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Abstract
Recent advancements in spatial transcriptomics (ST) technologies allow
researchers to simultaneously measure RNA expression levels for hun-
dreds to thousands of genes while preserving spatial information within
tissues, providing critical insights into spatial gene expression patterns,
tissue organization, and gene functionality. However, existing methods for
clustering spatially variable genes (SVGs) into co‐expression modules often
fail to detect rare or unique spatial expression patterns. To address this, we
present spatial transcriptomics iterative hierarchical clustering (stIHC), a
novel method for clustering SVGs into co‐expression modules, representing
groups of genes with shared spatial expression patterns. Through three
simulations and applications to ST datasets from technologies such as 10x
Visium, 10x Xenium, and Spatial Transcriptomics, stIHC outperforms clus-
tering approaches used by popular SVG detection methods, including
SPARK, SPARK‐X, MERINGUE, and SpatialDE. Gene ontology enrichment
analysis confirms that genes within each module share consistent biological
functions, supporting the functional relevance of spatial co‐expression.
Robust across technologies with varying gene numbers and spatial reso-
lution, stIHC provides a powerful tool for decoding the spatial organization
of gene expression and the functional structure of complex tissues.
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1 | INTRODUCTION

Recent advancements in spatial transcriptomics (ST)
technologies have enabled the measurement of gene
expression levels while preserving spatial information
within tissues. These technologies include sequencing‐
based platforms such as Spatial Transcriptomics [1],
10x Visium [2], and Slide‐seq [3, 4], as well as imaging‐
based platforms such as 10x Xenium [5], MERFISH [6],

and seqFISH [7], which allow the quantification of
hundreds to thousands of genes in relation to their
spatial location.

Many methods have been developed to identify
spatially variable genes (SVGs), which exhibit signifi-
cant spatial expression variability across a tissue. For a
comprehensive overview of these methods, see Ref.
[8]. Despite substantial progress in identifying SVGs,
there remains a lack of methods for clustering these
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genes into co‐expression modules—groups of genes
with similar spatial expression patterns. Since biological
pathways and processes are often driven by the coor-
dinated activity of multiple genes [9–11], identifying co‐
expression modules can enhance our understanding of
the spatial organization and function of tissues. For
example, this approach can help identify regions in tu-
mors with unique gene expression patterns and func-
tional roles [12].

Numerous studies have focused on clustering cells or
spatial spots in ST data; for an overview of these
methods, see Ref. [13]. However, these methods differ
fundamentally from our proposed method. Spot‐based
methods cluster spatial locations, typically correspond-
ing to cell types, states, or functional regions within the
tissue. In contrast, our focus is on gene co‐expression
modules, clustering at the gene level. Here, clusters
represent groups of genes exhibiting similar spatial
expression patterns across all spatial spots. Figure 1 il-
lustrates this distinction. The left panel depicts the tissue
slice, the middle panel overlays a grid representing the
spatial spots where gene abundance is measured using
ST technologies, and the right panel shows the resulting
gene expression measurements for nine genes across
the tissue slice. As shown, many genes exhibit similar
spatial expression patterns; in this example, the nine
genes display three distinct patterns. The aim of our
method is to cluster genes with similar spatial behavior
across the entire tissue into meaningful groups. This shift
from spot‐based analysis to gene‐based analysis em-
phasizes uncovering relationships among genes rather
than identifying cell types or spatial domains.

Some existing methods for detecting SVGs in ST data
incorporate gene clustering as a secondary step, but
these methods primarily aim to identify SVGs rather than
explicitly detect spatial gene co‐expression modules.
Typically, these methods identify SVGs using a statistic

calculated for each gene and subsequently group the
detected SVGs into clusters. For example, SpatialDE
[15] and SPARK [16] use Gaussian process (GP)
regression to decompose the expression levels of each
gene across a tissue slice into a spatial component and
an independent noise term, identifying a gene as an SVG
if the spatial component is statistically significant. The
effectiveness of GP regression depends heavily on how
accurately the selected spatial covariance matrix
(derived from a chosen kernel) models spatial patterns
[8]. After detecting SVGs, SpatialDE applies an extended
Gaussian mixture model [17] to cluster SVGs, utilizing
the same Gaussian‐process‐based prior employed pre-
viously during SVG detection. Another method SPARK‐
X [18] identifies SVGs by testing the independence be-
tween two spot similarity matrices: one based on the
expression levels of each gene and the other based on
kernel‐transformed spatial locations. A gene is identified
as an SVG if the null hypothesis of independence is
rejected. Similar to SpatialDE and SPARK, SPARK‐X’s
effectiveness relies on the ability of the chosen kernel to
capture spatial patterns. Following SVG detection, both
SPARK and SPARK‐X apply a log transformation to the
raw count data, scaling the counts of each SVG to zero
mean and unit variance across spots, and then perform
hierarchical agglomerative clustering to group SVGs into
co‐expression modules. MERINGUE [19], a graph‐
based method, constructs a neighborhood graph of
spatial spots using Delaunay triangulation, assigning
binary edge weights (wij ¼ 1 if two spots are connected,
wij ¼ 0 otherwise). It detects SVGs based on Moran’s I,
transforming it into a z‐statistic and calculating a one‐
sided p‐value for each gene. To cluster SVGs,
MERINGUE calculates a spatial cross‐correlation index
for each SVG pair, generating a spatial cross‐correlation
matrix that is then used in hierarchical clustering to group
SVGs into gene co‐expression modules. Although these

F I GURE 1 Workflow of spatial transcriptomics analysis. (Left) Tissue section, adapted from the Allen Mouse Brain Atlas (mouse.brain‐
map.org) [14]. (Middle) Spatial transcriptomics grid overlay, representing spatially resolved gene expression measurements. (Right) Identified
gene co‐expression modules, illustrating groups of genes with distinct spatial expression patterns. Each panel displays the spatial expression
of a single gene.
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methods incorporate clustering, their primary focus re-
mains on identifying SVGs, and their clustering steps
often rely on the same assumptions or data trans-
formations used during SVG detection.

Certain spatial patterns may involve many co‐
expressed genes, whereas others may involve only a
few or even a single gene. Such pattern heterogeneity
can result from factors such as pathological differences
within tissue regions (e.g., tumor vs. normal areas in
cancer) or the presence of diverse or rare cell types [16,
20]. Consequently, gene co‐expression modules may be
imbalanced, with some containing many genes, whereas
others are small or consist of a single gene. Standard
clustering methods, such as mixture‐model‐based clus-
tering [17] and hierarchical clustering [21], often lack the
flexibility to capture such imbalanced clusters effectively.
Although this challenge has been addressed in other
contexts, such as time‐course gene expression [22, 23],
it has not, to our knowledge, been specifically addressed
in the context of ST data.

We present spatial transcriptomics iterative hierar-
chical clustering (stIHC), a novel two‐step method
designed to identify gene co‐expression modules,
including those with imbalanced sizes. In the first step,
stIHC models the expression levels of SVGs across the
spatial domain using a generalized penalized regression
framework [24, 25], enabling efficient modeling of spatial
variation over complex domains, including those with
intricate geometries. This step is essential because gene
expression data typically exhibit substantial noise while
also following an intrinsically smooth spatial pattern. By
modeling a gene’s expression levels at spatial spots as a
smooth, continuous function rather than discrete values,
it becomes possible to evaluate gene similarity across
the entire tissue while accounting for spatial de-
pendencies. This approach integrates relationships be-
tween adjacent spatial spots rather than treating a gene’s
expression levels at different spots as independent ob-
servations. In the second step, stIHC clusters SVGs into
co‐expression modules based on the estimated model
coefficients. Recognizing that standard clustering
methods often struggle with imbalanced gene clusters
and fail to capture rare spatial expression patterns, stIHC
employs the recently developed functional iterative hi-
erarchical clustering (funIHC) [23]. This approach is
specifically designed to handle imbalanced clusters,
ensuring robust performance in identifying gene mod-
ules of any size that exhibit similar spatial expression
patterns across a tissue slice.

We evaluate the effectiveness of stIHC across
three simulated and four ST datasets generated using
10x Visium, 10x Xenium, and Spatial Transcriptomics
technologies. Its performance is compared against
the clustering approaches used by SpatialDE [15],
SPARK [16], SPARK‐X [18], and MERINGUE [19] for
grouping SVGs into co‐expression modules. The per-
formance of stIHC is assessed using the adjusted
rand index (ARI) and the Davies–Bouldin index (DBI)

to determine its ability to identify coherent spatial gene
co‐expression modules and capture rare or unique
spatial patterns, which are often missed by the
clustering approaches employed in the four SVG
detection methods. Additionally, we examine whether
the identified co‐expression modules are not only
spatially coherent but also functionally relevant by
analyzing their biological annotations and evaluating
alignment with the known roles of the corresponding
anatomical regions.

The contributions of this paper are as follows. First,
we introduce stIHC, a novel clustering method for ST
data that identifies spatial co‐expression gene modules,
including those with unique spatial expression patterns
often overlooked or merged into larger clusters by
existing methods. Second, our method is data‐driven
and parameter‐lean, requiring no user‐defined input
parameters. Finally, by revealing gene co‐expression
modules, our method provides valuable insights into the
spatial organization of gene expression, establishing a
powerful framework for exploring tissue structure and
spatially coordinated biological processes.

The remainder of the paper is organized as follows.
Section 2.1 introduces our proposed clustering method,
stIHC. Section 2.2 presents simulation studies evalu-
ating the performance of stIHC compared to existing
approaches. Section 2.3 explores the functional anno-
tation of gene clusters identified by stIHC. Section 2.4
demonstrates the application of stIHC to ST data from
the mouse olfactory bulb. Finally, Section 3 concludes
with a summary and discussion.

2 | RESULTS

2.1 | The stIHC methodology

ST data comprise gene expression levels measured at n
distinct spatial locations, or “spots,” within a tissue slice.
For each spot j ¼ 1;…;n, its 2D spatial location is
denoted as sj ¼

�
sj1; sj2

�⊤ 2 R2. The expression level of
gene i ¼ 1;…;G at spot j is represented by yji 2 R. Our
method, stIHC, identifies gene co‐expression modules
through a two‐step process: (1) modeling gene expres-
sion across a 2D tissue slice using a generalized penal-
ized regression framework [24, 25], and (2) clustering the
resulting basis coefficients using funIHC, a functional
iterative hierarchical clustering algorithm [23].

2.1.1 | Step 1: Modeling gene expression in
a 2D tissue slice

Consider n locations s ¼ ðs1;…; snÞ within a 2D tissue
slice Ω ⊆ R2. At location sj , the observed expression
level of gene i is denoted by yji 2 R. We assume the
response variable yji follows a distribution within the
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exponential family with mean μi . The exponential family
includes many common distributions, such as Poisson,
Binomial, Gamma, and Normal [26]. Thus, this frame-
work can be used for modeling raw gene expression
counts (e.g., Poisson) or normalized gene expression
levels (e.g., Normal).

To begin, the slice of interest Ω is partitioned into
smaller regions using Delaunay triangulation [27, 28],
an efficient algorithm for handling nonregular geome-
tries, such as the irregular tissue shape shown in the
left panel of Figure 1. Locally supported polynomial
functions are defined over these triangles, providing a
set of basis functions. Let ϕðsÞ ¼ ½ϕ1ðsÞ;…;ϕKðsÞ�
represent an n � K matrix containing K piecewise
linear basis functions evaluated at the locations s. Us-
ing these basis functions, we model μi via a generalized
penalized regression framework [24, 25].

Let g be a continuously differentiable and strictly
monotone canonical link function, such as gðμÞ ¼ logðμÞ
(Poisson) or gðμÞ ¼ μ (Normal), and let f represent a
smooth spatial field over Ω. Then:

gðμiÞ ¼ f iðsÞ ¼ ϕðsÞci ; ð1Þ

where ci are the coefficients of the basis function
expansion approximating the behavior of gðμiÞ.

The coefficients ci are estimated by maximizing a
penalized log‐likelihood functional:

LsðciÞ ¼
Xn

j¼1

l
�
yji; ci

�
− λ
Z

Ω
ðΔ f iðsÞÞ

2 ds; ð2Þ

where lð⋅Þ is the log‐likelihood, λ > 0 is a smoothing

parameter, and the Laplacian Δ f i ¼ ∂2 f i
∂s2

1
þ ∂2 f i

∂s2
2

mea-

sures the local curvature of the spatial field f i . Increased
values of the smoothing parameter λ yield smoother
estimates of f , whereas decreased values of λ give es-
timates that more closely fit the data. The Laplacian
serves as the optimal penalization choice for mitigating
the effects of noise present in the data [24]. Neverthe-
less, if the user has domain‐specific insights that require
penalizing deviations from a more complex partial dif-
ferential equation, such adjustments are possible; see
Ref. [29] for further details. Using a penalized iterative
reweighted least squares algorithm [25], we solve the
optimization problem in Equation (2) to estimate the
coefficients ci for each gene i for a fixed λ. The optimal
smoothing parameter λ is estimated by minimizing the
generalized cross‐validation criterion, as proposed by
Craven and Wahba [30], across all genes, thereby
determining a unified λ that ensures consistent penali-
zation throughout the entire gene set. Let C represent
the G � K matrix of coefficients corresponding to the
optimal λ configuration, where C ¼ ðc1;…; cGÞ

⊤ de-
notes the complete set of coefficients for all G genes.

2.1.2 | Step 2: Clustering of genes based
on spatial expression patterns

Using the resulting K basis coefficients for all genes, the
distance metric di;j, quantifying the dissimilarity between
two genes i and j, is computed as one minus the
Spearman correlation ρi;j between ci and cj , that is, the ith

and jth rows of C. The clustering procedure proceeds as
follows:

1. Define αmin and αmax as the minimum and maximum
values of the Spearman correlation computed
across all possible gene pairs

n
ρi;j
oG
i; j¼ 1

. Construct a

grid spanning ½αmin; αmax�, comprising U equally
spaced values. For each αu, where u ¼ 1;…;U:
i. Cluster: Perform hierarchical clustering on the

genes using the distance metric di;j with a
threshold of 1 − αu. Use the average linkage
method to determine the dissimilarity between
clusters. Denote the resulting number of clusters
as P.

ii. Merge: Let μp represent the center of cluster p
ðp ¼ 1;…;PÞ. Treat each μp as a new gene and
apply the same criterion as in step i to decide
whether any cluster centers μp should be
merged. If merging is identified, consolidate the
respective clusters into a single one, resulting in
R clusters, where R ≤ P.

iii. Prune: For each cluster r ¼ 1;…;R, if the
Spearman correlation ρi;r between μr and the ith

gene within falls below αu, remove gene i from
cluster r . All removed genes are allocated into
single‐gene clusters. This results in a total of
R þ S clusters, where S is the number of
removed genes.

iv. Repeat steps ii and iii: Continue merging and
pruning until the cluster assignment converges.

v. Repeat step ii: Repeat the merging step until all
between‐cluster‐center Spearman correlations
are less than αu.

For the rationale behind steps iv and v, please refer
to Appendix A.

2. Determine the optimal value αopt from fα1;…;αUg by
maximizing the average silhouette value across
genes. The silhouette value for the ith gene is defined
as follows:

sili ¼
bi − ai

maxðai; biÞ
;

where ai is the average distance from the ith gene to
other genes in the same cluster, and bi is the mini-
mum average distance from the ith gene to genes
in any other cluster. The silhouette value ranges
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from − 1 to 1, with higher values indicating stronger
similarity within clusters and greater dissimilarity
between clusters.

2.2 | Simulations

We conducted three simulations to evaluate the clus-
tering performance of stIHC for ST data in comparison
to the clustering approaches used in four SVG detec-
tion methods: SpatialDE [15], SPARK [16], SPARK‐X
[18], and MERINGUE [19]. Implementation details are
provided in Section 4.2. These simulations were based
on the 10x Visium sagittal mouse brain slice dataset,
available in the Seurat R package [31]. The first simu-
lation evaluates performance under an ideal scenario
with balanced equally sized clusters (Section 2.2.1).
The second simulation tests performance with imbal-
anced cluster sizes (Section 2.2.2). The third simulation
examines performance on sparse imbalanced clusters
to mimic the real ST data analyzed in Section 2.4
(Section 2.2.3). To assess the stability of stIHC, we
repeated the simulations 100 times and observed that
the method consistently produced identical clustering
results across all runs. This demonstrates that stIHC is
a robust method. We also note that stIHC does not
introduce variability due to random initialization or sto-
chastic procedure, ensuring reproducible clustering on
a particular dataset. Moreover, Appendix B presents
the execution time in seconds for each method and
simulation scenario. stIHC consistently demonstrates
efficient computational performance across the three
simulation settings.

2.2.1 | Clustering performance with equally
sized spatial co‐expression modules

This first simulation evaluates clustering performance
when all gene modules have clearly distinguishable
spatial expression patterns and an equal number of
genes in each module. To represent distinct spatial
patterns, we selected four unique gene expression
patterns from the 10x Visium sagittal mouse brain slice
dataset, each serving as the representative pattern for
a different module. For a visual representation of these
spatial expression patterns, refer to the top row of
Figure 2.

We simulated the spatial expression patterns of 100
genes from the four representative patterns (25 genes
generated per pattern) using scDesign3 [32]. For illus-
tration, an example of one simulated gene from each
cluster is displayed in the bottom row of Figure 2. Full
details of the data simulation process are provided in
Section 4.1.

We applied five clustering methods: our proposed
method, stIHC, along with the clustering approaches
in SpatialDE, SPARK, SPARK‐X, and MERINGUE.
We evaluated the performance of each method using
the ARI [33], which ranges from −1 to 1, with 1 indi-
cating complete agreement between the clusters and
the ground‐truth gene modules. All methods suc-
cessfully partitioned the 100 genes into their respec-
tive clusters, achieving a perfect clustering solution
with an ARI of 1. These results indicate that the
methods effectively clustered genes with similar
spatial expression patterns in this balanced scenario
with distinct clusters.

F I GURE 2 Four genes from the 10x Visium sagittal mouse brain slice dataset representing the four clusters (top row). Example of one
simulated gene from each cluster generated using scDesign3 (bottom row).

stIHC: IDENTIFYING SPATIAL GENE MODULES - 5 of 18
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2.2.2 | Clustering performance with
imbalanced spatial co‐expression modules

The first simulation provided a baseline assessment of
performance under ideal conditions with balanced gene
modules. However, real‐world ST data may have gene
modules of varying sizes. To simulate this more realistic
scenario, we adjusted the dataset from the first simu-
lation to create imbalanced gene modules. Specifically,
we simulated 6 genes in the first module with expres-
sions resembling Calb2, 2 genes in the second module
resembling Ttr, 16 genes in the third module resembling
Gpr88, and 25 genes in the fourth module resembling
Cck (see Figure 2). Performance was assessed using
the ARI and the DBI [34], which ranges from ½0;∞Þ, with
lower values indicating better clustering quality. Results
are summarized in Table 1.

When applied to this imbalanced dataset, stIHC was
the only method to correctly identify all four modules
along with the correct number of genes in each module.
It achieved an ARI of 1 and the lowest DBI of 0.49. In
contrast, SPARK, SPARK‐X, and MERINGUE identi-
fied the same three clusters (sizes: 6, 18, and 25
genes) and failed to detect the smallest cluster of just
two genes, resulting in an ARI of 0.94 and a DBI of
0.54. SpatialDE performed the worst, identifying four
clusters but completely misrepresenting the spatial
patterns, resulting in cluster sizes of 16, 13, 8, and 12
genes, with a poor ARI of 0.11 and a high DBI of 4.54.
These results highlight the limitations of SPARK,
SPARK‐X, MERINGUE, and SpatialDE, which tend to
merge smaller clusters into larger ones. In contrast,
stIHC effectively captures and preserves rare spatial
patterns.

We further evaluated the clustering methods by
comparing the mean spatial expression patterns of the
clusters identified by each method to the ground‐truth
patterns used in the simulation. As shown in Figure 3,
methods that failed to capture the ground‐truth gene
modules produced distorted spatial expression pat-
terns. The ground‐truth spatial expression patterns of
gene modules are presented in the top row, followed by
the mean patterns identified by stIHC (second row),
SpatialDE (third row), and SPARK, SPARK‐X, and
MERINGUE (bottom row).

Specifically, stIHC accurately identified the correct
clusters, maintaining clear, consistent, and distinct

mean spatial expression patterns for each cluster. It
was the only method to correctly capture the spatial
pattern of Ttr. SpatialDE partially captured the patterns
of Calb2 and Cck but failed to capture the patterns of
Ttr and Gpr88. SPARK, SPARK‐X, and MERINGUE
failed to capture the spatial pattern of Ttr but adequately
captured the patterns of Calb2, Gpr88, and Cck. These
findings demonstrate that SpatialDE, SPARK, SPARK‐
X, and MERINGUE are limited in their ability to capture
the spatial expression patterns of rare or small gene
modules, whereas stIHC effectively identifies these
patterns.

2.2.3 | Clustering performance with sparse
spatial resolution and imbalanced spatial co‐
expression modules

This simulation evaluates clustering performance on a
sparse version of the imbalanced dataset described in
Section 2.2.2, where 260 spatial locations were
randomly sampled. This sparse spatial resolution
mimics the real dataset analyzed in Section 2.4 and is
designed to test stIHC’s effectiveness under reduced
spatial resolution. We maintained the same imbalanced
module sizes as in Section 2.2.2: 6 genes in the first
module reflecting the spatial expression pattern of
Calb2, 2 genes in the second module reflecting the
pattern of Ttr, 16 genes in the third module repre-
senting Gpr88, and 25 genes in the fourth module
representing Cck. Performance was assessed using
the ARI and the DBI, with results summarized in
Table 2.

When applied to this sparse imbalanced dataset,
stIHC identified five clusters with sizes 6, 1, 1, 16,
and 25. It correctly recovered the number of genes in
the Calb2, Cck, and Gpr88 modules but split the
smallest module (Ttr) into two separate clusters,
each containing a single gene. Despite this, stIHC
achieved the highest ARI of 0.99 and the lowest DBI
of 0.37 among all methods examined. It is worth
noting that stIHC was the only method capable of
preserving the spatial expression pattern of the
smallest module, as evidenced by comparing its
mean spatial expression patterns to the ground truth
in Figure 4.

In contrast, SPARK, SPARK‐X, and MERINGUE
identified only three clusters with sizes of 6, 18, and 25
genes, consistent with the results from Section 2.2.2.
These methods failed to detect the smallest module of
two genes, leading to a lower ARI of 0.94 and a higher
DBI of 0.54. Although the mean spatial expression
patterns for the identified clusters retained the patterns
of Calb2, Cck, and Gpr88, the spatial pattern of the
smallest module (Ttr) was entirely missed, as shown in
Figure 4.

TABLE 1 Adjusted rand index (ARI) and Davies–Bouldin
index (DBI) for each method on the imbalanced simulation.

Metric stIHC SPARK SPARK‐X MERINGUE SpatialDE

ARI 1.00 0.94 0.94 0.94 0.11

DBI 0.49 0.54 0.54 0.54 4.54

Note: The optimal values in each row are highlighted in bold.

6 of 18 - HIGGINS ET AL.

 20954697, 2025, 4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/qub2.70011, W

iley O
nline L

ibrary on [02/09/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



SpatialDE performed the worst, identifying only two
clusters with sizes 31 and 18. This resulted in a
significantly lower ARI of 0.05 and a much higher DBI of
4.45. The mean spatial expression patterns produced
by SpatialDE were significantly distorted compared to
the ground truth, highlighting its limitations in handling
sparse spatial resolution and imbalanced spatial co‐
expression modules (Figure 4).

F I GURE 3 The ground‐truth mean spatial expression patterns for each gene module in the imbalanced simulation (top row), followed by
the mean spatial expression patterns identified by stIHC (second row), SpatialDE (third row), and SPARK, SPARK‐X, and MERINGUE
(bottom row).

TABLE 2 Adjusted rand index (ARI) and Davies–Bouldin
index (DBI) for each method on the sparse imbalanced simulation
with 260 sampled locations.

Metric stIHC SPARK SPARK‐X MERINGUE SpatialDE

ARI 0.99 0.94 0.94 0.94 0.05

DBI 0.37 0.54 0.54 0.54 4.45

Note: The optimal values in each row are highlighted in bold.

stIHC: IDENTIFYING SPATIAL GENE MODULES - 7 of 18
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2.3 | stIHC identifies functional gene
modules by clustering spatial expression
patterns

To further validate stIHC, we applied it to three real ST
datasets: 10x Visium mouse brain, 10x Xenium mouse
brain, and 10x Visium human lung cancer (Sec-
tions 2.3.1–2.3.3, respectively). Our goal was to
determine whether genes with similar spatial expres-
sion patterns also share biological functions. Specif-
ically, we evaluated the biological coherence and
functional distinctiveness of each detected co‐
expression module. For the 10x Visium mouse brain
and 10x Xenium mouse brain datasets, we assessed
the spatial expression pattern similarity within clusters,
alignment with known tissue structure, and gene
ontology (GO) enrichment analysis. We also examined
the consistency of results across the two platforms and

tissue orientations. For the 10x Visium human lung
cancer dataset, we evaluated the similarity of spatial
expression patterns within clusters and performed GO
enrichment analysis.

Each dataset consisted of 50 curated genes identi-
fied as SVGs. This selection ensures high confidence in
the SVGs and removes potential biases from SVG
detection methods, allowing for a focused evaluation of
clustering performance. Although our method supports
datasets of any size, we limited this analysis to curated
SVGs for consistency. Details of SVG selection are
provided in Section 4.1.

2.3.1 | 10x Visium mouse brain dataset

The 10x Visium mouse brain dataset was preprocessed
to include 50 curated SVGs (Section 4.1). Using stIHC,

F I GURE 4 The ground truth mean spatial expression patterns for each cluster in the sparse imbalanced simulation (top row), followed by
the mean spatial expression patterns identified by stIHC (second row), SpatialDE (third row), and SPARK, SPARK‐X, and MERINGUE
(bottom row).
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we identified five co‐expression modules containing 2,
10, 16, 7, and 15 genes, respectively. Figure 5A shows
the mean spatial expression pattern for each cluster,
along with two representative genes per cluster. These
spatially distinct patterns demonstrate that stIHC
effectively captures the inherent spatial structure of the
data.

To evaluate the biological relevance of these clus-
ters, we performed GO enrichment analysis using the
clusterProfiler R package [36]. Each cluster was
enriched for unique biological processes (Figure 5B).
Metrics such as p.adjust (adjusted p‐value), gene ratio
(the proportion of genes associated with a GO term),
and count (the number of associated genes) confirm
the distinct functional identities of the clusters. Full gene
lists are provided in Appendix C.

We compared the spatial expression patterns of
these clusters with anatomical regions from the Allen
Mouse Brain Atlas (Figure 5C). Each cluster corre-
sponded to a specific brain region.

� Cluster 1 (2 genes): Thalamus, aligning with path-
ways related to sensory and motor signal relay [37].

� Cluster 2 (10 genes): Hippocampus, including the
dentate gyrus and Ammon’s horn, with GO terms
highlighting memory processes [38, 39].

� Cluster 3 (16 genes): Hypothalamus, associated with
hormone regulation and production [40].

� Cluster 4 (7 genes): Thalamus and hippocampus,
enriched for catabolic processes.

� Cluster 5 (15 genes): Cortical subplate, linked to
migration and ion transport [41].

These findings confirm that the spatially distinct
gene modules identified by stIHC align with the func-
tional organization of the tissue.

2.3.2 | 10x Xenium mouse brain dataset

The 10x Xenium mouse brain dataset was similarly
processed to include 50 SVGs (Section 4.1). stIHC
identified three co‐expression modules containing 21,
17, and 12 genes, respectively. Figure 6A shows the
mean spatial expression patterns of the clusters
alongside two representative genes per cluster. The

F I GURE 5 stIHC applied to the 10x Visium mouse brain dataset. (A) Mean spatial expression patterns of the five clusters with two
representative genes per cluster. (B) GO enrichment terms for the clusters. (C) Anatomical regions from the Allen Mouse Brain Atlas and Allen
Reference Atlas (mouse.brain‐map.org and atlas.brain‐map.org) [14, 35].
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clear spatial distinctions reflect the effectiveness of
stIHC in capturing spatial structures, even with different
sequencing technologies and tissue orientations.

GO enrichment analysis revealed distinct biological
functions for each cluster (Figure 6B), aligning with
anatomical regions from the Allen Mouse Brain Atlas
(Figure 6C).

� Cluster 1 (21 genes): Hypothalamus, enriched for
hormone regulation processes [40].

� Cluster 2 (17 genes): Hippocampus, associated with
learning and cognition [38, 39].

� Cluster 3 (12 genes): Thalamus, linked to sleep
regulation [42].

Despite differences in spatial resolution, molecular
profiling, and tissue preparation between the 10x Vis-
ium and 10x Xenium platforms, stIHC consistently
identified key regions (hippocampus, thalamus, and
hypothalamus) with highly similar biological functions

F I GURE 6 stIHC applied to the 10x Xenium mouse brain dataset. (A) Mean spatial expression patterns of the three clusters with two
representative genes per cluster. (B) GO enrichment terms for the clusters. (C) Anatomical regions from the Allen Reference Atlas—Mouse
Brain (atlas.brain‐map.org) [35].
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from both datasets. GO enrichment results for the hip-
pocampus and hypothalamus clusters aligned across
both platforms, reflecting learning and memory pro-
cesses in the hippocampus and hormone regulation in
the hypothalamus. These findings underscore the
robustness and applicability of stIHC across ST plat-
forms, demonstrating its ability to uncover biological
phenomena beyond platform‐specific artifacts.

2.3.3 | 10x Visium human lung cancer
dataset

The 10x Visium human lung cancer dataset underwent
similar processing to include 50 SVGs (Section 4.1).
Using stIHC, two co‐expression modules were identi-
fied, consisting of 16 and 34 genes, respectively.
Figure 7A presents the mean spatial expression

pattern for each cluster, accompanied by two repre-
sentative genes from each cluster. These distinct
spatial patterns illustrate that stIHC successfully cap-
tures the underlying structure of the data. We per-
formed GO enrichment analysis and identified unique
biological functions associated with each cluster
(Figure 7B).

� Cluster 1 (16 genes): Associated with primary lung
functions, as indicated by enrichment in muscle
contraction, muscle system processes, and respira-
tory gaseous exchange by the respiratory system.
Additionally, it is linked to the immune response, as
evidenced by enrichment in the B cell receptor
signaling pathway, which plays a role in the tumor
microenvironment [43]. Furthermore, it includes
genes involved in the cellular response to interleukin‐
6 (IL‐6), which has been associated with lung cancer

F I GURE 7 stIHC applied to the 10x Visium lung cancer dataset. (A) Mean spatial expression patterns of the two clusters with two
representative genes per cluster. (B) GO enrichment terms for the clusters.

stIHC: IDENTIFYING SPATIAL GENE MODULES - 11 of 18
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progression, resistance to antitumor therapies, and
poor survival in lung cancer patients [44].

� Cluster 2 (34 genes): Associated with pathways that
support tumor growth and development, including
peptide hormone processing, which plays a known
role in lung cancer development [45]; hemostasis, as
dysregulation of the hemostatic system is common in
lung cancer and serves as a prognostic indicator [46];
and tissue homeostasis, which contributes to tumor
growth and progression [47].

The region in the top right corner, where Cluster 1
is highly expressed and Cluster 2 is lowly expressed,
likely corresponds to a functionally distinct lung region
enriched in primary lung functions and immune‐related
processes. This aligns with the biological role of
Cluster 1 genes in muscle contraction, respiratory
function, and immune processes, suggesting that this
area may represent non‐tumor tissue or a microenvi-
ronment supportive of normal lung function, in contrast
to tumor‐associated regions where Cluster 2 is more
highly expressed. These results indicate that the
spatially distinct gene modules identified by stIHC are
associated with unique biological functions. Further-
more, stIHC demonstrates the capability to uncover
spatial gene co‐expression modules with potential
disease‐specific relevance.

2.4 | Application of stIHC to mouse
olfactory bulb data

To demonstrate the practical application of stIHC, we
analyzed ST data from replicate 11 of the mouse olfac-
tory bulb, as described in Ref. [48]. This dataset, widely
studied in previous research [15, 16, 19], is publicly
available at The Spatial Research Lab’s website.
Figure 8 shows a hematoxylin and eosin‐stained bright-
field image of the mouse olfactory bulb, providing a
structural reference for the tissue. In this analysis, we
applied two preprocessing pipelines and SVG detection
methods—MERINGUE and SpatialDE—to assess the
flexibility and robustness of stIHC across different
analytical workflows.

2.4.1 | Data preprocessing and detection of
SVGs

The raw dataset comprised 262 probe spots
and 15,928 genes. Data preprocessing and SVG
identification were conducted using the guidelines of
MERINGUE and SpatialDE:

� MERINGUE: Probe spots with fewer than 100
detected genes were excluded, retaining 260 spots.
Genes with fewer than 100 total reads were
removed, resulting in 7365 genes. Raw counts were
normalized to counts per million (CPM) values.

� SpatialDE: Genes with fewer than three total
counts were filtered out. Variance stabilization was
performed using Anscombe’s transformation to
meet SpatialDE’s assumption of normally distrib-
uted data. Library size differences were adjusted
by regressing out total counts for each gene. After
preprocessing, 14,859 genes and 260 spots
remained.

MERINGUE detected 886 SVGs, whereas Spa-
tialDE identified 67 SVGs, highlighting substantial dif-
ferences in SVG detection rates. Although this study
focuses on these two methods, stIHC is compatible with
any SVG detection method and adaptive to diverse
pipelines.

2.4.2 | Clustering SVGs into co‐expression
modules

The log‐transformed counts ðlogð1 þ xÞÞ of the detec-
ted SVGs were input into stIHC to cluster the genes into
co‐expression modules based on their spatial expres-
sion patterns. Unlike methods such as SpatialDE,
SPARK, and SPARK‐X, which require users to prede-
fine the number of clusters, stIHC determines the
optimal number of clusters automatically using an in-
ternal metric.

For the 886 SVGs detected by MERINGUE, stIHC
identified three clusters containing 523, 341, and 22
genes. For the 67 SVGs detected by SpatialDE, stIHC
identified two clusters containing 38 and 29 genes.

Figure 9 illustrates the spatial expression patterns of
the three clusters identified by stIHC from the 886
SVGs detected using MERINGUE. The top row dis-
plays a representative gene from each cluster, whereas
the middle and bottom rows illustrate the mean spatial
expression patterns in the original spatial resolution and
as a smoothed surface, respectively.

� Cluster 1: Genes in this cluster exhibited high
expression localized in the granular cell layer,
consistent with prior findings [16].

F I GURE 8 Hematoxylin and eosin‐stained brightfield image of
the mouse olfactory bulb. Image from The Spatial Research Lab’s
website (spatialresearch.org).
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� Cluster 2: This cluster included genes with elevated
expression in the central region but lacked a distinct
spatial pattern.

� Cluster 3: Genes in this cluster showed high
expression at the edges of the bulb, corresponding to
the glomerular layer [16].

The spatial patterns of Clusters 1 and 3 align with
findings reported in Refs. [15, 16, 19].

Figure 10 illustrates the two co‐expression modules
identified by stIHC from the 67 SVGs detected by
SpatialDE:

� Cluster 1: Genes in this cluster displayed high
expression in the inner region, corresponding to the
granular cell layer (analogous to MERINGUE’s
Cluster 1).

� Cluster 2: This cluster showed high expression at the
bulb’s edges, aligning with MERINGUE’s Cluster 3
(glomerular layer).

The absence of a cluster corresponding to ME-
RINGUE’s Cluster 2 suggests that the larger SVG set
identified by MERINGUE may include genes with less

distinct or noisy spatial patterns, as Cluster 2 does not
exhibit a clear spatial structure.

These results highlight the flexibility and robustness
of stIHC in identifying meaningful spatial co‐expression
modules from SVGs detected using different methods.
Despite variations in preprocessing pipelines, the
number of detected SVGs, and the resulting number of
co‐expression modules, stIHC consistently uncovered
biologically relevant spatial patterns. It is worth noting
that stIHC preserved key spatial features, such as the
granular and glomerular layers, across both
MERINGUE and SpatialDE analyses, demonstrating its
effectiveness in capturing the functional organization of
the mouse olfactory bulb.

3 | DISCUSSION AND CONCLUSION

We presented a novel clustering method, stIHC,
designed to identify spatial co‐expression gene mod-
ules from ST data. stIHC demonstrated significant ad-
vantages over existing methods in simulations,
especially in detecting rare and unique spatial co‐
expression modules often overlooked by standard

F I GURE 9 Three co‐expression modules identified by stIHC from 886 spatially variable genes (SVGs) detected by MERINGUE. Top row:
representative genes for each cluster. Middle row: mean spatial expression patterns in the original resolution. Bottom row: smoothed spatial
surfaces.
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clustering approaches. Although traditional methods
perform adequately in datasets with balanced cluster
sizes, they falter when clusters are imbalanced. By
accommodating imbalanced clusters, stIHC consis-
tently outperformed other methods, successfully iden-
tifying spatial co‐expression modules even when
represented by only a few genes.

When applied to ST datasets from the 10x Visium
and 10x Xenium mouse brain, as well as the 10x Visium
human lung cancer dataset, stIHC effectively identified
biologically meaningful gene co‐expression modules.
These modules exhibited distinct spatial expression
patterns and, in the case of mouse brain datasets,
corresponded to known anatomical regions of the brain,
supporting the hypothesis that spatially organized gene
expression reflects the tissue’s functional structure. GO
enrichment analysis confirmed that genes within the
same co‐expression module shared coherent and
distinct biological functions, further reinforcing the bio-
logical relevance of spatially co‐expressed genes.

We evaluated stIHC’s robustness and generaliz-
ability across multiple datasets and ST technologies,
including 10x Visium, 10x Xenium, and Spatial Tran-
scriptomics. As demonstrated in Section 2.3, stIHC
consistently identified spatially co‐expressed gene
modules aligned with known biological pathways and
anatomical structures, regardless of the technology or
tissue orientation.

As shown in Section 2.4, stIHC can be integrated
with any SVG detection method, offering a data‐driven
and parameter‐lean clustering approach that eliminates
the need for user‐defined input parameters. Its ability to
preserve spatial patterns while detecting biologically
and functionally relevant clusters makes it a powerful
tool for exploring the complex spatial organization of
tissues. The R implementation of stIHC is freely avail-
able on GitHub (CatherineH1/stIHC).

4 | MATERIALS AND METHODS

4.1 | Datasets

The 10x Visium sagittal mouse brain slice dataset is
available in the Seurat R package. To represent distinct
spatial patterns, we selected four distinct gene
expression patterns, each serving as the representative
pattern for a different cluster. Using the scDesign3 R
package we simulated 25 copies of each gene, result-
ing in a total of 100 genes grouped into four clusters.
We followed the tutorial available on GitHub (song-
dongyuan1994.github.io/scDesign3/docs/articles/scDe-
sign‐spatial‐vignette) to generate this data.

The 10x Visium, 10x Xenium mouse brain
data, and 10x Visium human lung cancer data
used in Section 2.3 are available on GitHub

F I GURE 1 0 Two co‐expression modules identified by stIHC from 67 spatially variable genes (SVGs) detected by SpatialDE. Top row:
representative genes for each cluster. Middle row: mean spatial expression patterns in the original resolution. Bottom row: smoothed spatial
surfaces.
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(pinellolab/SVG_Benchmarking). scDesign3 was used
to generate biologically realistic data with various
spatial variability using real‐world ST data as a
reference. The marginal distribution of expression for
each gene was modeled using the function, fit_-
marginal (mu_formula = “s(spatial1, spatial2, bs =
‘gp’, k = 500)”, sigma_formula = “1”, family_use =
“nb”), which fitted the data with a generalized GP
model under the negative binomial distribution. The
joint distribution of genes was modeled using the
function, fit_copula (family_use = “nb”, copula =
“gaussian”). Next, they extracted the mean parame-
ters for each gene across all spots, denoted by μsðsÞ
to remove spatial correlation between the spots,
generating a nonspatially variable mean function
μnsðsÞ, and used the function “sim_new” to generate
simulation data as follows:

μðsÞ ¼ α ⋅ μsðsÞ þ ð1 − αÞ ⋅ μnsðsÞ;

where α denotes the fraction of spatial variability in
simulated gene expression. For our analysis in this
paper we selected the genes for which α ¼ 1, mean-
ing the expressions were generated from the GP
model with the same spatial variability as the refer-
ence data.

The mouse olfactory bulb data for the replicate 11
sample can be downloaded from The Spatial Research
Lab’s website (spatialresearch.org).

4.2 | Existing method implementation

To cluster genes, SPARK and SPARK‐X use the hier-
archical agglomerative clustering algorithm in the R
package amap with the two optional parameters in the
R function set to be Euclidean distance and Ward’s
criterion, respectively. We used this function for a range
of cluster values and selected the optimal clustering
partition by maximizing the silhouette index.

MERINGUE was implemented by following the
tutorial available at JEFworks‐Lab website (jef.works/
MERINGUE/mOB_analysis).

The Bioconductor version of SpatialDE was
implemented by following the tutorial available on Bio-
conductor (bioconductor.org/packages/release/bioc/vi-
gnettes/spatialDE/inst/doc/spatialDE.html).
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APPENDIX A

CONVERGENCE OF THE IHC ALGORITHM

The within‐cluster correlation quantifies the degree of
similarity among curves within the same cluster.
Conversely, the between‐cluster correlation evaluates
the distinctiveness of the averages of curves across
different clusters. The objective is to achieve a within‐
cluster correlation that surpasses the predefined
threshold αu while simultaneously maintaining a
between‐cluster correlation that remains below αu.
However, enforcing these dual conditions may lead to
convergence challenges, attributable to their inherently
conflicting nature. To address this, step iv iterates
through steps ii and iii until one achieves convergence
in the within‐cluster correlation. Subsequently, step v

16 of 18 - HIGGINS ET AL.

 20954697, 2025, 4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/qub2.70011, W

iley O
nline L

ibrary on [02/09/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://doi.org/10.1002/qub2.70011
https://doi.org/10.1002/qub2.70011


relaxes the stringent criterion on the within‐cluster
correlation. As a result, the clusters formed typically
exhibit an average within‐cluster correlation that is
similar to αu, diverging from the more rigid requirement
of consistently exceeding αu. For a comprehensive
description of the IHC algorithm, refer to Ref. [22].

APPENDIX B

COMPUTATIONAL EFFICIENCY

Table B1 summarizes the execution time in seconds for
each method across the three simulation scenarios.
Simulation 2.2.1, which involves 100 genes across 2696
spatial spots, is the most computationally demanding.
This is followed by Simulation 2.2.2 with 49 genes across
2696 spatial spots, and Simulation 2.2.3 with 49 genes
over 260 spatial spots. SPARK/SPARK‐X is significantly
faster than the other methods because, although they
employ a modeling approach for detecting SVGs, they
apply clustering directly to the raw gene expression data,
which has been log‐transformed and standardized to

have a mean of zero and a standard deviation of one
across all spots. In contrast, stIHC, MERINGUE, and
SpatialDE perform clustering on the modeled gene
expression data. This step is crucial because raw gene
expression data often contain substantial noise, which
can negatively impact clustering accuracy. By modeling
gene expression, this noise is reduced, leading to more
robust gene clusters that are less affected by noise in
gene expression measurements. Although SPARK/
SPARK‐X is the fastest method, it fails to detect the
smallest cluster in each of the simulations. However,
longer computation time does not necessarily yield bet-
ter clustering results, as demonstrated by SpatialDE,
which has the longest runtime but performs the worst
across the simulations. Overall, stIHC strikes a balance
between efficiency and performance, achieving optimal
clustering results while maintaining reasonable compu-
tational demands. The evaluation was conducted on a
personal laptop with an 11th Gen Intel Core i7‐1165G7
CPU (4 cores), 32 GB RAM, and an Intel Iris Xe
Graphics GPU. The system was equipped with a 1 TB
NVMe SSD (Samsung PM9A1).

APPENDIX C

FULL LIST OF GENES FROM IDENTIFIED
CO ‐EXPRESSION MODULES

The full list of genes and associated GO terms are
presented for 10x Visium mouse brain, 10x Xenium
mouse brain, and 10x Visium human lung cancer
analyzed in Section 2.3. Corresponding brain regions
are presented for the 10x Visium mouse brain and 10x
Xenium mouse brain.

TABLE B1 Time in seconds to run each of the clustering
methods.

Method
Simulation
2.2.1 (s)

Simulation
2.2.2 (s)

Simulation
2.2.3 (s)

stIHC 127 63 3

MERINGUE 4005 1019 2

SpatialDE 4278 3470 552

SPARK/
SPARK‐X

0.34 0.11 0.03

TABLE C1 10x Visium mouse brain dataset cluster summary with gene information, GO terms, and brain regions.

Cluster
# Of
genes Gene names GO terms Brain region

1 2 Gm5741 and Pou4f1 Equilibrioception, suckling behavior, peripheral
nervous system neuron development, peripheral
nervous system neuron differentiation, and
trigeminal nerve development

Thalamus

2 10 Camk2n1, Nrgn, Slc17a7, Hpca, Nptxr, Olfm1,
Ddn, Cck, Itpka, and Camk2a

Regulation of postsynaptic membrane
neurotransmitter receptor levels, neurotransmitter
receptor localization to postsynaptic specialization
membrane, protein localization to postsynaptic
specialization membrane, protein‐containing
complex localization, and memory

Hippocampus

3 16 Pmch, Agrp, Hcrt, Fezf1, Gal, Baiap3, Sparc, Nnat,
Bc1, Resp18, Gpx3, Arhgap36, X6330403K07Rik,
Hap1, Agt, and Irs4

Feeding behavior, drinking behavior, regulation of
behavior, regulation of hormone secretion, and
neuropeptide signaling pathway

Hypothalamus

4 7 Mbp, Mobp, Enpp2, Prkcd, Pcp4, Tcf7l2, and Ptgds Phospholipid catabolic process, membrane lipid
catabolic process, sphingolipid catabolic process,
negative regulation of cell adhesion, and regulation
of oligodendrocyte differentiation

Thalamus, and
hippocampus

5 15 Ttr, Defb11, Kcne2, Slc16a8, Slc4a5, Wfdc2,
X2900040C04Rik, Kcnj13, X1500015O10Rik,
Folr1, Prr32, Calml4, Clic6, Tmem72, and Spink8

Monoatomic anion transport and potassium ion
import across plasma membrane

Cortical subplate
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TABLE C2 10x Xenium mouse brain dataset cluster summary with gene information, GO terms, and brain regions.

Cluster
# Of
genes Gene names GO terms Brain region

1 21 Mfrp, Tmem72, Ecrg4, Dsp, Clic6, Baiap3, Gal, Gpr151,
Dlk1, C1ql2, Arhgap36, Hap1, Adora2a, Cartpt,
AW551984, Ndst4, Nnat, Lypd1, Gabrq, Calb2, and
Gpx3

Positive regulation of secretion, regulation of
hormone secretion, positive regulation of
secretion by cell, hormone secretion, regulation
of synaptic transmission, and GABAergic

Hypothalamus

2 17 Agrp, Camk2n1, Slc17a7, Nrgn, Ddn, Snap25, Camk2a,
Cck, Kcnh5, Vxn, Hpca, Psd, Olfm1, Slc30a3, Mef2c,
Rtn1, and Baiap2

Learning or memory, cognition, memory,
positive regulation of behavior, and long‐term
memory

Hippocampus

3 12 Ttr, Pmch, Hcrt, Prkcd, Mbp, Abhd12b, Tnnt1, Zic1,
Pcp4, Rab37, Mobp, and Tcf7l2

Regulation of protein localization to nucleus,
positive regulation of protein localization to
nucleus, positive regulation of protein transport,
sleep, and positive regulation of protein import
into nucleus

Thalamus

TABLE C3 10x Visium human lung cancer dataset cluster summary with gene information and GO terms.

Cluster
# Of
genes Gene names GO terms

1 16 Sftpb, Mgp, Myh11, Sftpc, Tagln, Igha1, Ptgis, Myl9, Tpm2,
Igkc, Acta2, Ogn, Thbs2, Fgg, Sftpa1, and Ighg1

Muscle contraction, muscle system process, respiratory
gaseous exchange by respiratory system, B cell receptor
signaling pathway, and cellular response to interleukin‐6

2 34 Chga, Tff3, Ttr, Chgb, Tph1, Cartpt, Scg5, Cd24, Pcsk1, Gc,
Aldh1a1, Pdk4, F5, Pebp1, Scg2, Pcsk1n, Apoh, Vstm2a,
Cxcl13, Actg1, Ptprn, Hipk2, Cga, Serpina1, Ckb, Bex1,
Tm4sf4, Cmip, Dio2, Aplp1, Meis2, Atp1b1, Cryba2, and
Syt13

Peptide hormone processing, signaling receptor ligand
precursor processing, hemostasis, tissue homeostasis, and
hormone metabolic processes
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