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Model selection for binary classification: a motivating example

Automated disease diagnosis a binary classification problem

e Features/predictors: ~ 20K human gene expression levels
e Response: binary disease status: 0 (diseased) and 1 (healthy)

sample A1BG A1CF A2BP1 A2LD1 A2M

breast cancer tissue 0.2313966 0.6515808 0.4277823 0.8855574 0.6718676
breast cancer tissue 0.2479010 0.6686116 0.4653367 0.8820843 0.7234769
breast cancer tissue 0.2253524 0.7167720 0.3317310 0.7430520 0.8042019
breast cancer tissue 0.1732131 0.7957590 0.5316374 0.8725860 0.7594307
breast cancer tissue 0.2202075 0.6620401 0.3481031 0.7282685 0.7953009
normal tissue 0.2245508 0.7429916 0.5128035 0.8923495 0.7125915
breast cancer tissue 0.2641653 0.7466348 0.5220898 0.9173302 0.8038506
normal tissue 0.2418038 0.7126189 0.5523689 0.8840687 0.7019090
normal tissue 0.2168959 0.6747223 0.4917510 0.8137360 0.6560015
breast cancer tissue 0.2202682 0.7067618 0.5223232 0.8774032 0.7337275
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Given a classification method (e.g., logistic regression),

e What subset of genes exhibits the highest diagnostic power?

® A model selection problem L



Two binary classification paradigms: classical vs. Neyman-Pearson

Paradigm Oracle classifier Practical classifier
Classical ¢* = argmin R(¢) ¢ = arg min R(&)
¢ ¢

Neyman-Pearson ¢}, = arg min Ri(¢) ¢o by the NP umbrella algorithm
Ro(p)<o

[Rigollet and Tong (2011)] [Tong, Feng and Li (2018)]
where « is a user-specified upper bound on the type | error
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Paradigm Oracle classifier Practical classifier
Classical ¢* = argmin R(¢) ¢ = arg min R(&)
¢ ¢

Neyman-Pearson ¢}, = arg min Ri(¢) q?u by the NP umbrella algorithm
Ro(p)<o

[Rigollet and Tong (2011)] [Tong, Feng and Li (2018)]
where « is a user-specified upper bound on the type | error

The Neyman-Pearson paradigm is suitable for disease diagnosis

e The two classes have asymmetric importance

e Mispredicting a normal tissue sample as malignant
= patient anxiety & additional medical costs—type Il error Ri(¢)
e Mispredicting a tumor sample as normal

= life loss @ —type | error Ry(¢)

Policy makers often like to enforce a pre-specified threshold o on Ry(¢)
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Two binary classification paradigms: classical vs. Neyman-Pearson
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Paradigm Oracle classifier Practical classifier

Classical ¢* = argmin R(¢) ¢ = arg min R(¢)
[ ¢

Neyman-Pearson ¢}, = arg min Ri(¢) a;a by the NP umbrella algorithm
Ro(¢)<ox

[Rigollet and Tong (2011)]  [Tong, Feng and Li (2018)]
where « is a user-specified upper bound on the type | error

The Neyman-Pearson paradigm is suitable for disease diagnosis
e The two classes have imbalanced sample sizes
R(#) = P(Y = 0)Ro() + P(Y = 1)Ri(¢)
When IP(Y = 0) = IP(diseased) < IP(Y = 1) = IP(healthy),

e The classical oracle classifier may have an excessively large Ro(¢)
e The NP oracle classifier will have Ry(¢) < «



Paper and software of the Neyman-Pearson umbrella algorithm
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Neyman-Pearson classification algorithms and NP
receiver operating characteristics

Xin Tong,'*' Yang Feng," Jingyi Jessica Li**

In many binary classification applications, such as disease diagnosis and spam detection, practitioners commonly face
the need to limit type | error (that is, the conditional probability of misclassifying a class 0 observation as class 1) so that
it remains below a desired threshold. To address this need, the Neyman-Pearson (NP) classification paradigm is a
natural choice; it minimizes type Il error (that is, the conditional probability of misclassifying a class 1 observation
as class 0) while enforcing an upper bound, a, on the type | error. Despite its century-long history in hypothesis testing,
the NP paradigm has not been well recognized and implemented in classification schemes. Common practices that
directly limit the empirical type | error to no more than a do not satisfy the type | error control objective because the
resulting classifiers are likely to have type | errors much larger than @, and the NP paradigm has not been properly
implemented in practice. We develop the first umbrella algorithm that implements the NP paradigm for all scoring-
type classification methods, such as logistic regression, support vector machines, and random forests. Powered by this
algorithm, we propose a novel graphical tool for NP classification methods: NP receiver operating characteristic
(NP-ROC) bands motivated by the popular ROC curves. NP-ROC bands will help choose a in a data-adaptive way
and compare different NP classifiers. We demonstrate the use and properties of the NP umbrella algorithm and
NP-ROC bands, available in the R package nproc, through simulation and real data studies.

R package nproc
https://CRAN.R-project.org/package=nproc

Email: jli@stat.ucla.edu
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Model selection under the Neyman-Pearson paradigm (population)

e Goal: Develop a model selection criterion to compare models (i.e., feature
subsets) under the Neyman-Pearson (NP) paradigm

e Idea: prediction-based model selection

e Compare two feature subsets based on the type Il errors of their
corresponding NP oracle classifiers
in contrast to

e Compare two feature subsets based on the risks of their corresponding
classical oracle classifiers

e Question: Will the model selection results be different under the two
paradigms?
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Prediction-based model selection under the two paradigms (population)

A linear discriminant analysis (LDA) example

Two features Xi, Xo € IR with the following class conditional distributions:

Xy [ (Y =0) ~ N (-5,2%), Xy [ (Y =1) ~ N(0,2),
X2y | (Y = 0) ~ N(-5,2%), Xy [ (Y =1) ~ N(1.5,3.5%).

We would like to select the better feature between the two
e Classical oracle classifiers:
R (¢71y) = 0.106 < R (¢};) = 0.113

So X is the better feature
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A linear discriminant analysis (LDA) example

Two features Xi, Xo € IR with the following class conditional distributions:

Xy [ (Y =0) ~ N (-5,2%), Xy [ (Y =1) ~ N(0,2),
X2y | (Y = 0) ~ N(-5,2%), Xy [ (Y =1) ~ N(1.5,3.5%).

We would like to select the better feature between the two
e Classical oracle classifiers:
R (¢71y) = 0.106 < R (¢};) = 0.113

So X is the better feature

e Neyman-Pearson (NP) oracle classifiers:

R (¢aq1y) vs. Ri(darzy)

« a=00L Ry (¢},) = 0431 > R (%)) = 0299 = X, better
© =020, Ry (¢,,,) =0.049 < Ry (%, ) =0.084 = X; better

P ‘



Prediction-based model selection under the two paradigms (population)

Special scenarios where prediction-based model selection is the same under the
two paradigms

Lemma 1

Xay [(Y =0) ~ N (1, 09)) Xy 1Y =1) ~ N (ud, (01)°) |
Xy | (Y =0) ~ N (8,(03) , Xiy [ (Y = 1) ~ NV (i, (03)°) -

Let a € (0,1), ¢5(1; and ¢ oy be the NP oracle classifiers based on X1y and
Xi2y € R respectively, and d)}‘l} and d)?z} be the corresponding classical oracle
classifiers. If

03 _ o
1 1>
o o

then

sign (Rt ($aq1y) — R (¢arz))) = sign (R (¢13) — R (¢72)) -

for all «. The reverse statement also holds.



Prediction-based model selection under the two paradigms (population)

Special scenarios where prediction-based model selection is the same under the
two paradigms
Lemma 2

Let A1, A> C{1,...,d} be two index sets. For a random vector X € RY, let
Xa, and Xy, be sub-vectors of X comprising of coordinates with indexes in Ay
and A, respectively, and assume they follow the class conditional distributions:

XA1|(Y:O)NN(I"’(1)a21)v XA1|(Y:1)NN(I"’L21)3
Xay [ (Y =0) ~ N (2, 22), Xap [ (Y =1) ~ N2, 22),
where u} € IR* denotes the mean vector of feature set A; in class i, and

3; € R**! denotes the variance-covariance matrix of feature set A;, j = 1,2,
i=0,1

The selected feature set A}, = A1 or A, under the NP paradigm is invariant to «
and is consistent with the selected feature set A* under the classical paradigm.
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Model selection under the Neyman-Pearson paradigm (sample)

e Goal: Develop a practical prediction-based model selection criterion under
the NP paradigm

e ldea: Compare two feature subsets based on the estimated type Il errors
of their corresponding NP classifiers (constructed by our NP umbrella
algorithm)

e Question: How to construct a “good” estimator of the type Il error of an
NP classifier?

Leave out some class 1 data!



The model selection criterion: NPC (Neyman-Pearson Criterion)

Statistical formulation

Given a,0 € [0,1], a classification method, and a feature subset
A C{1,...,p}, a practical NP classifier ¢oa is constructed by the NP
umbrella algorithm. Then the NPC for model A at level a is defined as

NPCqa := k\l(aaA)

where §1(¢) is the estimated type Il error of any classifier ¢ on leave-out

class 1 data

e Sample splitting: split training data into three parts

e mixed classes 0 and 1 sample NP umbrella_algorithm —~
= d)aA
e left-out class 0 sample

o left-out class 1 sample Sag NPC,a

e Multiple random splits can be used to construct an ensemble estimator

with a smaller variance
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Theoretical properties of NPC

Concentration of ﬁl(aaA) at Ri(¢5a)

Given reasonable conditions on

(1) the two class conditional distributions of X | (Y = 0) and
X[(Y=1)

(2) the scoring function of the given classification method

(3) the two class samples sizes

we can show that with probability at least 1 — &’
|Ri($an) = Ru(¢5a)] < C(&)

where
e Ri(¢}4) is the population type Il error of the method-specific
oracle classifier ¢, (the classifier that shares the same scoring
function as the ‘best’ classical classifier constrained by the
classification method)
e The deviation upper bound C(&") increases as ¢’ decreases; also,
® C(6") converges to zero as the sample sizes go to infinity "




Real data application: DNA methylation features for cancer diagnosis

A glance at data (Fleischer et al., 2014 Genome Biology):

e 46 (class 1) normal tissues V.S. 239 breast cancer (class 0) tissue

e Methylation levels are measured at 468,424 genome locations in every
tissue

e After preprocessing and normalization, d = 19,363 > n = 285

P "



Real data application: DNA methylation features for cancer diagnosis

Use L; penalized logistic regression to generate a solution path
= 41 nested feature sets

Apply model selection criteria:

AlC BIC
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Real data application: DNA methylation features for cancer diagnosis
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Real data application: DNA methylation features for cancer diagnosis
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Real data application: DNA methylation features for cancer diagnosis
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Real data application: DNA methylation features for cancer diagnosis
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Real data application: DNA methylation features for cancer diagnosis
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Real data application: DNA methylation features for cancer diagnosis

- ZNF646, ERAP1, LOC121952 (METTL21EP), GEMIN4, BATF, MIR21
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Real data application: DNA methylation features for cancer diagnosis

Among the 41 genes,

protein-coding microRNA pseudogene
remained 32 (20) 3 0
removed 4 (2) 1 1

() means the number of genes that express proteins in breast cancer tissues
according to the Human Protein Atlas database

Observations:

e 9 out of 32 genes do not yet have available protein expression data in
breast cancer tissues in the Human Protein Atlas database

e A specificity higher than 90% is achievable with only three gene markers:
HMGB2, MIR195 and SPARCLI. Inclusion of SPARCLI increases
specificity from ~ 70% to over 90%

P 20



Conclusions

e A new model selection criterion: NPC, tailored for asymmetric binary
classification under the NP paradigm

e NPC allows users to select a model that achieve the best specificity among
candidate models while maintaining a high sensitivity

e Useful in disease diagnosis, and other applications (network security
control, loan screening and prediction of regional conflicts)

e Flexible to the choice of classification methods and the way of
constructing NP classifiers

P 2
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