
time ®
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sclmpute Assists Pattern Recognition in Timecourse

scRNA-seq Data

Imputed read counts reflect more accurate transcriptome dynamics along the

time course.
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Paper and Software

sclmpute: Accurate And Robust Imputation For Single Cell
RNA-Seq Data

by Wei Vivian Li and Jingyi Jessica Li

https://doi.org/10.1101/141598
(accepted by Nature Communications)

R package scImpute

https://github.com/Vivianstats/scImpute

&
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