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Abstract 

A central task in expression quantitative trait locus analysis is to identify cis-eGenes, i.e., 
genes whose expression levels are regulated by at least one local genetic variant. Exist-
ing cis-eGene identification methods are either computationally expensive, requiring 
thousands of permutations per gene (FastQTL), or statistically underpowered (eigenMT 
and TreeQTL). We propose ClipperQTL, which requires only one permutation for data 
sets with large sample sizes (>450; ClipperQTL works on smaller data sets too). We 
show that ClipperQTL performs as well as FastQTL and runs up to 500 times faster. The 
R package ClipperQTL is available at https://​github.​com/​heath​erjzh​ou/​Clipp​erQTL.

Background
Molecular quantitative trait locus (molecular QTL, henceforth “QTL”) analysis investi-
gates the relationship between genetic variants and molecular traits, helping explain the 
molecular functions of non-coding genetic variants found in genome-wide association 
studies [1, 2]. Based on the type of molecular phenotype studied, QTL analyses can be 
categorized into gene expression QTL (eQTL) analyses [3–5], alternative splicing QTL 
(sQTL) analyses [4], three prime untranslated region alternative polyadenylation QTL 
(3′aQTL) analyses [6], and so on [1, 2]. Among these categories, eQTL analyses, which 
investigate the association between genetic variants and gene expression levels, are 
the most common. Therefore, in this work, we focus on eQTL analyses as an example, 
although everything discussed in this work should in principle apply to other types of 
QTL analyses as well.

A central task in eQTL analysis is to identify cis-eGenes (henceforth “eGenes”), i.e., 
genes whose expression levels are regulated by at least one local genetic variant (Prob-
lem section). Typically, the genetic variants considered are single nucleotide polymor-
phisms (SNPs), and “local” means within one megabase of the transcription start site of 
a gene. This task presents a unique multiple-testing challenge because not only are there 
many candidate genes, each gene can have up to tens of thousands of local SNPs, and the 
local SNPs are often in linkage disequilibrium (i.e., associated) with one another.
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The eGene identification task is related to but distinct from two other kinds of 
commonly performed eQTL analysis: a generic analysis that treats every gene-SNP 
pair as an equal testing unit (e.g., Matrix eQTL [7]), and a fine-mapping analysis that 
assumes a gene is an eGene and seeks to find out which of its local SNPs are causal 
(e.g., SuSiE [8]). In practice, a reasonable pipeline would be to first run an eGene iden-
tification method and then perform a fine-mapping analysis on each identified eGene 
[4]. While Matrix eQTL can be naively used to call eGenes (one may simply call as 
eGenes all genes that appear at least once in the significant gene-SNP pairs; Addi-
tional file 1: Section S1.1), it is not designed for this purpose, and both our simulation 
study (Simulation results section) and Huang et al. [9] show that this naive approach 
cannot control the false discovery rate (FDR) in the eGene identification problem.

Existing methods that are specifically designed for eGene identification include 
FastQTL [10], eigenMT [11], and TreeQTL [12]. All three methods share the same 
two-step approach: first, obtain a gene-level P value for each gene; second, apply an 
FDR control method on the gene-level P  values to call eGenes. The key difference 
between the three methods lies in how the gene-level P values are obtained.

Among these methods, FastQTL [10] is the most popular. It uses permutations to 
obtain gene-level P values. There are four main ways to use FastQTL, depending on 
(1) whether the direct or the adaptive permutation scheme is used and (2) whether 
proportions or beta approximation is used (Table  1). The default way of using 
FastQTL is to use the adaptive permutation scheme with beta approximation [4, 10]. 
The adaptive permutation scheme means that the number of permutations is chosen 
adaptively for each gene (between 1000 and 10,000 by default [4, 10]); beta approxi-
mation helps produce higher-resolution gene-level P values given the number of per-
mutations (Additional file 1: Section S1.2). The main drawback of FastQTL is the lack 
of computational efficiency, since it requires thousands of permutations for each gene. 
A faster implementation of FastQTL named tensorQTL has been developed [13], but 

Table 1  Summary of the eGene identification methods we compare

Details of these methods can be found in the ClipperQTL section and Additional file 1: Section S1

Method category Method Note Method name for 
speed comparison

(A) (B) (C) (D)

1 Matrix eQTL Matrix eQTL

2 FastQTL FastQTL_1K-10K_prop FastQTL_1K-10K

3 FastQTL_1K-10K_beta Default FastQTL method FastQTL_1K-10K

4 FastQTL_1K_prop FastQTL_1K

5 FastQTL_1K_beta FastQTL_1K

6 tensorQTL tensorQTL_10K_beta Default tensorQTL method tensorQTL_10K

7 eigenMT eigenMT eigenMT

8 TreeQTL TreeQTL_BY Default TreeQTL method TreeQTL

9 TreeQTL_Storey TreeQTL

10 ClipperQTL ClipperQTL_standard_1K ClipperQTL_standard_1K

11 ClipperQTL_Clipper_1 ClipperQTL_Clipper_1

12 ClipperQTL_Clipper_20 ClipperQTL_Clipper_20
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it relies on graphics processing units (GPUs), which are more expensive than central 
processing units (CPUs) and not universally available.

eigenMT [11] and TreeQTL [12] have been proposed as faster alternatives to FastQTL. 
Neither method uses permutations. In a nutshell, eigenMT uses Bonferroni correction 
to calculate a gene-level P value for each gene, but instead of using the actual numbers 
of local SNPs, it estimates the effective number of local SNPs for each gene by perform-
ing a principal-component-like analysis (Additional file 1: Section S1.3). This is done for 
better power because the actual number of local SNPs for a gene is often substantially 
greater than the effective number of local SNPs due to linkage disequilibrium. TreeQTL, 
on the other hand, uses Simes’ rule [14] to calculate a gene-level P value for each gene 
(Additional file 1: Section S1.4). Our analysis shows that both eigenMT and TreeQTL 
have lower power than FastQTL (Figs. 1 and 4).

Fig. 1  Number of eGenes comparison based on GTEx bulk data [4] (Table 1; see Data preparation and 
analysis section for the analysis details). Each dot corresponds to a tissue. The x-axis and y-axis both represent 
numbers of eGenes identified by different methods. Diagonal lines through the origin are shown to help 
with visualization. a–c The four variants of FastQTL identify almost the same numbers of eGenes as one 
another. d–f eigenMT and TreeQTL methods identify fewer eGenes than FastQTL. g–i ClipperQTL methods 
identify almost the same numbers of eGenes as FastQTL in tissues with the appropriate sample sizes 
(ClipperQTL section). We use 465 as the sample size cutoff because the next largest sample size is 396. See 
Additional file 1: Fig. S2 for an analysis of the overlap between identified eGenes
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Clipper [15] is a P value-free FDR control method. Given a large number of features 
(e.g., genes), a number of measurements under the experimental (e.g., treatment) con-
dition, and a number of measurements under the background (e.g., control) condition, 
Clipper works as the following: first, obtain a contrast score for each feature based on 
the experimental and background measurements (for example, the contrast score may 
be the average of the experimental measurements minus the average of the background 
measurements); second, given a target FDR (e.g., 0.05), obtain a cutoff for the contrast 
scores; lastly, call the features with contrast scores above the cutoff as discoveries. The 
idea is that the contrast scores of the uninteresting features (e.g., genes whose expected 
expression levels are not increased by the treatment) will be roughly symmetrically dis-
tributed around zero, and the outlying contrast scores in the right tail likely belong to 
interesting features. Notably, Clipper produces a q value for each feature (similar to Sto-
rey’s q values [16]), so that the features can be ranked from the most significant to the 
least significant.

In this work, we propose ClipperQTL for eGene identification, which reduces the 
number of permutations needed from thousands to one for data sets with large sam-
ple sizes ( > 450 ) by using the contrastive strategy developed in Clipper; for data sets 
with smaller sample sizes, ClipperQTL uses the same permutation-based approach as 
FastQTL. Using GTEx bulk RNA-seq data [4], OneK1K single-cell RNA-seq data [5], 
and simulated data, we show that ClipperQTL performs as well as FastQTL and runs up 
to 500 times faster if the contrastive strategy is used and 50 times faster if the conven-
tional permutation-based approach is used (we refer to the two variants of ClipperQTL 
as the Clipper variant and the standard variant, respectively; ClipperQTL section). Clip-
perQTL does not rely on GPUs, but it is still up to 30 times more computationally effi-
cient than tensorQTL, a GPU-based implementation of FastQTL.

Results
Real data results

We compare the performance and run time of different variants of FastQTL, eigenMT, 
TreeQTL, and ClipperQTL (Table  1) on both GTEx bulk [4] and OneK1K single-cell 
[5] expression data. The data preparation and analysis details are described in the Data 
preparation and analysis section. Following standard practice [5, 17], we analyze the sin-
gle-cell data in a pseudo-bulk manner. The GTEx data contains 49 individual-by-gene 
expression matrices, one for each tissue; the sample sizes (numbers of individuals) range 
from 73 to 706, and the numbers of genes range from 20,315 to 26,854 (except that testis 
has 35,007 genes). The OneK1K data contains 12 individual-by-gene expression matri-
ces, one for each cell type; the sample sizes range from 933 to 981, and the numbers 
of genes range from 477 to 9643. That is, the OneK1K expression matrices have larger 
sample sizes but smaller numbers of genes than the GTEx expression matrices (due to 
zeros in the single-cell count data; Data preparation and analysis  section). We do not 
include Matrix eQTL [7] in our real data comparison because both our simulation study 
(Simulation results section) and Huang et al. [9] show that Matrix eQTL cannot control 
the FDR in the eGene identification problem.

The results from the GTEx data are summarized in Figs.  1 and 2 and Additional 
file  1: Fig. S2. We find that the four variants of FastQTL produce almost identical 
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results as one another. Specifically, the numbers of eGenes identified by the four 
methods are almost identical (Fig. 1), and the identified eGenes highly overlap (Addi-
tional file 1: Fig. S2). This means the adaptive permutation scheme and beta approxi-
mation of FastQTL (Additional file 1: Section S1.2) are not critical to the performance 
of FastQTL; the simplest variant, FastQTL_1K_prop, is sufficient. To the best of 
our knowledge, this is the first time that this has been discovered in the literature. 
Further, we find that eigenMT and TreeQTL methods identify fewer eGenes than 
FastQTL (Fig. 1). In contrast, ClipperQTL methods produce almost identical results 
as FastQTL in tissues with the appropriate sample sizes (ClipperQTL section; Fig. 1 
and Additional file 1: Fig. S2). In terms of run time comparison (Fig. 2), we find that 
eigenMT has little computational advantage over FastQTL, and TreeQTL has no 
computational advantage over the standard variant of ClipperQTL (which is slower 
than the Clipper variant of ClipperQTL). Both the standard variant and the Clipper 
variant of ClipperQTL are orders of magnitude faster than FastQTL. In particular, the 
standard variant of ClipperQTL is about five times faster than FastQTL_1K_prop—
the simplest FastQTL method—even though the algorithms are equivalent (Clip-
perQTL  section); we attribute this to differences in software implementation (for 
example, we aggregate correlations of vectors into correlations of matrices). Com-
pared to the default FastQTL method, the standard variant and the Clipper variant of 
ClipperQTL are about 50 times and 500 times faster, respectively. In addition, Clip-
perQTL is up to 30 times more computationally efficient than tensorQTL, a GPU-
based implementation of FastQTL (Fig. 2).

The results from the OneK1K data (Fig.  3) confirm our findings from the GTEx 
data. When the sample size is large enough (which is the case in the OneK1K data), 
the Clipper variant of ClipperQTL with only one permutation produces nearly identi-
cal results as FastQTL and takes less than one-hundredth of the time to run. Since the 

Fig. 2  Run time comparison based on GTEx bulk data [4] (Table 1; see Data preparation and analysis section 
for the analysis details). Each dot corresponds to a tissue. FastQTL_1K-10K takes under 500 CPU hours. 
ClipperQTL_standard_1K takes under 10 CPU hours. ClipperQTL_Clipper_1 and ClipperQTL_Clipper_20 take 
under 1 CPU hour. Run times of ClipperQTL_Clipper_1 and ClipperQTL_Clipper_20 are only shown for tissues 
with sample sizes ≥ 465 (Fig. 1). The GPU run time of tensorQTL is converted to CPU run time by a factor of 20 
based on the current relative costs of GPUs vs. CPUs on Amazon Web Services (AWS)
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run time of FastQTL grows at least linearly with the total number of genes and the 
run time of ClipperQTL is nearly constant (Fig. 3b), we believe that the computational 
advantage of ClipperQTL would have been even more substantial if more genes had 
remained after filtering in the OneK1K data (Data preparation and analysis section).

Simulation results

In our simulation study, we approximately follow the data simulation in the second, 
more realistic simulation design of Zhou et  al. [18], which approximately follows the 
data simulation in Wang et al. [8]. We simulate three data sets in total. Each data set is 
simulated according to Additional file 1: Algorithm S5 with sample size n = 838 , num-
ber of genes p = 1000 , number of covariates K = 20 , proportion of variance explained 
by genotype in eGenes PVEGenotype = 0.02 (cis effect only), and proportion of vari-
ance explained by covariates PVECovariates = 0.5 . PVEGenotype = 0.02 is in line 
with the settings in Zhou et al. [18] and Wang et al. [8]; a low PVEGenotype helps dif-
ferentiate the different methods in terms of power (Fig. 4a). All covariates are assumed 
to be known covariates.

The results from our simulation study are summarized in Fig. 4. We confirm the find-
ing in Huang et al. [9] that Matrix eQTL cannot control the FDR in the eGene identifica-
tion problem. All other methods can approximately control the FDR. Further, FastQTL 
and ClipperQTL methods have higher power than eigenMT and TreeQTL methods, 
consistent with our real data results (Real data results section).

Discussion
We have shown that ClipperQTL performs as well as FastQTL and runs up to 500 times 
faster. Without relying on GPUs, it is up to 30 times more computationally efficient than 
tensorQTL, a GPU-based implementation of FastQTL.

Fig. 3  Number of eGenes and run time comparison based on OneK1K single-cell data [5] (Table 1; see Data 
preparation and analysis section for the analysis details). Each dot corresponds to a cell type. a The x-axis 
and y-axis both represent numbers of eGenes identified. A diagonal line through the origin is shown to help 
with visualization. ClipperQTL_Clipper_1 identifies almost the same numbers of eGenes as FastQTL_1K-10K_
beta. The overlap between the identified eGenes averages at about 98% (see Additional file 1: Fig. S2 for 
our definition of overlap). Replacing ClipperQTL_Clipper_1 with ClipperQTL_Clipper_20 or ClipperQTL_
Clipper_100 would yield very similar plots (not shown). b FastQTL_1K-10K_beta takes under 100 CPU hours. 
ClipperQTL_Clipper_1 takes under 1 CPU hour
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We propose two main variants of ClipperQTL: the standard variant and the Clip-
per variant. The standard variant is equivalent to FastQTL with the direct permutation 
scheme and proportions (Additional file 1: Algorithm S1) and is suitable for a wide range 
of sample sizes. The Clipper variant uses the contrastive strategy developed in Clipper 
[15] (Algorithm 1) and is only recommended for data sets with large sample sizes ( > 450).

Regarding which variant of ClipperQTL should be used when the sample size is large 
enough ( > 450 ), we believe that if computational efficiency is a priority, then the Clipper vari-
ant should be used. However, if the majority of data sets in the study have smaller sample sizes, 
then the researcher may choose to use the standard variant on all data sets for consistency.

A possible extension of ClipperQTL lies in trans-eGene identification. Compared to 
cis-eGenes, trans-eGenes are currently identified in very small numbers [4], possibly due 
to the lack of power of existing approaches. FastQTL currently cannot be used to iden-
tify trans-eGenes, likely because of the computational burden. Since the Clipper variant 
of ClipperQTL needs very few permutations, it is much more suitable for trans-eGene 
identification than FastQTL. We believe that the current framework of ClipperQTL 
could be directly applicable to trans-eGene identification.

The computational efficiency of ClipperQTL comes from three levels. First, due to the 
overlap of local common SNPs across genes, both FastQTL and ClipperQTL make use 
of the one-to-one correspondence between the absolute value of partial correlation and 
the P value of the variable of interest in linear models (Additional file 1: Section S1.1) to 
substantially reduce the number of linear models that need to be fitted. Second, Clipper-
QTL has software implementation advantages over FastQTL; for example, it aggregates 
correlations of vectors into correlations of matrices, which is significantly more compu-
tationally efficient (Real data results section). Third, the Clipper variant of ClipperQTL 
requires orders of magnitude fewer permutations than FastQTL (ClipperQTL section).

Although existing eGene identification methods use linear models and do not account 
for related individuals with linear mixed models (LMMs; as is done in genome-wide asso-
ciation studies [19]), in principle, both variants of ClipperQTL can be extended to LMMs 
(instead of taking P values from linear models, one may simply take P values from LMMs). 
However, since the computational efficiency of both variants of ClipperQTL relies heavily 

Fig. 4  Power and FDR comparison based on simulation study (Table 1; Simulation results section). The 
target FDR is set at 0.05 (gray shaded area in b). The height of each bar represents the average across all 
simulated data sets. Error bars indicate standard errors. In a, a horizontal line at the height of the bar for 
FastQTL_1K-10K_beta is shown to help with visualization. All methods except Matrix eQTL can approximately 
control the FDR. FastQTL and ClipperQTL methods have higher power than eigenMT and TreeQTL methods
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on the one-to-one correspondence between the absolute value of partial correlation and 
the P value of the variable of interest in linear models (as discussed in the previous par-
agraph) and there may not be an equivalent one-to-one correspondence in LMMs, the 
computational burden that comes with LMMs may be a challenge. Emerging single-cell-
specific eGene identification methods such as SAIGE-QTL [20] use generalized linear 
mixed models (GLMMs; for example, Poisson GLMMs) to account for related cells (i.e., 
cells that come from the same individuals). In principle, the standard variant of Clipper-
QTL can be extended to GLMMs, similar to how it can be extended to LMMs. However, 
the computational burden may be a challenge. On the other hand, the Clipper variant of 
ClipperQTL constructs null data sets using permutation after residualization, which may 
not be applicable in GLMMs because the residuals would not be counts and thus may not 
be suitable response variables in GLMMs. An alternative model-based approach for gen-
erating the null data may be appropriate [21]. We leave these questions for future research.

Conclusions
Our work demonstrates the potential of the contrastive strategy developed in Clipper 
[15] and provides a simpler and more efficient way of identifying cis-eGenes. The R 
package ClipperQTL is available at https://​github.​com/​heath​erjzh​ou/​Clipp​erQTL.

Methods
Problem

Here we describe the eGene identification problem and introduce the notations for this work.
The input data are as follows. Let Y denote the n× p fully processed gene expression 

matrix with n individuals and p genes. For gene j , j = 1, · · · , p , the relevant genotype data 
is stored in Sj , the n× qj genotype matrix, where each column of Sj corresponds to a local 
common SNP for gene j (conceptually speaking; in reality, all genotype data may be stored 
in one file). Let X denote the n× K  covariate matrix with K covariates. Using our analysis of 
GTEx’s Colon - Transverse data [4] (Data preparation and analysis section) as an example, 
we have n = 368 , p = 25,379 , qj typically under 15,000, and K = 37 , including eight known 
covariates and 29 inferred covariates (Data preparation and analysis section).

The assumption is that for j = 1, · · · , p , Y [ , j] , the jth column of Y, is a realization of 
the following random vector:

where 1 denotes the n× 1 matrix of ones, Sj is defined as above, X̃ is the true covariate 
matrix (which X tries to capture), all entries of β0j , β1j , and β2j are fixed but unknown 
parameters, and ǫj is the random noise. In particular, it is assumed that at most a small 
number of entries of β1j are nonzero [8]. If all entries of β1j are zero, then gene j is not an 
eGene. On the other hand, if at least one entry of β1j is nonzero, then gene j is an eGene. 
The goal is to identify which of the p genes are eGenes given Y, 

{
Sj
}p
j=1

 , and X.

ClipperQTL

We propose two main variants of ClipperQTL: the standard variant and the Clipper 
variant. The standard variant is equivalent to FastQTL with the direct permutation 

(1)

https://github.com/heatherjzhou/ClipperQTL
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scheme and proportions (Additional file 1: Algorithm S1) and is suitable for a wide range 
of sample sizes. The Clipper variant uses the contrastive strategy developed in Clip-
per [15] (Algorithm 1) and is only recommended for data sets with large sample sizes 
( > 450 ). The development of ClipperQTL is discussed in Additional file 1: Section S3. A 
key technical difference between the standard variant and the Clipper variant is that in 
the standard variant, gene expression is permuted first and then residualized (following 
FastQTL; Additional file 1: Algorithm S1), whereas in the Clipper variant, gene expres-
sion is residualized first and then permuted (based on empirical evidence).

The main input parameter of ClipperQTL under both variants is B, the number of per-
mutations. For the standard variant, B is set at 1000 by default. For the Clipper variant, we 
recommend setting B = 1 or B between 20 and 100 (Additional file  1: Section  S3). The 
result of the Clipper variant is robust to the choice of B as long as B is one of the recom-
mended values (Additional file 1: Figs. S3 and S4). The computational complexity of both 
variants of ClipperQTL is O(Bpq̄n) , where q̄ denotes 1p

∑p
j=1 qj , the average of qj . This is 

the same computational complexity as that of FastQTL, but due to implementation advan-
tages (Real data results section) and the fact that B can be much smaller when the sample 
size is large enough ( > 450 ), ClipperQTL is much faster in practice (Figs. 2 and 3b).

Algorithm 1 The Clipper variant of ClipperQTL

Data preparation and analysis

Here we describe how we prepare and analyze the GTEx bulk [4] and OneK1K single-
cell [5] expression data.

For the GTEx bulk expression data, we start with the 49 fully processed gene-by-indi-
vidual expression matrices, one for each tissue. For each gene, we consider SNPs within 
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one megabase (Mb) of the transcription start site (TSS) of the gene [4]; we use 0.01 as 
the threshold for the minor allele frequency (MAF) of a SNP and 10 as the threshold 
for the number of individuals with at least one copy of the minor allele (MA samples) 
[10]. We include eight known covariates and a number of top expression PCs (princi-
pal components) as inferred covariates [18]. The eight known covariates are the top five 
genotype PCs, WGS sequencing platform (HiSeq 2000 or HiSeq X), WGS library con-
struction protocol (PCR-based or PCR-free), and donor sex [4]. The number of expres-
sion PCs is chosen via the Buja and Eyuboglu (BE) algorithm [18, 22] for each tissue. The 
target FDR for eGene identification is set at 0.05.

For the OneK1K single-cell expression data, we start with the gene-by-cell count 
matrix (32,738 genes by 1,272,489 cells), each cell belonging to one of 981 individuals. 
We perform normalization and averaging using the NormalizeData and Average-
Expression functions in Seurat [23] (the default settings are used). That is, first, we 
normalize each count as log( count

per-cell total
× 10,000+ 1) , where log represents the natu-

ral logarithm function. This step does not change the dimensions of the count matrix. 
Then, for each of the 16 cell types [5], we take the average per gene-individual combina-
tion in the non-log space (i.e., after exponentiating and subtracting one), obtaining a 
gene-by-individual matrix. Finally, for each cell type, we only keep genes with nonzero 
expression in at least 90% of individuals [5]. This leaves us with 12 cell types with at least 
one gene (that is, four cell types have zero genes remaining after filtering). Given the 12 
gene-by-individual expression matrices, our data analysis protocol (including genotype 
QC) is identical to that described in the previous paragraph, except that we use two 
known covariates (sex and age [5]), and the number of expression PCs is chosen via the 
elbow method [18]. The reason why we use the BE algorithm for the GTEx data but the 
elbow method for the OneK1K data is because we find that in our simulated data (Addi-
tional file  1: Section  S2), the BE algorithm can recover the true number of covariates 
well. However, while the numbers of PCs chosen by the BE algorithm seem reasonable in 
the GTEx data (between 12 and 56), the numbers of PCs chosen by the BE algorithm in 
the OneK1K data are too high (between 58 and 159; in contrast, the elbow method 
chooses between 19 and 68 PCs).
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