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Single-cell and spatial omics data: statistical characteristics

Processed data: a cell-by-feature matrix + cell covariates
Cell heterogeneity structures
= discrete cell types (known or latent)
= continuous trajectories (usually latent)
= spatial locations (known for spatial data)
Experimental designs
= batches (unwanted effects)
= conditions (biological signals)
Features
= gene expression (scRNA-seq, spatial transcriptomics, etc.)
= chromatin accessibility (scATAC-seq, SNARE-seq, etc.)
® = protein abundance (CITE-seq, etc.) 1



Computational benchmarking
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Computational benchmarking
= > 1000 computational tools at www.scrna-tools.org
= how to choose among competing computational tools?

Inference
Conditional on a cell covariate (type, pseudotime, or spatial location)
= every gene's distribution
= every gene pair’'s correlation

In silico controlled experiments
= negative control: to evaluate a pipeline's false discoveries
= positive control: to evaluate a pipeline’s discovery power

A realistic simulator with interpretable parameters


www.scrna-tools.org

Importance of benchmarking and in silico negative control

Teaser: false discoveries of DESeq2 and edgeR on population RNA-seq samples

Short Report | Open Access | Published: 15 March 2022

Exaggerated false positives by popular differential
expression methods when analyzing human population
samples

Yumei Li, Xinzhou Ge, Fanglue Peng, Wei Li & & Jingyi Jessica Li

Genome Biology 23, Article number: 79 (2022) | Cite this article
24k Accesses | 12 Citations \ 184 Altmetric | Metrics

— collaboration with Dr. Yumei Li in Dr. Wei Li's lab (UC Irvine)



Teaser: identifying differentially expressed genes (DEGs)

= Popular software (originally designed for small sample sizes):
— edgeR [Robinson et al., Bioinformatics, 2014]; cited ~ 24K times
— DESeq2 [Love et al., Genome Biol, 2014]; cited > 33K times
both assume a negative binomial distribution per gene and condition
& use empirical Bayes to borrow information across genes
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Teaser: in silico negative control by permutation

= 51 pre-nivolumab and 58 on-nivolumab anti-PD-1 therapy patients [Riaz et
al., Cell, 2017]
= Permute samples between conditions (no true DEGs)

600

400
# of identified DEGs
from permuted data

200

® [Li et al., Genome Biology, 2022] 4 4 of identified DEGs from the original data



Teaser: model mis-specification

@

= Poor fit of negative binomial model <— false positive DEGs

edgeR DESeq2
p=4.35e-261 1004 p=6.14e-38
404
754
304
-log(goodness-of-fit p-value) 501
104 251
04 0
Genes identified Genes identified Genes identified Genes identified
as DEGs from <0.1% as DEGs from = 20% as DEGs from <0.1% as DEGs from = 20%
permuted datasets permuted datasets permuted datasets permuted datasets

[Li et al., Genome Biology, 2022]



Teaser: false positive DEGs mislead scientific discoveries

DESeqg2
hormone metabolic process | - [ N
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steroid metabolic process | [ NG
humoral immune response | - [ EEG_G———
acute inflammatory response | | N N
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-log10(p.adjust)

‘.& [Li et al., Genome Biology, 2022]



Teaser: popular bioinformatics tools vs. classic statistical methods

600

400 A
# of identified DEGs
from permuted data

200+

+ # of identified DEGs from the original data

[Li et al., Genome Biology, 2022] Qjsb_ucla



A statistical simulator scDesign for rational scRNA-
seq experimental design

Wei Vivian Li, Jingyi Jessica Li ™

Bioinformatics, Volume 35, Issue 14, July 2019, Pages i41-i50,
https://doi.org/10.1093/bioinformatics/btz321
Published: 05 July2019

scDesign pros:

= interpretable parameters
= variable cell number

® = variable sequencing depth



Use scDesign to benchmark doublet-detection methods

Cell Systems e

Volume 12, Issue 2, 17 February 2021, Pages 176-194.e6 ICellPress|

Article

Benchmarking Computational Doublet-
Detection Methods for Single-Cell RNA
Sequencing Data

1,2,3,40

Nan Miles Xi !, Jingyi Jessica Li

® 10



Use scDesign to benchmark doublet-detection methods

Cell Systems e

Volume 12, Issue 2, 17 February 2021, Pages 176-194.e6 ICellPressi

Article

Benchmarking Computational Doublet-
Detection Methods for Single-Cell RNA
Sequencing Data

1,2,3,40

Nan Miles Xi !, Jingyi Jessica Li

scDesign cons:

= cannot capture gene correlations
® » does not directly model count data 10



Exemplar scRNA-seq simulators and properties
p protocol genes gene cor. cell num. easy to comp. &
w adaptive preserved captured seq. depth  interpret sample
Simulator

flexible efficient
dyngen X X v v
Lun2 v X v v
powsimR v v X v v v
PROSST v X v v
scDD v X X v
scDesign v X v v v
scGAN v v X X
splat simple v X X X v v
splat v X X X v v
kersplat v X X v v
SPARSIim v v X v v
SymSim v X X X v v
ZINB-WaVE v X v v
SPsimSeq v v v v v 1




scDesign2

. gene joint
sub-matrices distribution

»’éé;{%\

User specified
sequencing depth &
number of cells

Guidance for
Experimental
cell type 1 cell type K Design

.
real count matrix [

celltype 1 cell type K type 1

cell Evaluation of
type K — p, (e.g. sequencing Computational
h depth becomes lower) Methods
Parameter Data
Input Estimation Simulation

Related work:

® SPsimSeq [Assefa et al., Bioinformatics, 2020]; ESCO [Tian et al., Bioinformatics, 2021] "



scDesign2: notations

= Denote the scRNA-seq count matrix as X € NP*" with p genes and n cells

= Assume that X contains K cell types and the cell memberships are known in

advance

= Suppose there are n*) cells in cell type k, k =1, ..., K, and denote the
count matrix for cell type k as X

= Our goal is to fit a parametric, probabilistic model of all genes’ expression in
each cell type k

= For simplicity of notation, we drop the subscript k in the following discussion

® 13



scDesign2: marginal distribution of each gene /

= Model counts directly

» Denote X; = (Xyj,...,X,;) € NP as the gene expression vector for cell j,
J=1,...n. We assume that the X;'s are i.i.d. — p variables; n observations

= X;: observed count of gene i in cell j

= Select a marginal count distribution for gene i's count Xj; from Poisson,
zero-inflated Poisson, negative binomial, and zero-inflated negative binomial



scDesign2: joint distribution of highly-expressed genes

= Use the copula framework

= Denote F : NP — [0, 1] as the joint cumulative distribution function (CDF)
of X; € NP and F; : N — [0, 1] as the marginal CDF of Xj

= By Sklar's theorem [Sklar 1959], there exists a copula function
C :[0,1]? — [0, 1] such that

F(X1j7 . aij) = C(Fl(xlj)v R FP(XPJ))

= The copula function C(+) is unique for continuous distributions, but not for
discrete distributions (unidentifiable) [Genest et al 2007]



scDesign2: distributional transform and the Gaussian copula

= Distributional transform: necessary for discrete variable [Riischendorf

2013].
= Sample vj; from Uniform[0, 1] independently for i =1,...,p and
j=1...,n
= Calculate ujj as uj = viiFi(xj — 1) + (1 — vij) Fi(x;)
PMF of Poisson(1.5) PDF after the distributional transform
g 34 z 81
g | | g |
(= T T T T T T T T = T T T T T T T T




scDesign2: distributional transform and the Gaussian copula

= Distributional transform: necessary for discrete variable [Riischendorf
2013].
= Sample vj; from Uniform[0, 1] independently for i =1,...,p and
j=1...,n
= Calculate ujj as uj = viiFi(xj — 1) + (1 — vij) Fi(x;)

CDF of Poisson(1.5) CDF after the distributional transform
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scDesign2: distributional transform and the Gaussian copula

= Distributional transform: necessary for discrete variable [Riischendorf
2013].
= Sample vj; from Uniform[0, 1] independently for i =1,...,p and
j=1...,n
» Calculate uj as

uj = viFi(x; — 1) + (1 — vi) Fi(xj)

» Gaussian copula: Denote ¢ as the CDF of a standard Gaussian random
variable, we can express the joint distribution of X as

Fxaj, oo Xp) = Dp(@7 (uyy), .., @7 (upy) | R)

where ®,(-|R) is a joint Gaussian CDF with a zero mean vector and a
covariance matrix that is equal to the correlation matrix R



scDesign2: joint distribution fitting

Denote F; as the estimated marginal distribution of gene i

Sample v;; from Uniform[0, 1] independently for i =1,....,pand j=1,....n

Calculate uj; as

0y = viFilx — 1)+ (1= ) Fi(x)

Calculate R as the sample correlation matrix of (&~ (uy;), ..., & (uy))T,
j=1...,n

@



scDesign2: data simulation

= |nput from previous step:

= fitted joint gene distributions (one per cell type)
= cell type proportions

» User-specified input:
= number of cells to simulate
= total sequencing depth

= Qutput:
= a synthetic gene-by-cell count matrix with K cell types
= fitted model parameters

® 18



scDesign2: summary

A multi-gene probabilistic model per cell type

= Each gene ~ count distribution € {Poisson, negative binomial, ZIP, ZINB}
= Gene correlations estimated via Gaussian copula

training data scDesign2 (vsvigigig&i) ZINB-WaVE SPARSim
40
30
20 cell type
10 Stem
0 Sk Goblet
& ol < P T | penatce gy | IR Tuft
5 ~10 ® TAEarly
% test data test + scDesign2 tes(‘tlv-;osgg e'jl;i;)n2 test + ZINB-WaVE test + SPARSIm EP
3 [miLISI = 1.860] /o cop! [miLISI = 1.596] [miLISI = 1.605] ® EP.Early
2 [miLISI =1.023]
B 40
30 data type
20 ® synthetic data
10 ® testdata
0 .
10 i

50 25 0 25

ok 5 %
® test data PC 1 [Haber et al., Nature, 2017] 19




scDesign2: summary

A multi-gene probabilistic model per cell type

= Each gene ~ count distribution € {Poisson, negative binomial, ZIP, ZINB}

= Gene correlations estimated via Gaussian copula

Method | Open Access | Published: 25 May 2021 JOURNAL OF COMPUTATIONAL BIOLOGY
Volume 29, Number 1, 2022 RECOMB 2021

scDesign2: a transparent simulator that generates ooy am Lisbers e
high-fidelity single-cell gene expression count data o:isemnazou

with gene correlations captured
Simulating Single-Cell Gene Expression Count Data

Tianyi Sun, D Song, Wei Vivian Li & & Jingyi Jessica Li . h .
e with Preserved Gene Correlations by scDesign2

Genome Biology 22, Article number: 163 (2021) | Cite this article

7989 Accesses | 12 Citations | 30 Altmetric | Metrics TIANYI SUN! DONGYUAN SONG? WEI VIVIAN LI and JINGYI JESSICA LI"

® 20



scDesign3 functionalities (simulation)

Trajectories

scDesign3
simulation



https://github.com/SONGDONGYUAN1994/scDesign3

From scDesign2 to scDesign3 (Modeling)

e Y =[Yj] € R™": the cell-by-feature matrix

e Yj: the measurement of feature j in cell i
e Y isoften a count matrix (i.e., Y € N"*™)

e X =[xg, -, xy" € R™P: the cell-by-state-covariate matrix, such as
e Cell type (p = 1 categorical variable)
e Cell pseudotime in p lineage trajectories (p continuous variables)
e 2-dimensional cell spatial coordinates (p = 2 continuous variables)

e Z € R™9: the cell-by-design-covariate matrix
e Z=|b,c]
e b=(by,...,b,) has b;c {1, -, B} representing cell i's batch
® e c=(c,...,cn) hasce {1, -, C} representing cell i's condition



From scDesign2 to scDesign3 (Modeling)

e We first model the distribution of each gene j
e We use the generalized additive model for location, scale, and shape (GAMLSS)

[Stasinopoulos and Rigby, 2008]
e The regression model is:
Yi | xivzi % F( | xi2i 1wy, 05, py)
0i(uy) = ajo+ ajp + aje + fig (xi)
log(e5) = Bjo+ Bty + Bie, + Giei(xi)
logit(pyj) = jo + Vb + Vies T hje; (xi)
where 6;(-) denotes feature j's specific link function p;;, depending on F;

e The fitted distribution is denoted as F;(- | x;,2;), i=1,...,mj=1,....m

@



scDesign3: an omnibus single-cell & spatial omics simulator

» Cell states: continuous trajectory & discrete cell types
= Feature modalities: RNA, ATAC, protein, spatial coordinates, etc.
= Model selection by likelihood: vine copula [Joe and Kurowicka, 2011]

Example: continuous trajectory (pancreatic cell differentiation)

Test data scDesign2 (cell type) scDesign3 (pseudotime)
AR . 2 RO
m""‘:-}., 8 ;;? ¥, '5',?,&3 XS
41 AN "’lﬁ:«'@g..&z ki .2

UMAP2

miLISI=1.98 miLISI=1.82 miLISI=1.96

25 00 25 50 25 00 25 50 25 00 25 50
UMAP1 [Bastidas-Ponce et al., Development, 2019]

@ — 21
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scDesign3: an omnibus single-cell & spatial omics simulator

» Cell states: continuous trajectory & discrete cell types

= Feature modalities: RNA, ATAC, protein, spatial coordinates, etc.

= Model selection by likelihood: vine copula [Joe and Kurowicka, 2011]

Examples: bifurcation trajectories & multiomics

scDesign3:RNA + Meythlation

Test data ScGAN muscat Pseudotime1 Real data:RNA
w 0.75
050 32 Featuresx177 Cell
0.25
Q & mLISI=1.44 mLisl=1.53] 000 N
S [ scesigns SPARSIm ZINB-WaVE | Pseydolime2 2 koo Gatamethyiation
=) : > -
"N 0.50
0.25 27'Featuresx142 Cell
e K :
‘o 0.00
SI=1.91 mLISI=1.44 mLISI=1.53

59 Featuresx319 Cells

‘_& UMAP1

UMAP1

21



scDesign3: an omnibus single-cell & spatial omics simulator

» Cell states: continuous trajectory & discrete cell types
= Feature modalities: RNA, ATAC, protein, spatial coordinates, etc.
= Model selection by likelihood: vine copula [Joe and Kurowicka, 2011]

Example: spatial data (brain region measured by 10X Visium)
Gene Olfm1

Real Data Simulated Data

75004 Expression
5

4
3
2
1
0
25004

® 4000 6000 8000 10000 4000 6000 8000 10000 2 1
X

5000 4




scDesign3: an omnibus single-cell & spatial omics simulator

= Cell states: continuous trajectory & discrete cell types
= Feature modalities: RNA, ATAC, protein, spatial coordinates, etc.
= Model selection by likelihood: vine copula [Joe and Kurowicka, 2011]

Example: spot-resolution spatial data (mouse olfactory bulb measured

by 10X Visium)

Apold1
Oene X o T
20 $322852, L3°3222, :
0O 00 LOHEHOOE TOOEEOE g kil
Cell type 000 96060000 000 959 600 € ® | Expression
- 000 $66660 66600 9996066 g 100
at.“tlll:,.(,;t“--uq“q I
PGC > | ©0000699660066¢ 9966660 075
siadafisestensastssie
Il e 0O COHEHO0H COH SSOLOE ¢E 050
B osns 080 66000006000 900606 & 2 -
06 60000060000 C000EE =4 ’
CLOPOEEEED e COCGE 2
CORLECie © 006 2 0.00
000 ¢ 2
X
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scDesign3: an omnibus single-cell & spatial omics simulator

» Cell states: continuous trajectory & discrete cell types
= Feature modalities: RNA, ATAC, protein, spatial coordinates, etc.
= Model selection by likelihood: vine copula [Joe and Kurowicka, 2011]

Example: bone marrow single-cell ATAC-seq data (+ scReadSim)

Test data

Cell type ‘ \ H
B cells !
Collisions

Dendritic cells
Erythroblasts
Hematopoietic progenitors
Immature B cells
Macrophages
Monocytes
NK cells

® Regulatory T cells
T cells

scDesign3

UMAP2

Unknown

mLISI=1.71
UMAP1

Peak region [ ]
Gene . 21

Fam174a by Guan'ao Yan




scDesign3 functionalities (interpretation)

Pseudotime

o
Re‘e‘e“o

scDesign3
Interpretation

ewuopnasd

Synthetic null



https://github.com/SONGDONGYUAN1994/scDesign3

Expression

scDesign3: model inference
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scDesign3: unsupervised trajectory / cluster quality assessment

UMAP2

1200004

we 4,
L ]
[ ]

90000+ .
o ®
@
o)
g, 600009 o= -005,p < 2e-16 o
:

[ ]
3 30000+
| / .
050 /075 400

25
R

? (truth vs pséudotime)

TSCAN

Monocle3

Slingshot

BIC—+3551Bug
,_ﬁ’ g 3 G0
FE

vk

B|C=+20338 3
P
SR

&
il o3

BIC—+13575

'*

Pseudotime
1.00
0.75
0.50

~ 0.25
0.00



scDesign3:

IFI6 Expression

model alteration

Real data scDesign3 cond++
5 p<2e—-16 p<2e-16
2
14
L] L
[oF | = -
scDesign3 cond- | | scDesign3 cond+-
5 p=0.103 p=0.083 | |p<2e-16 p=0.21

|

CD16 Mono B

NN
CD16 Mono B

Cell type

UMAP2

Condition

B3 cTRL
B3 sTiv

UMAP2

Real data scDesign3 batch+ |scDesign3 batch+
UMAP1
scDesign3 H, scDesign3 H,

Real data

UMAP1

Batch
10x V2
10x V3

Cell type

©® Naive cytotoxic T
® Regulatory T
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scDesign3 paper

A unified framework of realistic in silico data generation and statistical
model inference for single-cell and spatial omics

Dongyuan Song, (2 Qingyang Wang, {2/ Guanao Yan, Tianyang Liu, "2 Jingyi Jessica Li
doi: https://doi.org/10.1101/2022.09.20.508796

Q@



scDesign3 functionalities

Processed data: a cell-by-feature matrix + cell covariates
Cell heterogeneity structures
= discrete cell types (known or latent)
= continuous trajectories (usually latent)
= spatial locations (known for spatial data)
Experimental designs
= batches (unwanted effects)
= conditions (biological signals)
Features
= gene expression (scRNA-seq, spatial transcriptomics, etc.)
= chromatin accessibility (scATAC-seq, SNARE-seq, etc.)
® = protein abundance (CITE-seq, etc.) ”n



scDesign3 usages

Computational benchmarking
= > 1000 computational tools at www.scrna-tools.org

= how to choose among competing computational tools?

Inference
Conditional on a cell covariate (type, pseudotime, or spatial location)
= every gene's distribution

= every gene pair's correlation

In silico controlled experiments
= negative control: to evaluate a pipeline's false discoveries

= positive control: to evaluate a pipeline's discovery power

® 23
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Why need in silico

controlled experiments?

10 bean seeds

Independent variable:
per pot

amount of water

Dependent variable:
/ fraction of seeds that sprout
) / \ LY \
e o

/ -, /\
e LY YA
' 0 55

A A

9/10 seeds 0/10 seeds
l sprout sprout
—— ? amm— RN a—
T e B
L ! Experimental Control
Identical pots

group group

https://www.khanacademy.org/science/biology/intro-to-biology/science-of-biology/a/experiments-and-observations
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Why need in silico

controlled experiments?

10 bean seeds

Independent variable:
per pot

amount of water

Dependent variable:
/ fraction of seeds that sprout
) / \ LY \
e o

? L ] / \
) )
N DSQQ ° DDQQ 9/10 seeds | 0/10 seeds
l ,L sprout sprout
A A A A ﬁ AN LA LR, A
everer er “eted]
L |

Experimental
Identical pots

Control
group

group

https://www.khanacademy.org/science/biology/intro-to-biology/science-of-biology/a/experiments-and-observations

Double-dipping challenges in single-cell inference

= Cell pseudotime inference + DEG identification
= Cell clustering + DEG identification

24
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DEGs along inferred pseudotime from single-cell RNA-seq data

= Cell pseudotime: a latent “temporal” variable that reflects a cell’s relative
transcriptome status among all cells

= Pseudotime inference (trajectory inference): estimate the pseudotime of
cells, i.e., order cells along a trajectory based on transcriptome similarities

= Popular software:
— Monocle3 [Trapnell et al., Nat Biotechnol, 2014]; cited > 2.8K times

— Slingshot [Street et al., BMC Bioinform, 2018]; cited 700 times

D .



DEGs along inferred pseudotime from single-cell RNA-seq data

log10(count + 1)
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DEGs along inferred pseudotime from single-cell RNA-seq data

= Cell pseudotime is inferred from the same data and thus random

Cells

-504 : -
-25 0 25 50 000 025 050 075  1.00
Pseudotimes in subsamples

27



DEGs along inferred pseudotime from single-cell RNA-seq data

= However, existing methods treat cell pseudotime as an observed covariate

® 28



DEGs along inferred pseudotime from single-cell RNA-seq data

= However, existing methods treat cell pseudotime as an observed covariate

= Qur solution: PseudotimeDE considers the uncertainty of pseudotime

Method | Open Access | Published: 29 April 2021

PseudotimeDE: inference of differential gene
expression along cell pseudotime with well-calibrated
p-values from single-cell RNA sequencing data

Dongyuan Song & Jingyi Jessica Li

Genome Biology 22, Article number: 124 (2021) | Cite this article
12k Accesses | 11 Citations | 29 Altmetric | Metrics

® 28



PseudotimeDE

Generalized additive model (GAM): powerful test statistic

Subsampling + pseudotime inference + permutation: p-value calibration

Pseudotime / Permutation }} NB/ZINB-GAM
inference on cells o fitted to gene j
- a BT 7 as<e
e L,
o % \
. e
Subsampling Null distribution
cells of §
Pseudotime NB/ZINB-GAM
inference fitted to gene j
.. Test statistic S p-value of gene j
L
®

® 29



PseudotimeDE performance

p-value under the null

Monocle3-DE | | NBAMSeq

ImpulseDE2

S DE
=z !
? 0.75
<%
5 05
9 025
2
D o0
Y TSR
o
P: imeDE.

. 1s00{ P=3.4e-02
5

1
3 000

500

0 0250920194 0 029050754 0 02505¢7° A
Expected p-value

0 029085071% 4

Monocle3-DE | | NBAMSeq

ImpulseDE2

p=0.0e+00 | p=6.9e-09 ||,p=0.0e+00

i e—

p=0.0e+00

Observed p-value

scRNA-seq methods:
tradeSeq [Van den Berge et al., Nat Comms, 2020]
‘& Monocle3 [Trapnell et al., Nat Biotechnol, 2014]

0
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Number of significant GO terms

- yradeSeq " \lonoclé
PseudO"““eDE V;s\;ido\"“eDE ve Mo

_DE

bulk RNA-seq methods:
NBAMSeq [Ren and Kuan, BMC Bioinfo, 2020]
ImpulseDE2 [Fischer et al., NAR, 2018]



PseudotimeDE limitations

= Complete null: what if cells do not follow a trajectory?
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PseudotimeDE limitations

= Complete null: what if cells do not follow a trajectory?

Q: how to generate the in silico negative control under this complete null?
— simulator scDesign3
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PseudotimeDE limitations

= Complete null: what if cells do not follow a trajectory?

Q: how to generate the in silico negative control under this complete null?
— simulator scDesign3

= Computational time: high-resolution p-values require > 10 rounds of
(subsampling + pseudotime inference + permutation)
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PseudotimeDE limitations

= Complete null: what if cells do not follow a trajectory?

Q: how to generate the in silico negative control under this complete null?
— simulator scDesign3

= Computational time: high-resolution p-values require > 10 rounds of
(subsampling + pseudotime inference + permutation)

Q: how to reduce the number of rounds while still achieving FDR control?
— contrast + FDR control framework Clipper

® 31



DEGs between inferred cell clusters from single-cell RNA-seq data

ClusterDE (cell clustering + DEG identification between cell clusters)
— existing methods assume Gaussian distributions

TN test [Zhang, Kamath, and Tse, Cell Syst, 2019]
clusterpval [Gao, Bien, and Witten, JASA, 2022]

— or require count splitting and assume Poisson distribution

countsplit [Neufeld, Gao, Popp, Battle, and Witten, arXiv, 2022]
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DEGs between inferred cell clusters from single-cell RNA-seq data

ClusterDE (cell clustering + DEG identification between cell clusters)

naive cellsplit genesplit countsplit
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DEGs between inferred cell clusters from single-cell RNA-seq data

ClusterDE (cell clustering + DEG identification between cell clusters)
— existing methods assume Gaussian distributions

TN test [Zhang, Kamath, and Tse, Cell Syst, 2019]
clusterpval [Gao, Bien, and Witten, JASA, 2022]

— or require count splitting and assume Poisson distribution
countsplit [Neufeld, Gao, Popp, Battle, and Witten, arXiv, 2022]
Our proposal: scDesign3 + Clipper
— inspired by

gap statistic [Hastie, Tibshirani, and Walther, JRSSB, 2002]
c,& knockoffs [Barber and Candés, Ann Stat, 2015] 3»



scDesign3: in silico negative control

UMAP2

Real data

Permutation null

scDesign3 null

Cell type ® Naive cytotoxic T cell

UMAP1

©® Regulatory Tcell @ Null
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Clipper: p-value-free FDR control for genomics feature screening

= NO requirement of = Foundation: knockoffs

— high-resolution p-values
— parametric distributions

— large sample sizes

= Two components

— contrast scores
— cutoff

Goal: marginal screening for interesting features

d features FDR threshold g
Contrast scores Contrast score cutoff
: . clc = ok 14#{j:c;<—t)]
c, minft € {|¢; - ¢; # 0} T
: -t
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Clipper offers a general p-value-free FDR control solution

@

Key: contrast score construction

target data null data
example . .
(experiment) (negative control)
RNA-seq DEG identification actual data permuted data
PseudotimeDE & ClusterDE actual data scDesign3 simulated data
Contrast score of feature j =1,...,d, the

C; = t(target data) — t(null data),

where t(-) is a summary statistic — can be a complex pipeline
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Clipper paper

Method | Open Access | Published: 11 October 2021

Clipper: p-value-free FDR control on high-throughput
data from two conditions

Xinzhou Ge, Yiling Elaine Chen, Dongyuan Song, MeiLu McDermott, Kyla Woyshner, Antigoni

Manousopoulou, Ning Wang, Wei Li, Leo D. Wang & Jingyi Jessica Li

Genome Biology 22, Article number: 288 (2021) | Cite this article
8505 Accesses | 10 Citations | 50 Altmetric | Metrics
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ClusterDE: scDesign3 + Clipper (preliminary)

Complete null case: no cell clusters

Real Data Seurat Clustering Kmeans Clustering Null Data by scDesign3
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[Zheng et al., Nat Commun, 2017]
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ClusterDE: scDesign3 + Clipper (preliminary)

Complete null case: no cell clusters
Null Cases - nDE =0
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Take-home messages

= Sanity check is essential: popular methods do NOT always work
Benchmarking against classic methods is crucial for method developers
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Take-home messages

= Sanity check is essential: popular methods do NOT always work

Benchmarking against classic methods is crucial for method developers

= scDesign3 usages
— Method benchmarking
— Parameter inference
— In silico controlled data generation
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Take-home messages

= Sanity check is essential: popular methods do NOT always work

Benchmarking against classic methods is crucial for method developers

» scDesign3 usages
— Method benchmarking
— Parameter inference

— In silico controlled data generation

= Double dipping is ubiquitous in genomic data science
Statistical inference is often NOT the first step of a pipeline
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Take-home messages

= Sanity check is essential: popular methods do NOT always work
Benchmarking against classic methods is crucial for method developers

» scDesign3 usages
— Method benchmarking
— Parameter inference

— In silico controlled data generation

= Double dipping is ubiquitous in genomic data science
Statistical inference is often NOT the first step of a pipeline

= Our proposal for single-cell inference
— scDesign3: generating data from the specified null
® — Clipper: FDR control that only requires null data generation for once 38
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