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Spatially Transcriptomics Technologies

| Spatial transcriptomics |
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Highly Variable Genes (HVGs) vs. Spatially Variable Genes (SVGs)

Informative features to screen for before linear dimension reduction and Euclidean
distance calculation

e HVG detection
e Used in single-cell transcriptomics data analysis
e |dentifies genes with high expression variability across single cells
e Helps in clustering cells and identifying subpopulations

e SVG detection
e Used in spatial transcriptomics data analysis
e Identifies genes with high expression variability across spatial locations
e Helps in identifying spatial patterns and regions with distinct molecular signatures



Highly Variable Genes (HVGs) vs. Spatially Variable Genes (SVGs)
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Highly Variable Genes (HVGs) vs. Spatially Variable Genes (SVGs)
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31 SVG Detection Methods

SPARK-X BOOST-GP SVGbit BOOST-HMI
SVCA SPARK BinSpect SPADE Sepal GPcounts BOOST-MI nnSVG PROST spVC

SpatialDE RayleighSelection MULTILAYER SOMDE HRG SINFONIA BSP DESpace
Trendseek singlecellHaystack Hotspot SpaGCN scGCO
MERINGUE SpaGene

There is in SVG definitions



Existing Review and Benchmark Studies

Review
e Adhikari et al., Computational and Structural Biotechnology Journal, 2024
(19 methods)
Benchmark studies

o Charitakis et al., Genome Biology, 2023 (6 methods)
e Chen et al., Genome Biology, 2024 (7 methods)
e Liet al., bioRxiv, 2023 (14 methods)

Categorization of SVG definitions is not the focus



Proposal: Three Categories of SVGs

1. Overall SVGs:

e Informative genes for downstream analysis (e.g., spatial domain identification)

2. Cell-type-specific SVGs:

e Revealing spatial variation within a cell type = cell subpopulations or states

3. Spatial-domain-marker SVGs:

e Marker genes to annotate and interpret spatial domains already detected

Relationships among the three categories depends on

e Detection methods’ null and alternative hypotheses



SVG Categories: Overall, Cell-type-specific, and Spatial-domain-marker SVGs
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Categorization of 31 SVG Detection Methods

SPARK-X BOOST-GP SVGbit BOOST-HMI
SVCA SPARK BinSpect SPADE Sepal GPcounts BOOST-MI nnSVG PROST spVC

SpatialDE RayleighSelection MULTILAYER SOMDE HRG  SINFONIA BSP DESpace
Trendseek singlecellHaystack Hotspot SpaGCN scGCO
MERINGUE SpaGene
C-SIDE
CTSV

Methods for detecting @ Overall SVGs @ Cell-type-specific SVGs @ Spatial-domain-marker SVGs



Hierarchy of 31 SVG Detection Methods (Part 1: Three Categories)

| SVG detection methods |

Spatial-domain- Cell-type-
Overall SVGs marker SVGs specific SVGs
Statistical inference Statistical inference
Yes Yes
Statistical inference Statistical inference
type type
Regression Regression
fixed-effect fixed-effect
test test
SpaGCN C-SIDE
DESpace CTSV

spVC



Hierarchy of 31 SVG Detection Methods (Part 2: Overall SVGs)

Overall SVGs

N

Graph conversion

No Yes
(Euclidean-space-based) (Graph-based)
Kernel-based patterns Statistical inference
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(Kernel-free) | (Kernel-based)
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Hierarchy of 31 SVG Detection Methods (Part 3: Kernel-free Methods)
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(Kernel-free)

Statistical inference
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Hierarchy of 31 SVG Detection Methods (Part 4: Kernel-based Methods)
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Hierarchy of 31 SVG Detection Methods (Part 5: Kernel-based Methods)
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Hierarchy of 31 SVG Detection Methods (Part 6: Graph-based Methods)

Overall SVGs

Graph conversion

No Yes
(Euclidean-space-based) (Graph-based)
| Kernel-based patterns | Statistical inference
No Yes
(Kernel-free) | (Kernel-based) No Yes
Sﬂ/%%it Statistical inference
SINFONIA type
1 Dependence test
Hotspot
MERINGUE

SpaGene
BinSpect

scGCO

RayleighSelection



Notations for SVG Detection (Per Gene)

For a given gene with expression levels measured at 1 spatial spots

Observed variables at spot i =1,...,n

e Gene expression level
e y;eR
e Y; € R: random variable notation
e 2D spatial location
® S = (5,’1,5,’2)T € R?
o s=[s1,...,5,] €R"™2: spatial location matrix

Inferred variables at spot i =1,...,n

e Spatial-domain indicator vector

o d = (d,'l7 ey d,'[_)T c {07 1}", with Zf:l dy=1
e Cell-type proportion vector

e Ci = (C,'l, ey C,'K)—r S [0, l]K, with Zszl k=1



Hypothesis Tests Used for SVG Detection

Among the 31 SVG detection methods, 21 use frequentist inference to detect SVGs:

e Define a test statistic
e Derive the test statistic's null distribution

e Convert the test statistic value to a p-value
Types of null hypotheses:
e Dependence tests: a gene's expression level is independent of spatial location

e Regression-based tests: spatial location has no “effect” on a gene's expression level

e Fixed-effect tests

e Random-effect tests (variance component tests)



Dependence Tests

Null hypothesis:
Hy:Y LS

Assume that (y1,s1), ..., (Vn,Sn) are independently sampled from the distribution of (Y, S)
If Hp is rejected, the gene is detected as an overall SVG

Nine methods adopt the dependence test formulation:

e Conventional test statistics (with theoretical null distribution):
SPARK-X, Hotspot, MERINGUE, BinSpect, scGCO

e Unconventional test statistics (with permutation-based null distribution):
Trendsceek, singlecellHaystack, RayleighSelection, SpaGene



SPARK-X (Zhu et al., Genome Biology, 2021)

SPARK-X: a non-parametric test that compares two n x n spot similarity matrices:

e Matrix 1 based on the gene's expression levels at the n spots

e Matrix 2 based on the kernel-transformed spatial locations of the n spots



SPARK-X (Zhu et al., Genome Biology, 2021)

SPARK-X: a non-parametric test that compares two n x n spot similarity matrices:

e Matrix 1 based on the gene's expression levels at the n spots

e Matrix 2 based on the kernel-transformed spatial locations of the n spots

To detect diverse spatial patterns, SPARK-X transforms the spatial locations s; = (sj1, Sj2),
i=1,...,n, using two kernel-based functions:

—s2
e Gaussian transformation s/, = exp (2;'2’) | = 1,2, to detect clustered or focal patterns
!

e Cosine transformation s, = cos <2gls"’>, | = 1,2, to detect periodic patterns

where 01, 02, ¢1, and ¢, are tuning parameters



SPARK-X (Zhu et al., Genome Biology, 2021)

SPARK-X: a non-parametric test that compares two n x n spot similarity matrices:

e Matrix 1 based on the gene's expression levels at the n spots

e Matrix 2 based on the kernel-transformed spatial locations of the n spots

To detect diverse spatial patterns, SPARK-X transforms the spatial locations s; = (sj1, Sj2),
i=1,...,n, using two kernel-based functions:

—s2
e Gaussian transformation s/, = exp (2;'2’) | = 1,2, to detect clustered or focal patterns
!

e Cosine transformation s, = cos <2gls"’>, | = 1,2, to detect periodic patterns

where 01, 02, ¢1, and ¢, are tuning parameters
Test statistic: Pearson correlation of the two matrices

Theoretical null: mixture chi-square distribution



singlecellHaystack (Vandenbon and Diez, Nature Communications, 2020)

singlecellHaystack: a unconventional test involves two pre-processing steps:

e Binarize the gene's expression levels at spots into two states: detected and undetected
e Divide the 2D Euclidean space into grid points as coarse spatial coordinates



singlecellHaystack (Vandenbon and Diez, Nature Communications, 2020)

singlecellHaystack: a unconventional test involves two pre-processing steps:

e Binarize the gene's expression levels at spots into two states: detected and undetected
e Divide the 2D Euclidean space into grid points as coarse spatial coordinates

singlecellHaystack uses a 2D independent Gaussian kernel, assuming independence of the
two dimensions of the Euclidean space, to define three distributions of grid points:

e A reference distribution based on all grid points
e A conditional distribution based on grid points in the detected state
e Another conditional distribution based on grid points in the undetected state



singlecellHaystack (Vandenbon and Diez, Nature Communications, 2020)

singlecellHaystack: a unconventional test involves two pre-processing steps:

e Binarize the gene's expression levels at spots into two states: detected and undetected
e Divide the 2D Euclidean space into grid points as coarse spatial coordinates

singlecellHaystack uses a 2D independent Gaussian kernel, assuming independence of the
two dimensions of the Euclidean space, to define three distributions of grid points:

e A reference distribution based on all grid points
e A conditional distribution based on grid points in the detected state
e Another conditional distribution based on grid points in the undetected state

Test statistic: sum of Kullback-Leibler divergences of the two conditional distributions
from the reference distribution

Permutation null



Regression-based Tests

Two types: fixed-effect tests and random-effect tests
Linear mixed-effect model (LMM) for a given gene:
Yi=Bo+x/B+z/v+e
e Yi: a gene's expression level at spot i (response variable)
e [o: (fixed) intercept

e x; € RP: fixed-effect covariates of spot i
e 3 € RP: fixed effects



Regression-based Tests

Two types: fixed-effect tests and random-effect tests
Linear mixed-effect model (LMM) for a given gene:
Yi=0Bo+x B4z v+e
e Yi: a gene's expression level at spot i (response variable)
e [o: (fixed) intercept
e x; € RP: fixed-effect covariates of spot i
o 3 € RP: fixed effects

e z; € R9: random-effect covariates of spot /
~ € R9: random effects with zero means IE[y] = 0 and covariance matrix

Cov(y) € R7*9

¢i: independent random error at spot / with E[¢;] =0
)T

v Le=(€1,...,€n



Fixed-effect Tests

Yi=Bo+x/B+zly+e

Fixed-effect tests examine whether x; contribute to IE[Y]]

If x; makes no contribution, then IE[Y;|x;| = IE[Y]]



Fixed-effect Tests

Yi=Bo+x/B+zly+e

Fixed-effect tests examine whether x; contribute to IE[Y]]

If x; makes no contribution, then IE[Y;|x;| = IE[Y]]

Null hypothesis
H() : ﬁ =0

implies IE[Y;|x;] = E[Y], i=1,...,n



Random-effect Tests

Yi=Bo+x/ B+z/v+e
Random-effect tests examine whether z; contribute to Var(Y;):
Var(Y;) = Var(IE[Y;|z;]) + E[Var(Y;|z;)] = 2] Cov(v)z; + Var(e;)

If z; makes no contribution, then Var(IE[Y;|z;]) = 0



Random-effect Tests

Yi=fBo+x B4z v+e

Random-effect tests examine whether z; contribute to Var(Y;):
Var(Y;) = Var(IE[Y;|z;]) + E[Var(Y;|z;)] = 2] Cov(v)z; + Var(e;)
If z; makes no contribution, then Var(IE[Y;|z;]) = 0

Null hypothesis
Ho : Cov(y) =0

implies Var(IE[Y}|z;]) =0,i=1,...,n



Generalization of LMM

Assume ¢; S N(0,02) and v L € = (e1,...,en)"

ind
Yi | pi = N(pi, 0?)

Yi=Bo+x/B+z/v+e —
| A i =Bo+x] B+2]y



Generalization of LMM

Assume ¢; S N(0,02) and v L € = (e1,...,en)"
Vi s N, o
Yi=Bo+x/B+z/v+e i QL”J)T
pi=pPo+x; B+z;v
Generalized LMM (GLMM): The distribution of Y; can be non-Gaussian

eg Yi | pi nd Poisson(;)
| log(pi) = Bo+x] B+z]y



Generalization of LMM

Assume ¢; S N(0,02) and v L € = (e1,...,en)"
Y: .i,rlfj/\/ . 2
Yi=Bo+x{Btzjv+e { v QL”J)T
/’!':BO_FX,'/B"'Z,")’

Generalized LMM (GLMM): The distribution of Y; can be non-Gaussian

eg Yi | pi nd Poisson(;)
| log(pi) = Bo+x] B+z]y

Generalized non-parametric mixed-effect model:
The effects of x; is modeled as non-parametric:

eg, log(ui)=PBo+f(x))+z v



Generalization of LMM

Assume ¢; S N(0,02) and v L € = (e1,...,en)"
Y: .i,rlfj/\/ . 2
Yi=Bo+x/B+z/v+e i QL”J)T
/’!':BO_FX,'/B"'Z,")’

Generalized LMM (GLMM): The distribution of Y; can be non-Gaussian

eg Yi | pi nd Poisson(;)
| log(pi) = Bo+x] B+z]y

Generalized non-parametric mixed-effect model:
The effects of x; is modeled as non-parametric:

eg, log(ui)=PBo+f(x))+z v

Q: Is spatial location s; modeled as x; or z;?



Fixed-effect Tests for SVG Detection

Six methods use regression fixed-effect tests, covering all three SVG categories:

e Overall SVGs: SPADE

e X; includes s;

e Cell-type-specific SVGs: C-SIDE, CTSV, and spCV

e X; includes s; and c; (cell-type proportion vector)

e Spatial-domain-marker SVGs: SpaGCN and DESpace

e X; includes s; and d; (spatial-domain indicator vector)



SPADE (Bae et al., Nucleic Acids Research, 2021)

SPADE: linear-model fixed-effect test that detects overall SVGs:
i = Bo+xi(s)' B

e x;(s): principal components of 512 features from a pre-trained convolutional neural
network applied to the n spots’ spatial locations s in an H&E image
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SPADE: linear-model fixed-effect test that detects overall SVGs:
i = Bo+xi(s)' B

e x;(s): principal components of 512 features from a pre-trained convolutional neural
network applied to the n spots’ spatial locations s in an H&E image

Null hypothesis:
HO : ,6 =0

If Hp is rejected, the gene is detected as an overall SVG



SPADE (Bae et al., Nucleic Acids Research, 2021)

SPADE: linear-model fixed-effect test that detects overall SVGs:
i = Bo+xi(s)' B

e x;(s): principal components of 512 features from a pre-trained convolutional neural
network applied to the n spots’ spatial locations s in an H&E image

Null hypothesis:
HO : ,6 =0
If Hp is rejected, the gene is detected as an overall SVG

Test: R package limma
(Smyth, G. K., 2005 = Ritchie et al., Nucleic Acids Research, 2015)



spVC (Yu and Li, Genome Biology, 2024)

spVC: fixed-effect test that detects cell-type-specific SVGs
Assume

Yi | i ind Poisson( ;)
Two-step procedure:
1. A reduced model without interactive effects between c; and s;:

K
log(pi) = Bo + Z CikBk + fo(si)

k=1
It tests two null hypotheses:

e Hy:B8=(B1,...,0k)" = 0 using the likelihood ratio test
e Hy : fo(-) = 0 using the Wald test

If both null hypotheses are rejected, it proceeds to the second step



spVC (Yu and Li, Genome Biology, 2024)

2. A full model with interactive effects between c; and s;:

log(ui) = Bo + 2 Cik Bk + fo(s Z Cikfi(s

k=1

It tests if any of the interactive effects fi(-), ..., fx(-) are zero using the likelihood ratio test



spVC (Yu and Li, Genome Biology, 2024)

2. A full model with interactive effects between c; and s;:

log(ui) = Bo + 2 Cik Bk + fo(s Z Cikfi(s

k=1
It tests if any of the interactive effects fi(-), ..., fx(-) are zero using the likelihood ratio test
If

Ho: f(:)=0

is rejected, the gene is detected as a SVG specific to cell type k



DESpace (Cai et al., Bioinformatics, 2024)

DESpace: fixed-effect test that detects spatial-domain-marker SVGs

Assume

Yi | wi nd NegativeBinomiaI(,u,-,<b)
log (i) = fo + Z diBi

where 3, indicates the effect of spatial domain /



DESpace (Cai et al., Bioinformatics, 2024)

DESpace: fixed-effect test that detects spatial-domain-marker SVGs

Assume

Yi | wi nd NegativeBinomial(u;, ¢)
L
log (i) = Bo + Y _ difi
I=1

where 3, indicates the effect of spatial domain /

If
Hoiﬁ/:O

is rejected, the gene is detected as a marker SVG of spatial domain /



Random-effect Tests for SVG Detection

Six methods use regression random-effect tests to detect overall SVGs:

SpatialDE, nnSVG, SOMDE, SVCA, SPARK, and GPcounts

Yi = Bo+x{ B+zv(s) + ¢
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Six methods use regression random-effect tests to detect overall SVGs:

SpatialDE, nnSVG, SOMDE, SVCA, SPARK, and GPcounts
Yi=Bo+x B+z]v(s) +e
With n spots, z; = (zj1,...,2n) € {0,1}" is a binary indicator vector for spot i s.t.

zi=1; z;=0ifj#i



Random-effect Tests for SVG Detection

Six methods use regression random-effect tests to detect overall SVGs:

SpatialDE, nnSVG, SOMDE, SVCA, SPARK, and GPcounts
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zi=1; z;=0ifj#i
Random-effect vector v(s) = (71(s1), ..., Vn(sn))" € R” has
~i(si) indicating the random effect of s;

Cov(~(s)) is assumed to depend on the spatial proximity of si,...,s, via a kernel



Random-effect Tests for SVG Detection

Six methods use regression random-effect tests to detect overall SVGs:

SpatialDE, nnSVG, SOMDE, SVCA, SPARK, and GPcounts
Yi = Bo+x/ B+zv(s) + ¢
With n spots, z; = (zj1,...,2n) € {0,1}" is a binary indicator vector for spot i s.t.
zi=1; z;=0ifj#i
Random-effect vector v(s) = (71(s1), ..., Vn(sn))" € R” has
~i(si) indicating the random effect of s;

Cov(~(s)) is assumed to depend on the spatial proximity of si,...,s, via a kernel

If
Ho : Cov(7(s)) =0

is rejected, the gene is detected as an overall SVG



SpatialDE (Svensson et al., Nature Methods, 2018)

SpatialDE: a linear random-effect model:

Yi = 50 + Z,—-r")/(S) + €

e The random errors €1,..., €, nd N(0,9)

e The random effects y(s) ~ MVN(0, o2 - K(s))
The kernel matrix K(s) = [K(s;,s;j)]nxn is specified by a kernel function K(-,)

This model is essentially a Gaussian process

If
Ho:02=0

is rejected, the gene is detected as an overall SVG



Discussion: Power vs. Specificity Trade-off

26 methods for detecting overall SVGs:
9 kernel-based methods vs. 17 other methods (kernel-free or graph-based)

Kernel-based methods have

e Higher specificity for targeted patterns

e Lower overall power for other patterns



Discussion: Challenges in Detecting Non-Global Expression Patterns

1. Small regions of interests (ROIls)
e Spatial-domain-marker SVGs by first identifying ROls as spatial domains (e.g., SpaGCN)
2. Spatial-Domain-Specific SVGs
e Genes with spatial patterns in small ROls but not marker genes
e No existing methods
3. Cell-Type-Specific SVGs
e Easily missed if cell types have small proportions
e Existing methods' model goodness-of-fit
4. Sharp Expression Changes

e Genes with sharp changes at tissue layer boundaries (e.g., Belayer)
e Adding H&E image can help refine tissue boundaries



Discussion: Challenges in Detecting Non-Global Expression Patterns

1. Small regions of interests (ROIls)
e Spatial-domain-marker SVGs by first identifying ROls as spatial domains (e.g., SpaGCN)
2. Spatial-Domain-Specific SVGs

e Genes with spatial patterns in small ROls but not marker genes
e No existing methods

3. Cell-Type-Specific SVGs

e Easily missed if cell types have small proportions
e Existing methods' model goodness-of-fit

4. Sharp Expression Changes

e Genes with sharp changes at tissue layer boundaries (e.g., Belayer)
e Adding H&E image can help refine tissue boundaries

Future direction: Incorporate knowledge on “interesting genes” to improve specificity



Discussion: Scalability

1. Calculate a summary statistic for each gene.
2. Convert the summary statistic to a p-value (frequentist methods only)

Summary Statistic Calulation (n: number of spatial spots)

e Gaussian process: O(n?) in SpatialDE and SPARK
e Nearest-neighbor Gaussian process approximation: O(n) in nnSVG

p-value Conversion

e Fast if closed-form null distribution is available (conventional statistics)
e Computationally intensive if by permutation (unconventional statistics)

Improving Scalability

e Use approximation algorithms to speed up summary statistic calculation
e Reduce number of permutations in the p-value conversion step



Future Direction 1: Accommodating Technological Differences

Two Key Differences:

e Spatial Resolution

e Imaging-based Technologies: Single-cell or subcellular resolution

e Sequencing-based Technologies: Multicellular level, coarser resolution
e Positional Randomness

e Structured grids (e.g., Spatial Transcriptomics, 10x Visium)
e Unstructured spots (e.g., Slide-seq, MERFISH, SeqFISH)



Future Direction 1: Accommodating Technological Differences

Two Key Differences:

e Spatial Resolution

e Imaging-based Technologies: Single-cell or subcellular resolution
e Sequencing-based Technologies: Multicellular level, coarser resolution

e Positional Randomness

e Structured grids (e.g., Spatial Transcriptomics, 10x Visium)
e Unstructured spots (e.g., Slide-seq, MERFISH, SeqFISH)

Current Limitations:

e Most SVG detection methods lack consideration of these technological differences

e |ack of consensus on pre-processing and modeling SRT data



Future Direction 2: Enhancing Statistical Rigor and Method Benchmarking

Challenges:
e Double-dipping: Same data analyzed more than once, leading to confirmation bias
e Example: Spatial-domain-marker SVG detection

Strategies:
e Use in silico negative control data to remove spurious discoveries (e.g., ClusterDE)
e Develop fast visualization tools for interpreting top-detected SVGs

Method Benchmarking:

e Benchmarking requires well-annotated datasets with SVG ground truths
e Synthetic datasets and realistic simulators (e.g., SRTsim, scDesign3)
e No method is optimal in every aspect; benchmarking should be specific to data

characteristics and align with biological questions
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