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Binary classification concepts and notations

o Features X € X C RP
e.g., health characteristics of a person
o Class label Y € {0,1}
e.g., disease status (YES or NO) of a person
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Binary classification concepts and notations

o

Features X € X C RP
e.g., health characteristics of a person
Class label Y € {0,1}
e.g., disease status (YES or NO) of a person

o

o

A classifier is a data dependent binary function h : X — {0,1}
Training data {(X1,Y1),...,(Xn,Yn)} (often assumed as i.i.d.)

[e]
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Binary classification concepts and notations

o

Features X € X C RP
e.g., health characteristics of a person

Class label Y € {0,1}
e.g., disease status (YES or NO) of a person

o

o

A classifier is a data dependent binary function h : X — {0,1}
Training data {(X1,Y1),...,(Xn,Yn)} (often assumed as i.i.d.)
A classification method is a way to construct a classifier h from training

data (e.g., logistic regression, support vector machines, and random
forests)

h is a function of (X1,Y1),..., (X, Y,) and thus random

[e]

o
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Classification errors
Let (X,Y’) denote random variables independent of and identically
distributed as (X;,Y;) in the training data
o Classification error (“risk")
R(h)=Ph(X)#Y)
=P(Y =0)Ry(h)+IP(Y =1)R,(h),
where

Ro(h) =1 (h(X) #Y|Y =0) denotes the type | error,
Ri(h) =P (h(X) #Y|Y = 1) denotes the type Il error.
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Classification errors

Let (X,Y’) denote random variables independent of and identically
distributed as (X;,Y;) in the training data

o Classification error (“risk")

R(h) = P(h(X) #Y)
=P(Y = 0)Ro(h) + P(Y = )R (h),

where

Ro(h) =1 (h(X) #Y|Y =0) denotes the type | error,
Ri(h) =P (h(X) #Y|Y = 1) denotes the type Il error.

o Randomness
IP w.r.t. the joint distribution of (X,Y)
IP w.r.t. the marginal distribution of Y

and IP w.r.t. the conditional distribution of X | (Y = 0) and

X|(Y=1)
All conditional on h (i.e., conditional on the training data)

o R(h), Ro(h) and Ry(h) are all random if h is random
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Classical paradigm (theory)

o Classical goal: find a classifier h to minimize R(h)

o Classical oracle classifier
h* = argmin, R(h)

an unobservable (fixed) classifier among a class of binary functions

o Bayes classifier = classical oracle classifier
h(x) = L(n(z) = 1/2)

where n(z) = P(Y = 1| X = z).
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Classical paradigm (theory)

Classical oracle inequality

P (|R(h) - RO < f(0) > 13,

where

o his a (random) classifier trained from the training data

o

h* is the (fixed) Bayes classifier not observable

(o)

f is a decreasing function of sample size n, f(n) — 0 as n — oo

[e)

5 € (0,1) is a small constant indicating the violation probability

o

1 — ¢ is often referred to as high probability
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Classical paradigm (theory)

Two approaches to construct &

o Empirical risk minimization

h = argmin, R(h)

where R(h) = LS L I(h(X;) #Y;) is the empirical risk

o Plug in

h*(z) = L(n(zx) = 1/2) £ (2)P(Y=1)

f1(2)P(Y=1)

1
=P(Y =1|X =2)

n(z) =Y =1X =) = spy=o7 70 PEr=D
) (

= Jo(@P(Y=0)+/1(2)P(Y=1)
f(x) is constructed from the training data

h(z) = L(7(z) > 1/2)
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Motivations for asymmetric error control
Classification error (“risk”)
R(h) =P(h(X) #Y)
—IP(Y = 0)Ry(h) +P(Y = 1)R,(h),
where

o Ro(h) =P (h(X) # Y|Y =0) denotes the type | error,
o Ri(h) =P (h(X) #Y|Y =1) denotes the type Il error.

Example: cancer diagnosis

o Mispredicting a normal tissue sample as malignant
= patient anxiety & additional medical costs

o Mispredicting a tumor sample as normal

= life loss &

We need classifiers to enable asymmetric error control
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Population and empirical classification errors
Let  be a classifier constructed from the training data
{(Xla Yl)v SERE) (Xn’ Yn)}
Denote the test data as
{(Xiv Yl/>7 R (X7/n7 Yr/n)}
Risk
o Population

o Empirical (training)

Rih) = = 3" W(h(X0) £ Y7)
=1
o Empirical (test)
R(h) = = SO W(X]) £ Y))
=1

Neyman-Pearson Classification Paradigm
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Population and empirical classification errors
Let  be a classifier constructed from the training data

{(Xlayl)v--'7(Xn’Yn)}
Denote the test data as
{(X17Y1/>7 AR (X/ Y/ )}

mr - m
Type | error
o Population
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Population and empirical classification errors
Let  be a classifier constructed from the training data

{(Xlayl)a ) (XH’YTL)}
Denote the test data as
{(X1,Y)), - (X, Vo))

mr - m
Type Il error
o Population

S (X)) = 0) 1Y = 1)
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How to control population type | error under o?

Suppose that a user would like to construct a classifier h with population

type | error Ry(h) no more than « (e.g., 0.05) with at least probability
(1—-90) (e.g., 0.95). How to achieve it?

Statistical formulation

Given a, 8§ € [0,1], find h such that

P(Ro(ﬁ)ga) >1-4
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How to control population type | error under o?

Suppose that a user would like to construct a classifier h with population

type | error Ry(h) no more than « (e.g., 0.05) with at least probability
(1—-90) (e.g., 0.95). How to achieve it?

Statistical formulation

Given a, 8§ € [0,1], find h such that

P(Ro(ﬁ)ga) >1-4

Existing approaches for asymmetric error control
o Cost-sensitive learning (Elkan, 2001; Zadrozny et al, 2003)

no consensus way to assign costs
cannot directly control the population type | error

o Receiver operating characteristics (ROC)?
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Receiver operating characteristics (ROC)

1 -type Il error
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from Wikipedia

o However, ROC curves are plotted based on empirical type | and Il errors

in practice.
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A toy example

o X|(Y =0)~ N(0,1)
X|(Y=1)~N(2,1)
P(Y=0)=1/2
Classifier: T(X > t)
Type | error =1 — ®(t)
Type Il error = ®(t — 2)

o

o Training sample size = 1,000

o

o Test sample size = 1,000
o # of simulations = 1,000

(o}

o

o

< Class 0 | Class 1
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Empirical type | error control != population type | error control
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Empirical type | error control != population type | error control
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Empirical type | error control != population type | error control

Data set 1,000
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Empirical type | error control != population type | error control

Distribution of the 1,000 classifiers’ empirical type | errors

Frequency

Empirical type | error
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Empirical type | error control != population type | error control

Distribution of the 1,000 classifiers’ population type | errors
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Choosing classifiers with population type | error control?

< |
S o | The empirical ROC
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Neyman-Pearson Classification
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The Neyman-Pearson (NP) classification paradigm

7

The NP paradigm seeks a classifier that satisfies:

min Ry (h),
Ro(h)<a

where « is a user-specified level, usually a small value (e.g., 5%).

\.

o Early work in the engineering community: Cannon et.al. (2002); Scott
(2005)

o Qur work on NP classification:
Rigollet and Tong (2011) (NP oracle inequalities)
Tong (2013) (plug-in approach)
Zhao et al. (2016c) (high-dimensional setting)
Tong et al. (2016a) (review paper)
Li and Tong (2016b) (genomic applications)
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The Neyman-Pearson (NP) classification paradigm

Binary classification

Paradigm Oracle classifier

Classical h* = argmin R(h)
Neyman-Pearson  ¢* = argming,(4)<, 1(¢)

where « reflects users’ conservative attitude towards the type | error.
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Neyman-Pearson (NP) oracle inequalities

o Rigollet and Tong (2011): )
Under the NP paradigm, a good classifier ¢ should respect « instead of
o+ €.
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Neyman-Pearson (NP) oracle inequalities

o Rigollet and Tong (2011):
Under the NP paradigm, a good c/assiﬁerqg should respect « instead of
o+ €.
o NP oracle inequalities: two theoretical properties should be both
satisfied with high probability,
1) RO(5) < a, i.e., the type | error constraint is respected
2) Ri(¢) — Ri(¢*) — 0, i.e., the excess type Il error diminishes with
explicit rates (w.r.t. sample size n).
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Neyman-Pearson (NP) oracle inequalities

o Rigollet and Tong (2011): )
Under the NP paradigm, a good classifier ¢ should respect « instead of
o+ €.

o NP oracle inequalities: two theoretical properties should be both
satisfied with high probability,

1) Ro(¢) < a, i.e., the type | error constraint is respected

2) Ri(d) — Ri(0*) — 0, i.e., the excess type |l error diminishes with
explicit rates (w.r.t. sample size n).

o Oracle inequality of classifier & in the classical paradigm:
R(h) — R(h*) — 0, i.e., the excess risk diminishes with explicit rates
with high probability,
where h*(x) = I(n(z) > 1/2) is the oracle (Bayes) classifier,
in which n(z) = E[Y|X = 2] = P(Y = 1|X = ) is the regression
function of Y on X.
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Connection with hypothesis testing

o The Neyman-Pearson paradigm in hypothesis testing:
Choose ¢ to maximize IE[¢p(X)|Y = 1], s.t. E[¢p(X)|]Y =0] < a,

where a € (0,1) is the significance level of the test.
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Connection with hypothesis testing

o The Neyman-Pearson paradigm in hypothesis testing:
Choose ¢ to maximize IE[¢p(X)|Y = 1], s.t. E[¢p(X)|]Y =0] < a,

where o € (0,1) is the significance level of the test.

Neyman-Pearson Lemma

Let IPy and IP; be probability distributions possessing densities pg
and p; corresponding to Classes 0 and 1. Let C, be a density ratio
threshold such that

Po(p1/po(X) > Ca) < a and Po(p1/po(X) = Ca) = a.
Then for a given level o, the most powerful test of level « is defined
by

1

>
QS*(X): 0 if pl/pO(X) < Ca
a—Po(p1/po(X)>Ca)
Po(p1/po(X)=Cx)
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An NP umbrella algorithm
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Adapting popular algorithms to the NP paradigm

For scoring-type classifiers (e.g., logistic regression), a classifier is
constructed from

o A scoring function f(z) (e.g., f(z) = P(Y = 1|X = z))
o A threshold t (e.g., 1/2)

The classifier is
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Adapting popular algorithms to the NP paradigm

For scoring-type classifiers (e.g., logistic regression), a classifier is
constructed from

o A scoring function f(z) (e.g., f(z) = P(Y = 1|X = z))
o A threshold t (e.g., 1/2)

The classifier is

o Under the classical paradigm, only f needs to be constructed from the
training data

o Under the NP paradigm, both f and ¢ needs to be constructed from the
training data given o and §
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Adapting popular algorithms to the NP paradigm

Statistical formulation

Given o, 8 € [0,1], find h such that

P (Ro(ﬁ) > a) <5

o Sample splitting: split training data into two parts

. base algorithm
mixed classes 0 and 1 sample ==

scoring function
—

trained scoring function
left-out class 0 sample classification scores

o Threshold search: choose the smallest threshold on the classification
scores such that the violation rate (i.e., the probability that the
population type | error exceeds a) < §.

o Order statistic: find the threshold from ordered classification scores
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Theoretical foundation

Lemma 1

Let T4, Ts, - - -, T, be independently and identically distributed (i.i.d.)
real-valued random variables following a cumulative distribution function
(cdf) F. Denote by T the k-th order statistic (i.e., T(1) < -+ < T(y)).
For any t in the domain of T}, we have

n

Plrw>d= > (7)n-ForFer.

i=n—k+1

o Remark: Lemma 1 does not have any assumptions on F'. Letting
t = F~1(1 — a), we derive Lemma 2 from Lemma 1.
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Theoretical foundation

In the same settings as in Lemma 1,

P [T < F'(1-a)] < S 7?(1—a)ja"*j,
[Ttwy ] k()

where the equality holds for continuous F'.

o Remark: Lemma 2 leads to the following proposition.
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Theoretical foundation

Proposition

Applying a trained classification scoring function to the left-out class 0
sample (with size n), we denote the resulting classification scores as
T1,--- ,T,, which are real-valued random variables. Then we denote by
T{y) the k-th order statistic (i.e., T(1) < --- < T(;)). For a new
observation, if we denote its classification score, calculated by the trained
base algorithm, as T', we can then construct a classifier ¢, = (T > Tik)-

Then the population type | error of qu is

Ro(or) =P [T > Tyl Ty ] = 1 — F(Tiwy)-

Assuming that 717, --- ,T,, are independently and identically distributed
(i.i.d.), we have
~ n n . .
P [Ron) > o] <3 (7)1 - ayiar,
j=k
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Theoretical foundation

o Remark 1: The probability that the type | error of (;Aﬁk exceeds « is
under a constant that only depends on k and a. We call this probability

P [Ro(qgk) > a} the violation rate of ¢y, and denote its upper bound by

(k) = zn: <7;> (1 - a)lam .

J=k

When T;'s are continuous, this bound is tight.
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Theoretical foundation

o Remark 2: To minimize the type Il error, the optimal order should be
E*=min{k e {1,--- ,n} :v(k) <d}.
o Remark 3: Minimal sample size to guarantee that 3k s.t. v(k) < J:

n > logd/log(l — a).
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The NP umbrella algorithm

Algorithm An NP umbrella algorithm

1: input:

training data: a mixed i.i.d. sample S = S° U S?, where S° and S are class 0 and
class 1 samples respectively

a: type | error upper bound, 0 < a < 1; [default o = 0.05]
0: a small tolerance level, 0 < 6 < 1; [default 6 = 0.05]
M: number of S° random splits; [default M = 1]

2: function RANKTHRESHOLD(n, «, 6)

3: forkin{1,...,n} do > for each rank threshold candidate k

4: v(k) < X5 (A —ayar > calculate the violation rate with threshold k

5: kE* < min{k € {1,...,n} : v(k) <0} > pick the minimal threshold whose violation rate
is under ¢

6: return k*
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The NP umbrella algorithm (cont’d)

7:
8:
9:
10:
11:

12:

13:

14:

15:

16:

17:
18:

19:

procedure NPCLASSIFIER(S, a, 0, M)

n = [|8°/2] > denote half of the size of |S°| asn
k* <~ RANKTHRESHOLD(n, , §) > find the rank threshold
foriin{1,...,M} do > randomly split S° for M times

S?,,8?, + random split on §° > each time randomly split S° into two halves with
equal sizes

S8 us! > combine S, and S*
822 ={x1,..., 2.} > write 822 as a set of n data points
fi < classification algorithm(S;) > train a

classification scoring function f; by inputting S; into the classification algorithm; let f; output a
larger expected value for class 1 data
Ti={tig, - tin} < {filz1),..., filza)} > apply the scoring function f; to S, to
obtain a set of score threshold candidates
{tiq), - tim) } < sort(T) > sort elements of T; in an increasing order
ti < ti~) © find the score threshold corresponding to the chosen rank threshold k*
$i(X) =L (fi(X) > t7) > construct an NP classifier based on the scoring function f;
and the threshold t;

output:
an ensemble NP classifier ¢(X) = 1T (ﬁ SV (X)) > 1/2) & by majority vote
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Back to the toy example

o X|Y =0~ N(0,1)
XY =1~ N(2,1)
P(Y=0)=1/2
Classifier: T(X > t)
Type | error =1 — ®(t)
Type Il error = ®(t — 2)

o

o Training sample size = 1,000

o

o Test sample size = 1,000
o # of simulations = 1,000

(o}

o

o
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NP Classifier in the toy example

Distribution of the 1,000 classifiers’ empirical type | errors
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NP Classifier in the toy example

Distribution of the 1,000 classifiers’ population type | errors
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Choosing classifiers with population type | error control?

5 | The empirical ROC
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Choosing classifiers with population type | error control?

NP-ROC
§ ©
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©
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NP-ROC Band

Question: now, we have a high-probability type | error control, how about
type Il error? For this, we would need a left-out sample for class 1

Revised sample splitting:

Igorith
o (1) mixed classed 0 and 1 sample Ve trained model

del P
o (2) left-out class 0 sample ™= classification scores

uati
o (3) left-out class 1 sample evauagon type Il error lower and upper bounds

Remark: sometimes we need to pay a price to know how well we will do in
the future
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lllustration of the band construction process
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lllustration of the band construction process
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Comparison of two NP-ROC bands

(XY = 0) ~ MO, (Y = 1) ~ (1), (]Y =
and (Xo|Y = 1) ~ N(1,6) with P(Y = 0) = P(Y = 1)
n=1,000, 5§ = 0.1.

We would like to investigate the Linear Discriminant Analysis that uses
only X (referred to as f1) or only X5 (referred to as fs)

2 4 — method 1
—— method 2

0) N (0,1)

0.8
I
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I

1-type Il error

0.2
I

0.0
I

. 0.0 0.2 04 06 08 1.0
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Ongoing work: feature ranking under the NP paradigm

In automated disease diagnosis using gene expression data
o Which genes or gene sets are of the highest diagnostic power?

o Do they also play key roles in disease development and progression?

Misdiagnosing a cancer patient as healthy is much more severe than
misdiagnosing a healthy patient with cancer!

o Gene ranks obtained by minimizing the overall error rate is NOT a
proper goal

o A more reasonable approach:
rank genes by the less severe error rate while controlling the more severe
error rate under some user-defined threshold «, usually a small value
such as 5%
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Summary

o Binary classification

— Key question: where is the randomness?

o NP classification

— Control of type | error with high probability
— NP umbrella algorithm

o NP-ROC

— NP-ROC bands can be used to compare two classifiers
— Help choose a adaptively
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Controlling the population error is important

The population

-------------------
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Controlling the population error is important

Where to set the threshold?

Question:

If doctors would like to control the false negative rate under 1%
while minimizing the false positive rate, what should be the

diagnosis threshold?

ST
L
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Threshold 1

Threshold 2

Threshold 3

Threshold 4

Threshold 5

More diseased
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Controlling the population error is important

Setting the threshold is not difficult when
observing the population
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Controlling the population error is important

Setting the threshold is not difficult when
observing the population
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Controlling the population error is important

However in reality, we only observe a

sample from the population
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Controlling the population error is important

Problem arises if we set the threshold such that
the false negative rate (FNR) on a random sample
equals 1%

s o ... Threshold 1
::gg:: Threshold 2== FNR on the population = 7% @
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Controlling the population error is important

As we observe more and more random
samples...

How likely will we choose each threshold?

Threshold 1 (5%)

Threshold 2 (15%) About half the chance
we will choose a
Threshold 3 (30%) threshold with FNR

on the population
Threshold 4 .. (35%) greater than 1% @

Threshold 5 (15%)
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RESEARCH METHODS

Neyman-Pearson classification algorithms and NP
receiver operating characteristics

'* Yang Feng,?" Jingyi Jessica Li**

Xin Tong,
In many binary classification applications, such as dlsease diagnosis and spam detection, practitioners commonly face
the need to limit type | error (that is, the condif bability of misclassifying a class 0 observation as class 1) so that
it remains below a desired threshold. To address thls need the Neyman-Pearson (NP) cIassrﬁcatlon paradigm is a
natural choice; it minimizes type Il error (that is, the condi p ility of misclassifying a class 1 observation
as class 0) while enforcing an upper bound, @, on the type | error. Despite its century-long history in hypothesis testing,
the NP paradigm has not been well recognized and implemented in classification schemes. Common practices that
directly limit the empirical type | error to no more than a do not satisfy the type | error control objective because the
resulting classifiers are likely to have type | errors much larger than a, and the NP paradigm has not been properly
implemented in practice. We develop the first umbrella algorithm that implements the NP paradigm for all scoring-
type classification methods, such as logistic regression, support vector machines, and random forests. Powered by this
algorithm, we propose a novel graphical tool for NP classification hods: NP receiver ing characteristic
(NP-ROC) bands motivated by the popular ROC curves. NP-ROC bands will help choose a in a data-adaptive way
and compare different NP classifiers. We demonstrate the use and properties of the NP umbrella algorithm and
NP-ROC bands, available in the R package nproc, through simulation and real data studies.

R package nproc
https://CRAN.R-project.org/package=nproc
Email: jli@stat.ucla.edu
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R package nproc and simulation examples

o Package nproc on CRAN:
> library(nproc)

o Toy data dat simulated from a logistic model

training data
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Logistic regression

o We first train a logistic regression model on the training data under the

classical paradigm.
> 1r_modell <- glm(y~x1+x2, data=dat, family="binomial")
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Logistic regression

o We first train a logistic regression model on the training data under the
classical paradigm.
> 1r_modell <- glm(y~x1+x2, data=dat, family="binomial")

o Then we apply the trained model 1r_modell to 1000 test data sets to

evaluate the distribution of its empirical type | errors on test data.
> summary (lr_modell_err)

Min. 1st Qu. Median Mean 3rd Qu. Max.

0.1290 0.1723 0.1846 0.1849 0.1980 0.2368
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Logistic regression

o We first train a logistic regression model on the training data under the
classical paradigm.
> 1r_modell <- glm(y~x1+x2, data=dat, family="binomial")
o Then we apply the trained model 1r_modell to 1000 test data sets to
evaluate the distribution of its empirical type | errors on test data.
> summary (lr_modell_err)
Min. 1st Qu. Median Mean 3rd Qu. Max.
0.1290 0.1723 0.1846 0.1849 0.1980 0.2368
o We next train a logistic regression model on the training data under the

NP paradigm with type | error bound o = 0.05.
> 1r_model2 <- npc(x=x,y=y,method='logistic',alpha=.05)
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Logistic regression

o We first train a logistic regression model on the training data under the
classical paradigm.
> 1r_modell <- glm(y~x1+x2, data=dat, family="binomial")

o Then we apply the trained model 1r_modell to 1000 test data sets to
evaluate the distribution of its empirical type | errors on test data.
> summary (lr_modell_err)
Min. 1st Qu. Median Mean 3rd Qu. Max.
0.1290 0.1723 0.1846 0.1849 0.1980 0.2368

o We next train a logistic regression model on the training data under the
NP paradigm with type | error bound o = 0.05.
> 1r_model2 <- npc(x=x,y=y,method='logistic',alpha=.05)

o Then we also apply the trained model 1r_model2 to the test data.
> summary(lr_model2_err)
Min. 1st Qu. Median Mean 3rd Qu. Max.
0.009732 0.027830 0.033960 0.034400 0.040880 0.065040
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