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WormPerturb-Seq:massively parallel whole-
animal RNAi and RNA-seq

Hefei Zhang 1,8, Xuhang Li 1,8, Dongyuan Song 2,6, Onur Yukselen3,
Shivani Nanda 1,7, Alper Kucukural 3,4, Jingyi Jessica Li 2,5,
Manuel Garber 4 & Albertha J. M. Walhout 1

Transcriptomes provide highly informative molecular phenotypes that, com-
bined with gene perturbation, can connect genotype to phenotype. An ulti-
mate goal is to perturb every gene and measure transcriptome changes,
however, this is challenging, especially in whole animals. Here, we present
‘Worm Perturb-Seq (WPS)’, a method that provides high-resolution RNA-
sequencing profiles for hundreds of replicate perturbations at a time in living
animals.WPS introducesmultiple experimental advances combining strengths
of Caenhorhabditis elegans genetics and multiplexed RNA-sequencing with a
novel analytical framework, EmpirDE. EmpirDE leverages the unique power of
large transcriptomic datasets and improves statistical rigor by using gene-
specific empirical null distributions to identify DEGs. We apply WPS to 103
nuclear hormone receptors (NHRs) and find a striking ‘pairwise modularity’ in
which pairs of NHRs regulate shared target genes.We envision the advances of
WPS to be useful not only for C. elegans, but broadly for other models,
including human cells.

Since the dawn of functional genomics, the transcriptome has proven
to be one of the most powerful molecular phenotypes to connect
genotype to phenotype1–3. While early work in yeast provided insights
into the transcriptional responses to gene deletions4,5, similar large-
scale and systematic studies in multicellular organisms have been
lacking. Moreover, statistical analyses of large-scale, high-throughput
genomics data suffer from technical biases and high false discovery
rates (FDRs)6, e.g., many false positives in the identification of differ-
entially expressed genes (DEGs). More recently, a method commonly
referred to as Perturb-seq has been developed that uses pooled
CRISPR-based geneperturbation screenswith single-cell RNA-seq. This
method has proven powerful in cell-based functional screens to
annotate gene function, identify genetic interactions, and to infer

disease-related pathways7–13. Empowered by single-cell RNA-seq and
pooled screening, this type of approach provides unparalleled multi-
plexity, enabling genome-wide perturbationand sequencing in a single
or just a few experiments. However, this unique advantage also comes
with trade-offs, including low sensitivity for gene detection, lack of
biological replicate experiments (due to high costs), and challenges to
perturb many genes in vivo3,14–16.

Here, we present ‘Worm Perturb-Seq’ (WPS) in which individual
genes are knocked down in the nematode C. elegans by feeding bac-
teria expressing double-stranded RNA, followed by RNA-seq using a
strategy that adopts the highmultiplexity of single-cell sequencing but
uses bulk samples to produce high-resolution RNA-seq profiles.WPS is
labor- and cost-efficient and enables replicate experiments. Using
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large-scaleWPS data, we find subtle yet systematic fluctuations in gene
expression caused pervasive false positive DEGs when analyzed by
standard differential expression (DE) analysis methods that compare
experiment to control conditions. To circumvent this issue, we
develop a two-pronged data analysis framework, EmpirDE (‘Empirical
Differential Expression’) that leverages the large WPS dataset to iden-
tify DEGs. EmpirDE systematically mitigates technical confounders by
using gene-specific models with empirical null distributions to correct
for anti-conservative P values (i.e., where the significance is over-
estimated) obtained by standard DE analysis. We demonstrate the
rigorous control of FDR by EmpirDE using both simulations and
experimental benchmarking. We apply WPS to the knockdown of 103
nuclear hormone receptors (NHRs) and discover that NHR pairs fre-
quently share overlapping target genes, which cannot be explained by
protein similarity, but is more related to NHR coexpression. WPS will
enable examining different perturbations in addition to RNAi, includ-
ing mutants, bacterial diets, and exposure to drugs or toxins. Impor-
tantly, EmpirDE will also broadly enable statistically rigorous analyses
of large-scale transcriptomic data (i.e., >100 conditions) in other
systems.

Results
In C. elegans, gene expression can be knocked down by feeding the
animals bacteria expressing double-stranded RNA for a target gene of
interest17,18. This whole-animal RNA interference (RNAi) is easy to per-
form for large sets of genes in parallel, andmultiple RNAi libraries have
been developed19–23. We developed WPS, which is composed of two
major components: (1) an experimental approach to perform high-
throughputwhole-animal RNAi experiments and generatemultiplexed
RNA-seq libraries, and (2) a computational pipeline for quality control
and rigorous statistical analysis of DEGs (Fig. 1a).

An overview of Worm Perturb-Seq (WPS)
WPS consists of several steps,many of whichwereoptimized to enable
high-throughput, cost-effective experiments (Fig. 1b). Briefly, RNAi is
startedwith animals at the first larval stage (L1) and, when grown to the
desired stage, animals areharvested, and totalRNA is extracted in a 96-
well extraction plate. This streamlined workflow allows efficient tri-
plicate experiments for hundreds of knockdowns (Fig. 1a). Multiplex
RNA-seq libraries are constructed using an early barcoding step during
reverse transcription in the 96-well plates, with each barcode linked to
a single perturbation, followed by pooling of ~50 samples and
sequencing library construction. After sequencing, several quality
control steps are performed (see below) and DEGs are identified with
EmpirDE, which uses gene-specific models with empirical null
distributions.

An experimental WPS platform
Several experimental steps of WPS were developed and optimized,
including growing animals, harvesting RNA, and generating, pooling,
and sequencing of multiplexed libraries (Fig. 1b, Supplementary Pro-
tocols, Supplementary Data 1 and Supplementary Note 1). Notably,
WPS introduces a high-throughput worm lysis method for RNA
extraction in 96-well plates, which does not lyse eggs, making it sui-
table to use WPS for gravid adults (Supplementary Fig. 1a). We opti-
mized the 3’ end barcoding method CEL-Seq224, which was originally
developed for single-cell RNA-seq25, for multiplexing bulk RNA-seq
libraries, with significant reduction of costly reagents (Fig. 1b and
Supplementary Protocol).

The transcriptome of C. elegans changes greatly over the course
of its lifetime; there are oscillatory expression profiles during devel-
opment, and gene expression continues to change as the animals
reproduce and age26–28. Therefore, if a knockdown has even a small
effect on development, it can result in many DEGs that are secondary
to the effect of the knockdown on development, rather than in

response to the perturbed gene. We therefore opted to use a period in
the animal’s lifetime in which the transcriptome does not change to
minimize developmental effects of knockdowns. Animals develop
from L1 to gravid adults in ~58 h at 20 °C and we found that the gravid
adult transcriptome was most stable between 60 and 68 h post-L1-
plating (Fig. 2a, Supplementary Fig. 1b). Therefore, we used a time of
~63 h post-plating, which is in between the first egg laid at 58 h and the
first egg hatched at 68 h, allowing enough time for sample collection
and processing, and providing a buffer for perturbations that elicit a
mild developmental day (Fig. 2a).

In other systems, it has been shown that most genes can be
quantified with a relatively shallow read depth29,30. We performed
down-sampling analysis of a dataset with sequencing depth ranging
from 39.5 to 53.9 million reads in three biological replicates (Supple-
mentary Fig. 1c and Supplementary Data 2). We used an average of 6
million reads per sample, with which 90% of genes with >4 transcripts
per million (TPM) and 80% of genes with >2 TPM could be quantified
(Fig. 2b, Supplementary Fig. 1d). In addition, we compared the gene
detection sensitivity of thisWPS setupwith the conventional approach
and found that the differences are negligible for significantly expres-
sed genes (e.g., TPM> ~0.5) (Supplementary Fig. 1e). For library mul-
tiplexing, we pooled ~54 samples, which included 16 perturbations,
each containing three biological replicates, together with six negative
controls (empty vector RNAi) into one sequencing library. This design
was intended to minimize batch effects by having all replicates of
controls and perturbations in the same library. We first established a
proof of concept by targeting 103 NHRs as discussed below and then
extended this to the knockdowns ~900 metabolic genes in the meta-
bolic network of C. elegans31,32. Here, we combined these two WPS
datasets ( > 4000 profiles collected in 80 libraries) for benchmarking
analysis.

WPS quality control
Analysis of large-scale and high-throughput functional genomics
experiments can be complicated by batch effects and low-quality
samples6,33,34. We followed standard practices to ensure the quality
of individual samples35,36, and to identify and remove outlier repli-
cates (Fig. 2c, Supplementary Fig. 1f, Supplementary Methods). We
next developed two RNAi quality control (QC) analyses to verify the
gene that was knocked down. First, the reduction of targeted gene
expression can be directly read out. For instance, for 85% of genes
that are expressed at a high level (TPM ≥ 30), we found a > 2-fold
reduction in their mRNA levels when knocked down (Supplemen-
tary Fig. 1g). Second, due to abundant reverse strand reads thatmap
to the gene body of knocked down genes, the identity of the per-
turbed gene can be directly identified from the WPS data (Fig. 2d,
red reads). These reads are likely derived from unspecific reverse
transcription of anti-sense RNA generated during the RNA inter-
ference process37. This latter RNAi identity verification is particu-
larly useful for genes that are expressed at low levels and was able to
verify the identity of almost all NHR RNAi clones that were also
confirmed by Sanger sequencing (Fig. 2e). We next performed WPS
using RNAi clones that were not confirmed a priori31 and found three
incorrect clones (Fig. 2f, g, indicated in red). Importantly, we could
identify the actual target by mapping anti-sense sequences to the
C. elegans genome (Fig. 2f, non-diagonal signals for the red RNAi
conditions). Two clones that returned a hit in the search were
subsequently confirmed by Sanger sequencing (Supplementary
Fig. 1h). The other incorrect clone had a partial insert that did not
target a transcribed gene and was considered a non-targeting per-
turbation (NTP). In the metabolic-gene WPS screen31 we found that
~13% of the samples had a wrong RNAi identity, including 67 NTPs
(Supplementary Data 3), showing the necessity of RNAi QC in large-
scale screens. Taken together, WPS data can be directly used to
validate that the gene that has been knocked down and clones that
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are incorrect can simply be removed from the dataset or analyzed
with the corrected target information.

Standard DE analysis results in high false discoveries
The 67 NTPs from the metabolic-gene WPS study31 should have zero
DEGs and can therefore be used to evaluate the actual FDR inWPS.We
initially conductedDE analysiswithDESeq238, by comparing eachRNAi
perturbation to vector controls from the same sequencing library.
Surprisingly, this approach resulted in dozens of DEGs inbothNTP and

four randomly spike-in vector control conditions (Fig. 3a, Padj <0.01,
fold change (FC) > 2, collectively referred to as NTPs hereafter). This
suggests a high level of false discoveries despite stringent filtering by
estimated FDR and FC thresholds.

False positive DEG calls are common in RNA-seq studies39–42 and
are potentially more profound when combined with large-scale
screens because of systematic variations6,40. By comparing mRNA
levels among vector control, NTP, and RNAi samples within the same
sequencing library and across dozens of libraries, we discovered two

Optimization step Highlights

RNA extraction
Scalable: lyse animals by chemical 
method in 96-well plate

Specific: only break down animal bodies 
and not their eggs

RNA-seq library
constructions

Standardization: optimize and standard-
ize a protocol for bulk RNA-seq library 
construction based on CEL-Seq2 method

Improved multiplexing: pool individual 
samples after first-strand cDNA synthesis to 
improve robustness and cost efficiency 

Quality control

b

Differential exp-
ression analysis

RNAi quality assurance: identify reads from the anti-sense RNA generated during RNA interference to ensure the identity of RNAi target and 
quantify the efficiency of knockdown by the decrease of target gene expression

a

Rigorous false discovery control: a two-pronged DE analysis framework, EmpirDE, that uses 
gene-specific models with empirical null distributions to rigorously identify DEGs at desired false 
discovery rate

Robust: identified a transcriptional steady state, 
60-68 hours post L1, which allows for robust 
large-scale experimentation

Optimal read depth: ~6M on average for optimal 
cost-benefit tradeoff

Power: three biological replicates for >95% 
RNAi conditions

Fig. 1 | Worm Perturb-Seq (WPS) overview. a Overview of the WPS pipeline. This figure was created in BioRender. lee, y. (2025) https://BioRender.com/u29b568. bWPS
optimization highlights.
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confounding issues. The first issue involved sequencing libraries in
which a gene consistently behaved differently in the vector control
samples compared to the RNAi samples in the same sequencing library
(Fig. 3b, ‘control-outlier gene’, Supplementary Fig. 2a). For instance,
swt-3 expression was lower in all RNAi samples when compared to the
vector control in the same batch (Fig. 3b), resulting in swt-3 being

identified as a DEG in all these conditions, including in the NTP. This
problem is more likely an effect associated with confounded controls
in large-scale experiments, especially the array-based screens like in
WPS. The second issue involved genes with highly variable mRNA
levels across the WPS dataset (Fig. 3c, see Supplementary Fig. 2b for
the entire dataset, ‘noisy genes’) that were frequently called as DEGs in
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both RNAi perturbations and NTPs by DESeq2. We next sought to
systematically address these and other possible effects that resulted in
the seemly systematic, anti-conservative P values and unexpectedly
high false discoveries.

EmpirDE: an empirical null-based, gene-centered method to
rigorously analyze differential expression
A major challenge in transcriptomics is that successful DE analysis
hinges on reasonable model assumptions and accurate parameter
estimation. However, it is impossible to accurately estimate para-
meters, such as gene-specific variance or to identify model mis-
specification in small-sample-size experiments43–46. To systematically
identify and correct for false positive DEGs, we developed EmpirDE,
which leverages the power of having hundreds of conditions assessed
in a uniform experimental setup, enabling the rigorous identification
of true DEGs that are elicited by a specific knockdown. EmpirDE uses a
two-pronged approach, first at the level of individual sequencing
libraries and second at the level of an entire dataset (Fig. 3d). The first
step performs DE analysis within each sequencing library (~16 condi-
tions in our experiments) using DESeq2. However, instead of simply
comparing an RNAi condition to the control, this step identifies
control-outlier genes and treats these differently using a control-
independent DE analysis procedure (Supplementary Note 2). Briefly,
for each control-outlier gene, this step empirically identifies a control-
independent null population based on the distribution of the gene’s
expression levels in the sequencing library and compares the level for
the gene in each RNAi condition to the newly defined null population.
The second step of EmpirDE combines the DE results from all
sequencing libraries (here ~1000 triplicate conditions) to correct anti-
conservative P values based on gene-specific empirical null distribu-
tions of the DE test statistic (i.e., Wald statistic). Dozens to hundreds of
conditions uniformly collected in WPS provided a unique opportunity
to directly estimate the empirical null from the data in a gene-centered
manner47. Assuming real effects are rare in large-scale experiments, the
gene expression inmost conditions canbe viewed as ‘unchanged’, thus
defining an empirical null population. By fitting the central peak of the
distribution of the test statistic (i.e., the distribution of conditions that
did not have a significant effect)47, this step estimates the empirical
n`ull and rescales the original test statistic (i.e., Wald statistic)
accordingly to obtain a corrected Wald statistic on a gene-by-gene
basis. This corrected statistic should follow a standard normal
distribution and can be converted to a P value (referred to as empirical
P value) to identify perturbations where differences in expression
levels are statistically significant from the empirical null distribu-
tion (Fig. 3d).

EmpirDE identified fewer than 200 control-outlier genes in most
sequencing libraries (Fig. 3e), indicating a relatively low but significant
number of confounded genes (1.4% of 14,000 detected genes). In the
scenarioof awell-fittedDEmodel, the empirical null distribution of the
Wald test statistic in DESeq2 analysis should adhere to its theoretical

null, a standard normal distribution38. Surprisingly, we observed a
systematic difference between the theoretical and empirical null for
the ~14,000 detected genes in this dataset (Fig. 3f, g, Fig. 3d shows an
example gene C06B3.7). While the mean of the empirical null dis-
tribution was symmetrically aligned around the mean of the theore-
tical Wald distribution (0) (Fig. 3f), the empirical null had
systematically larger standard deviations than the theoretical expec-
tation (1) (Fig. 3g). As a result, P values computed using the theoretical
Wald distribution were anti-conservative, but this could be corrected
by EmpirDE (Fig. 3d, empirical P value).

We next investigated the source of larger-than-expected standard
deviations of empirical null. By inspecting mRNA levels across all
conditions for each gene, we found a wide-spread fluctuation of the
mean levels across perturbations (Fig. 3h, Supplementary Fig. 2b). This
mean fluctuation is different from the random variation between
replicates (i.e., dispersion), as replicates within the same condition
behave consistently. Themean fluctuation is typically mild in its effect
size, thereby distinguishing it from specific changes induced by RNAi
(Fig. 3h, acdh-1). We hypothesized that the broad Wald statistic dis-
tribution is caused by such mean fluctuations, and that the mean of
observed gene expression (μobs) is the sum of the actual biologically
relevant expression change (μbio, caused by RNAi) and the aforemen-
tioned mean fluctuation (Δμ) (Fig. 3h). Such fluctuation can be driven
by experimental confounders, such as subtle differences in tempera-
ture in different positions in the culture plates, that are known hidden
covariates in large-scale, array-based experiments6. As hidden covari-
ates may be unknown and/or fully confounded with the covariate of
interest (RNAi), their effects artificially contribute to the effect from
the RNAi treatment they covary with and can be misinterpreted as
biological signal from the RNAi treatment in WPS, resulting in the
systematic overestimation of P values in regular DESeq2 analysis.
Importantly, although these fluctuations are often statistically sig-
nificant, they should be biologically uninteresting, based on the
empirical null principle47.

To test the hypothesis thatfluctuations ofmean can introduce the
observed test statistic inflation, we performed a simulation study. We
used scDesign348 to simulate the metabolic-gene WPS dataset31. To
mirror real data, we used the DEGs identified in theWPS analysis as the
ground truth and synthesized a new dataset in which the mean
expression of each DEG was altered based on the DEG fold change
while remaining consistent otherwise. To test the role ofΔμ, we further
introduced a random fluctuation of the mean for each gene in each
condition, based on parameters estimated from the real data (Sup-
plementary Fig. 2c). Consistent with our hypothesis, we found that the
standard deviations of the empirical null distributions in simulated
data matched the inflated test statistic of real data when a random Δμ
was added, while being very close to the theoretical distribution when
removing Δμ (Fig. 3i, Supplementary Fig. 2d–f). Therefore, the
observed anti-conservative P values can be explained by a random
mean fluctuation.

Fig. 2 | Development of WPS and data quality control. a Comparison of the C.
elegans transcriptome across developmental stages. The Pearson correlation
coefficient (PCC) was calculated by the WPS profiles of animals fed vector control
bacteria and collected at different time points post L1. b Subsampling analysis of
WPS profiles, combining data from 62 to 65 h for each replicate shown in Fig. 2a.
The plot shows the fraction of genes quantified versus sequencing depth. Genes
whose expression levels in subsampling fall within roughly ±30% interval of the
reference value were considered as quantified (for detailed definition, see Sup-
plementary Methods). Error bar shows the mean values (± s.d.) from three repli-
cates of the subsampling profile. c Representative Principal Component Analysis
(PCA) results for gene expression profiles of perturbations without (gna-1 on top
panel) andwith (iars-2 in bottompanel) a low-quality outlier replicate. Red and gray
dots indicate RNAi and control samples, respectively. d An example showing reads

mapped to the reverse strand of the RNAi target gene (nhr-7) and a decrease in
mRNA reads at the 3’ end. The readsmapped to nhr-7 gene locuswere visualizedby
Integrative Genomics Viewer (IGV89). nhr-7 RNAi was compared to vector control
RNAi and another RNAi condition (nhr-14). Quantification of anti-sense RNA reads
in a Sanger-sequenced (e) and an unvalidated (f) WPS sequencing library. Row
names represent the intendedRNAi gene (three replicates each) and columnnames
represent the actual knocked down genes. Row names in red indicate wrong RNAi
clones. Values are the log2(Count-Per-Million (CPM) + 0.01) of the readsmapped to
the reverse strand of each gene in the columns. g Log2(Fold Change (FC)) of the
RNAi targeted gene expression for the WPS sequencing library shown in (f). Pound
key (#) indicates not detected. Each bar represents the mean (±s.d.) and each dot
represents one biological replicate (n = 3). Source data are provided as a Source
Data file.
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While the mean fluctuation is systematic, some genes have
stronger test statistic inflation than others, such as the noisy genes we
previously observed (Fig. 3d, g). We further investigated if there are
any common features among these genes, and in general, we found
that the test statistic inflation was not dependent on their expression
levels. Instead, we noticed that the ‘noisier’ or highly fluctuating genes

were often associated with stress and environmental responses49,50

(Fig. 3j). This observation was substantiated by Gene Set Enrichment
Analysis (GSEA)51, using empirical-null standard deviation as the rank-
ing metric (Supplementary Methods, Fig. 3k). Enriched categories are
related to various nutrients andwaste transport, as well as interactions
with bacteria diet. While these responses might also result from
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genetic perturbations, they are well-known, and more likely, to be
influenced by environmental factors, such as hidden covariates in the
experiment.

EmpirDE framework rigorously controls FDR
To benchmark the performance of EmpirDE, we first used simulation
data to assess both FDR and power. As expected, both EmpirDE and
regular DESeq2 correctly controlled the FDR on the simulated data
without the addition of Δμ (Supplementary Fig. 3a, b). However, with
Δμ, only EmpirDE was able to rigorously control the observed false
discovery proportion (FDP) at the expected FDR (Fig. 4a). Importantly,
the power of EmpirDE is greater than that of DESeq2 at the same level
of observed FDP (Fig. 4b), indicating a true increase in performance
instead of nominal rescaling of P values. Such rigorous control of FDR
depends not only on the optimized statisticalmodeling framework but
also on the proper adjustment for multiple testing. WPS experiments
involve both simultaneously testing the expression of thousands of
genes in each perturbation (column-wise multiple testing) and hun-
dreds of gene perturbations (row-wise multiple testing). Using the
simulation data,we found that theworst-case adjusted P values in both
column-wise and row-wise adjustments of a DE test aligned best with
the expected FDR (Fig. 4c), while its loss of power was negligible
(Supplementary Fig. 3c).

Next, we experimentally benchmarked EmpirDE performance.We
first used the NTP experiments mentioned above (Fig. 3a) to compare
the number of false positive DEGs between DESeq2 and EmpirDE
analysis with different thresholds for both FDR and fold change
(Fig. 4d). We found that the 90% quantile of the number of DEGs
detected in the NTPs was much lower with EmpirDE compared to
DESeq2 (Fig. 4d, Supplementary Fig. 3d). Specifically, at a FC of 1.5 and
FDR <0.1 we detected 4 and 435 false positive DEGs in the EmpirDE
and DESeq2 analysis, respectively (Fig. 4d, white dashed line).

To further evaluate the performance of EmpirDE, we used the
reproducibility of DEG calls to empirically evaluate the power and
error of the DE analysis. We randomly selected and independently
repeated, in triplicate, 36 RNAi experiments that yielded a broad range
of DEGs (Fig. 4e). DEGs that were identified in one experiment but had
no significant change in the other (FC < 1.1 or in reverseddirection), are
considered genuine false discoveries. We used the rate of such irre-
producible DEGs to estimate the true FDR and found that EmpirDE
showed a rate of irreproducible calls consistentwith the FDR threshold
(10%), regardless of the effect size (number of DEGs) (Fig. 4f). In con-
trast, DESeq2 analysis achieved the desired control of FDR only when
the effect size was large. The rigorous control of false positives of the
two-pronged EmpirDE approach can be further demonstrated by
visually inspecting eachof the 36 conditions (Fig. 4g, h, Supplementary
Fig. 4). For instance, many DEGs in the metr-1 RNAi experiment were
control-outlier genes and, as expected, these did not replicate in the
repeat experiment (Fig. 4g, right side). Although non-control-outlier
DEGs were generally reproduced with both DESeq2 and EmpirDE, the
latter still eliminated a few highly changed but unreproduced calls
(Fig. 4g, left). Notably, the EmpirDE approach was critical when true
positives were sparse and false positives identified by DESeq2 analysis

masked the retrieval of true positives (Fig. 4h). Finally, these analyses
also facilitated EmpirDE parameter optimization, for instance, select-
ing an optimal threshold to determine control-outlier genes in the first
step of the framework (Supplementary Methods, Supplementary
Fig. 3e, f).

DESeq2 iswidely used and thereforewe askedwhat could drive its
relatively poor performance in our benchmarking analysis. First, we
noted that the mean fluctuations that drive the inflated test statistic
generally have small effect sizes (Fig. 3h, Supplementary Fig. 2c).
Consistently, when a commonly used and more stringent threshold
was applied (FDR <0.01 and FC > 2), the reproducibility of DEGs from
regular DESeq2 analysis was increased (Supplementary Fig. 5a). How-
ever, a substantial portion of these DEGs still remain unreproducible.
We reasoned that the remaining false positives, which had large effect
sizes, might involve genes influenced by the confounded controls
(Fig. 3b). Thus, we further applied the first step of EmpirDE framework
to regularDESeq2, i.e., cleaning up control-outlier genes using control-
independent DE analysis (Fig. 3d). This time the regular DESeq2 ana-
lysis also resulted in low false discoveries (Supplementary Fig. 5b).
Similarly, using NTP benchmarking, we observed that cleaning up the
control-outlier genes decreased the false positives by half under all
thresholds, however, only the two-pronged EmpirDE achieved near-
complete elimination of false positives (Supplementary Fig. 5c).

Taken together, with the EmpirDE framework that uses gene-
specific empirical null models, WPS can robustly assign DEGs for large
numbers of perturbations with high signal-to-noise ratio and rigor-
ously controlled FDR for perturbations eliciting from a few to thou-
sands of DEGs.

A proof-of-principle of WPS with 103 NHRs
NHR transcription factors (TFs) play important roles in various
physiological processes including metabolism, development, and
homeostasis52. The C. elegans genome is predicted to encode more
than 250 NHRs, making it the largest TF family. In contrast, the
human genome encodes only 4853–55. Althoughmany NHRs have been
studied in C. elegans21,56–60, more than half remain completely
uncharacterized52,61. We analyzed the expression levels and patterns
of all 288 predicted C. elegans NHRs and selected 103 for WPS that
are expressed at relatively high levels both in the whole body and in
the intestine and/or hypodermis, tissues highly suitable for RNAi62

(Fig. 5a, b).
WPS analysis of these NHRs yielded a gene regulatory network

(GRN) comprising 6778 interactions between 101 perturbations
and 3,673 genes, with in- and out-degrees following expected
distributions63,64 (Fig. 5c, d, Supplementary Data 4). We found that
~80% of perturbedNHRs (81) were responsive (≥5 DEGs, a conservative
threshold compared with the false positives in the NTP analysis,
Fig. 4d). This rate is much higher than that reported in whole-genome
single-cell Perturb-seq experiments (~30%)13, and double than what we
found inmetabolic gene screens (40%)31, indicating that themajority of
the 103 NHRs tested are actively regulating gene expression in adult
animals. Most NHR knockdowns resulted in a moderate number of
DEGs (5–100) (Fig. 5d) and the magnitude of gene expression changes

Fig. 3 | EmpirDE analysis framework reveals systematic anti-conservative P
values caused by a deviation from the expected distribution of Wald test sta-
tistics. aDistribution of the number of DEGs in non-targeting perturbations (NTPs)
identified by DESeq2 analysis (FC > 2, adjusted P value (Padj) < 0.01). Examples of a
control-outlier (b) and noisy (c) gene. Each bar plot shows the expression levels of
the gene of interest in a WPS sequencing library that includes RNAi perturbations
and vector control conditions. d Schematic illustrating the EmpirDE framework.
The zoom-in windows show two example genes shown in (b, c). For (b–d), each dot
in the bar plot represents one biological replicate (n = 2 or 3). e The number of
control-outlier genes per WPS sequencing library. Distribution of fitted means (f)

and standard deviations (g) for all genes in the empirical null modeling. The blue
dashed line shows the values for theoretical null. h Examples showing the random
fluctuation of the mean for two genes. i Distribution of fitted standard deviation
using simulated WPS data with (right) and without (left) adding a random fluc-
tuation of the mean in the simulation. j Scatter plot showing the fitted standard
deviation of each gene against expression levels in wild-type condition. Genes
exhibiting a standard deviation greater than 2 are colored based on their WormCat
categories. k Gene Set Enrichment Analysis (GSEA) result using the fitted standard
deviation as the ranking metric (Supplementary Methods). WormCat Level 3 was
used for the analysis. NES Normalized Enrichment Score.
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was also modest (Supplementary Fig. 6a). Notably, 70% of DEGs
identified in more than one perturbation changed in the same direc-
tion (up or down, Supplementary Fig. 6b). As expected, genes that
were mostly down-regulated are expressed at higher levels than those
that are mostly up-regulated in NHR perturbations (Supplemen-
tary Fig. 6c).

We used WormCat65 to identify biological processes enriched in
the DEGs for each of the 54 NHRs that yielded more than 10 DEGs and
found that many NHRs affected genes involved in stress response and
metabolism, specifically pathogen response and lipid metabolism
(Fig. 5e, f and Supplementary Fig. 6d, e). These observations indicate
that several NHRsmay function to establish and/ormaintainmetabolic
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functions and to prime the animal to respond to different stressors.
The knockdown of individual NHRs was associated with several other
WormCat categories as well. Some of these were known, including the
association of nhr-31 with the lysosomal vATPase, nhr-49 with lipid
metabolism, and nhr-10, 68, 114, and 101 with the propionate shunt
pathway59,66–68 (Supplementary Fig. 6d, f). To assess the recall of known
NHR’s function more quantitatively, we also compared our WPS data
with a published dataset for nhr-25 perturbations69 and observed a
good concordance (Supplementary Fig. 6g).

We wondered whether the regulation of stress response and
metabolic genes was due to a few hub genes that are affected bymany
NHR perturbations (Supplementary Fig. 6h). We identified a set of hub
genes (in-degree >5) that are annotated in WormCat as either stress
response ormetabolic genes and found that different NHRs influenced
the expression of distinct stress and metabolic genes (Fig. 5g, h).
Together with the in-degree distribution that shows that most genes
are regulated only by fewNHRs (Fig. 5d), this analysis indicates that the
enrichment for stress response andmetabolic genes in the NHRGRN is
not driven by a few common genes. Interestingly, we found that the
GRN mostly consists of activating interactions, i.e., upon knockdown
of an NHR, gene levels tend to go down. However, on average, we
found that stress response gene expression was increased upon NHR
knockdown (Fig. 5i, j, Supplementary Fig. 7a–f). These results indicate
that NHRs activate the expression ofmetabolic genes, especially those
involved in lipidmetabolism, while they downregulate stress response
genes, either directly or indirectly.

Of the 288C. elegans NHRs, at least 269 are homologs of HNF470.
This observation raises the question whether these NHRs regulate
similar targets, or whether they evolved distinct and diverse functions.
To answer this question, we compared the target genes of the 81 NHRs
in the GRN (Supplementary Methods) and found that these NHRs not
only regulated various sets of targets, but also clustered into modules
consisting of distinct NHR pairs, which we named ‘pairwise mod-
ularity’. In fact, 52 of 81 NHRs (64%) shared a significant overlap only
with one other NHR (Fig. 6a, b and Supplementary Figs. 8, 9a, b,
Supplementary Data 5), and this pairwise modularity was statistically
significant based on a randomization test (Fig. 6c, Supplementary
Fig. 8). We also ensured that this observation was not due to off-target
effects based on the gene expression changes and anti-sense RNA
signals of the counterpart NHR (Supplementary Fig. 10a, b). We iden-
tified numerous NHR pairs for which functional relationships were not
yet known and that provide hypotheses for further study (two exam-
ples in Supplementary Fig. 11a, b). Importantly, this observation was
facilitated by the EmpirDE framework because it increased the signal-
to-noise ratio compared to DESeq2 (Supplementary Fig. 8). Thus, even
with a relatively low number of perturbations (~100 RNAi conditions),
EmpirDE can effectively increase the interpretability of the data.

Interestingly, NHR sequence similarity only correlated with few
pairs that shared target genes. Overall, protein sequences of the NHR
DNA binding domains showed relative low similarity to each other
(percent identity <0.5), with only limited number of clusters (Fig. 6d).
Although the few pairs with high protein sequence similarity were

more likely to share targets (e.g., NHR-10, NHR-68, NHR-114, and NHR-
101) the protein similarity between most NHR pairs was lower and did
not correlate with similarity in their target genes (Fig. 6e, f). Remark-
ably, even some NHRs from different evolutionary origins shared tar-
get genes (e.g., nhr-107 and nhr-41, Fig. 6a). We found that the
similarity among different NHRs correlated better with their expres-
sion patterns (Fig. 6g). Therefore, the pairwise modularity unveiled by
WPS may be affected more by mechanisms involved in the regulation,
and less by the biophysical properties (e.g., DNA binding domains), of
these NHRs.

The pairwise modularity suggests that NHRs may form ‘AND-
logic gates’ in regulating gene expression, where two NHRs are both
required for downstream gene regulation. Indeed, we have pre-
viously discovered that nhr-10 and nhr-68 function in an AND-gated
feedforward loop to detect the persistent accumulation of
propionate67. Interestingly, we found that nhr-10, nhr-68, nhr-101 and
nhr-114 clustered together in a module, with nhr-68 and nhr-101
being the most similar. Therefore, we hypothesize that the AND-logic
may be extended to nhr-68 and nhr-101 (Fig. 6a). As a preliminary
test, we performed WPS with double nhr knockdowns. We first
confirmed the known AND-logic connection between nhr-10 and nhr-
68, based on the lack of additive effects on gene expression (Sup-
plementary Fig. 11c, observed FC substantially lower than the addi-
tive FC). Next, we tested the double knockdown of nhr-68 and nhr-
101, which also showed a lack of additive effects, supporting the idea
that these two genes also function in an AND-logic gate. Future stu-
dies based on mutant strains and other phenotypical readouts will
provide further validations for both nhr-68 and nhr-101 and all other
pairs identified in our data.

Discussion
In this study, we provide a WPS platform that combines strengths of
multiplexed bulk RNA-seq with high-throughput whole-animal gene
perturbations by RNAi. WPS is both efficient and cost-effective, e.g., a
2-week timeframe for collecting 96 perturbations in triplicate and
more than 10-fold cost reduction compared with conventional meth-
ods (Supplementary Protocols), which enables replicate screens
with full transcriptome readouts of hundreds of perturbations in a
living animal. Future screens with additional RNAi libraries, different
bacterial diets, and supplementation of metabolites or drugs will
provide insights into how the animal responds to a variety of
perturbations.

A key advantage of WPS is that it is based on whole-organism
in vivo perturbations. While this is not feasible in mammals, it should
be applicable to organisms amenable to large-scale RNAi screens, such
as Drosophila. However, we do envision that WPS-like screens will be
feasible in bulk in tissue culture cells, especially when smaller sub-
libraries of genes (~100) are selected for perturbations. Another key
feature of WPS is the EmpirDE framework that uses an empirical null
for eachdetected gene and that can be applied due to the scale ofWPS
experiments, and which can alleviate systematic errors such as con-
founding experimental covariates. Although the concept of empirical

Fig. 4 | EmpirDE rigorously controls FDR. a,bBenchmarking the performance of
EmpirDE analysis framework. The observed False Discovery Proportion (FDP) is
compared to target FDR (a) and power (b). The full metabolic-gene WPS dataset
(3691 samples) was simulated 10 times with random mean fluctuation (Δμ) to
produce the error bars of eachmetric. FDP and power were measured based on a
pooled set of 117,096 simulated DE changes in all conditions (Supplementary
Methods). c Benchmarking FDR control of different multiple testing adjustment
strategies. The data points and error bars in (a–c) indicate mean ± s.d. from
10 simulations. d Evaluating false discoveries using NTP experiments. We esti-
mated false discoveries using the 90% quantile of the numbers of DEG across 71
NTP conditions (shown in the heatmap color and numbers). The 90% quantile
represents the value belowwhich 90%of the data points fall, effectively capturing

the upper range of typical DEG counts while excluding themost extreme outliers.
The red lines show the threshold boundary for five false positive DEG calls.
e Number of DEGs (defined by FDR < 0.1 and FC > 1.5 using EmpirDE) for 36 per-
turbations that were repeated by a second WPS experiment. f Fraction of unre-
producible DEGs for EmpirDE versus DESeq2 analysis. Unreproducible DEGswere
defined by genes that are called as DEG in one experiment (FDR < 0.1, FC > 1.5) but
confidently non-DEG in the other (FC < 1.1 or show a different FC direction). The
red dashed line shows the theoretical FDR (FDR= 0.1). Comparison of log2(FC)
measured in two independent experiments for representative RNAi with either
high (g) or moderate (h) number of DEGs. The green dashed line indicates the
diagonal (y = x).
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null has been widely applied in genomics71–73, to the best of our
knowledge, it has not been used to directly model the test statistic
distribution at the level of individual genes (features), possibly due to
the lack of large systematic data like those generated with WPS.

EmpirDE exploits the unique power of havingmany conditions (>100),
each with three replicates, to achieve rigorous statistical analyses.
Conventionally, such level of statistical rigor is only achievable with a
high number of replicates (e.g., 8–12)74.
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Fig. 6 | The pairwise modularity of NHRs. a Heatmap depicting perturbation-
perturbation similarity of DEG profiles for the NHR perturbations. The
perturbation-perturbation similarity was defined by cosine similarity of the filtered
log2(FC) profile. The filtered log2(FC) was derived by masking the log2(FC) values
of genes that are not called as DEGs (FDR<0.1, FC > 1.5) to zero. b Visualization of
gene expression changes in selected NHR pairs. The gene expression change was
measured by the corrected Wald statistic. Rows are the union DEGs of these
selected NHR perturbations. c Randomization test of the pairwise modularity of
NHR gene family. The schematic shows the design of the randomization test. His-
togram shows the average silhouette score of pairs in 10,000 randomizations. The
red line indicates the observed score from real data. TheNHRGRNwas randomized
by swapping the network edges while preserving the network structure and
properties, such as in- and out-degrees (Supplementary Methods). The gene-gene
correlation was not preserved in this randomization to fully randomize the GRN.
d Heatmap depicting protein sequence similarity (percent identity) for the DNA

binding domain (DBD) of NHRs. The heatmap was clustered using distance matrix
generated by Clustal Omega online tool from EMBL-EBI87 (Supplementary Meth-
ods). Scatter plots showing the comparison between perturbation-perturbation
similarity and sequence similarity of DBD (e) and full-length protein (f). Each data
point indicates a pair of NHRs and selected pairs are labeled. g Scatter plot and
randomization test for the associations between perturbation-perturbation simi-
larity and NHR coexpression. Coexpression was measured based on the median
Pearson Correlation Coefficient (PCC) of nhr gene expression in a compendium of
C. elegans gene expression data across various conditions68 (Supplementary
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than 0.2 (red region in (g)) is calculated and compared with that from randomized
data (Supplementary Methods). The histogram shows that the median from real
data (red line) is significantly greater than that from randomized data, indicating a
statistically significant association between NHR coexpression and perturbation-
perturbation similarity. Source data are provided as a Source Data file.
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By combining large-scale data, NTPs, and repeated experi-
ments, we systematically identified two sources of false positives in
DE analysis. The first source, control outlier genes (Fig. 3b), arise
from confounded control samples and results in false DEGs that
cannot be easily filtered out by thresholding FDR or FC. While this is
an intrinsic confounder for arrayed experiments, this issue can also
result from any specific treatment of controls, whether intentional
or unintentional. The second source is systematic fluctuations in
mRNA levels across conditions (Fig. 3h, i), and is likely related to
hidden covariates in the experiment. These effects are typically
small in magnitude and can often be filtered by thresholding FC
(e.g., FC > 2). However, they systematically compromise the statis-
tical rigor of DE analysis, resulting in anti-conservative P values.
Notably, recent studies by other groups have also reported a pre-
valence of anti-conservative P values when parametric DE models
are used, even in regular experiments41,42. We believe that while both
of the two issues could be more specific to high-throughput
screens, they might have been simply overlooked in regular,
small-scale experiments, where these false positives may not be
identified in the first place.

Our benchmark analysis (Fig. 4) should not be interpreted as a
challenge to the well-established statistical foundation of DE analysis,
such as the negative binomial model or generalized linear model
(GLM) used in DESeq2. As discussed above, we demonstrate that most
uncontrolled false discoveries stemmed from confounding effects in
the experiments. Unlike regular batch effects, which are orthogonal to
the variables being tested and canbe corrected using aGLM inDESeq2,
these confounding effects are entangled with the biological effect of
interest, cannot be directly corrected, and result in high level of false
discoveries. EmpirDE complements DESeq2 in handling these issues to
achieve bona fide FDR control. Importantly, EmpirDE is agnostic to the
source of confounders, effectively reducing both false positives and
false negatives, demonstrated by simulation and by experimental
benchmarking. This statistical rigor allows us to confidently identify
DEGs, even for those with small effect sizes. Therefore, EmpirDE pro-
vides a robust and rigorous DE solution that should be broadly
applicable to large-scale studies.

By applying WPS to more than 100 NHR perturbations, we dis-
cover a pairwise modularity in which two or more NHRs regulate the
expression of overlapping sets of genes, which cannot be explained by
protein (and presumably binding site) similarity. Instead, this pairwise
modularity suggests that ‘AND-logic gates’ are a common mechanism
of gene regulation in C. elegans. Future studies with other TFs will be
important to see if this is a general principle, or if it is a specific feature
of NHRs. Knockdown of many NHRs affected only few genes, sug-
gesting that these TFs may either not be active under the conditions
tested, or are truly specialized in their regulatory function. In two
companion studies31,75, we further validatedWPS by perturbating ~900
metabolic genes. These studies generated high-quality, highly inter-
pretable datasets, providing tremendous insights into metabolic wir-
ing and rewiring at a systems level. Notably, WPS interrogates gene
functions in vivo, thus linking genes to their native physiological roles.
For instance, using metabolic gene WPS data, we identified an
unconventional central carbon metabolism that consumes ribose,
rather than glucose, from dietary RNA and through the pentose
phosphate pathway. Together, we envision that WPS-style in vivo
functional genomics will provide a powerful tool to uncover gene
functions in living organisms.

Methods
C. elegans strains and maintenance
N2 strain was used as the wild-type strain. Animals were maintained at
20 °C on solid nematode growth media (NGM)76 and fed E. coli HT115
containing the empty RNAi vector L444018.

RNA interference
To construct WPS RNAi libraries, each RNAi bacteria strain was cherry
picked from a parent library (e.g., the metabolic RNAi library23, or TF
RNAi library21) and streaked onto LB agar plate with 50μg/mL ampi-
cillin to produce single colonies. A single colony for each RNAi was
used in the WPS RNAi library. RNAi was performed accordingly as
described with slight modifications62. Briefly, bacteria were cultured
overnight at 37 °C in 1mL LB supplemented with 50μg/mL ampicillin
in a 96-deepwell plate. 100μL of each culturewas then diluted 50-fold
using fresh LBmedium with 50μg/mL ampicillin in a well of a 24-deep
well plate. After incubating for 4 h at 37 °C, bacteria were centrifuged
at 3000 g for 20min in a Beckman Coulter Avanti® J-26XP High-Per-
formance Centrifuge with a JS-5.3 Swing Bucket Centrifuge Rotor, and
the pellet was resuspended in 200μL M9. The resuspended bacteria
were then transferred to 6-well NGM plates containing 50 μg/mL
ampicillin and 2mM Isopropyl β-d-1-thiogalactopyranoside (IPTG,
Fisher Scientific) for induction of double-stranded RNA (dsRNA)
expression. Plates were dried in a hood and incubated overnight at
room temperature.

For developmental stage time course experiments, all animals
were fed bacteria with vector control RNAi. Approximately 2500 syn-
chronized L1 animals were plated for collecting L2 animals;
~1000 synchronized L1 animals were plated for collecting L3 animals;
~500 synchronized L1 animals were plated for collecting L4 animals;
and ~200 synchronized L1 animals were plated for young adult and
gravid adult samples.

For all other WPS experiments, approximately 200 synchronized
L1 animals were plated into each well, followed by incubation at 20 °C
for ~63 h. In the caseswhere RNAi feeding led to a developmental delay
phenotype, synchronized L1 animals were initially fed with vector
control RNAi. After a period of 17 h post-plating (i.e., at the L2 stage) or
25 h post-plating (i.e., at the L3 stage), animals were transferred to the
corresponding RNAi plates to circumvent RNAi-associated develop-
mental delay. Animals usually develop normally after such delayed
RNAi exposure. Only RNAi conditions without notable developmental
delay were sequenced.

RNA extraction in 96-well plate
We developed a 96-well RNA extraction method for C. elegans tissues
while leaving all eggs intact. Please refer to SupplementaryProtocol for
details.

WPS sequencing library construction
We adapted the CEL-Seq2 single-cell RNA-seq library construction
protocol25 for WPS sequencing library construction. We meticulously
optimized each step of the protocol to ensure robustness and repro-
ducibility. As part of this optimization, we modified the adaptor
sequences of the CEL-Seq2 primers to ensure compatibility with both
Illumina and BGI platforms for sequencing. For a comprehensive
description of the modified protocol and primer sequences, please
refer to the Supplementary Protocol.

WPS sequencing library design
We used an Illumina NextSeq sequencer capable of providing ~350
million reads (or its equivalent from BGI), which allowed us to pool
~50 samples to obtain an average coverage of ~7 million raw reads/
sample. Typically, a library includes 15-16 RNAi conditions in triplicate
and 6 vector control samples. We conducted three biological repli-
cates for all RNAi conditions on different days. In each different-day
replication, we included two vector control RNAi samples to minimize
the chanceof failing in vector control experiment, whichwould impact
data analysis for all RNAi conditions in the same batch. One vector
control sample was prepared side-by-side with RNAi conditions, while
the other one was independently prepared in the same day, using
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separate bacteria culture and bleaching C. elegans from a distinct
parental animal batch. The latter case aligned with criteria for biolo-
gical replication (fresh material) except that the experiment was con-
ducted on the sameday, thuswe refer to themas ‘same-day replicates’.
We noted that the expression variability between different-day and
same-day replicates was similar, therefore, all six vector control sam-
ples were treated as biological replicates in differential expression
analysis to enhance the statistical power (further details are provided
in the following sections).

Next generation sequencing
Most WPS sequencing libraries were sequenced on the BGISEQ-500
next-generation sequencer platform with 100-bp paired-end reads. A
subset of the libraries was sequenced using an Illumina NextSeq
500 sequencer with a NextSeq 500/550 High Output Kit v2.5 (75
Cycles). For Illumina sequencing, paired-end sequencing was per-
formed with 14 cycles for read 1 and 75 cycles for read 2.

WPS raw data processing
The pair-end reads data were either received from BGI directly or
produced through standard bcl2fastq procedure with illumina plat-
form. Reads were processed by an in-house dolphinNext pipeline77 to
generate a gene-by-sample read count matrix. The pipeline includes
the following steps: (1) raw reads were demultiplexed by a homemade
python script that extracts the barcode information from read 1 and
combines that with read 2. (2) The processed reads were passed to
Trimmomatic (v0.32)78, to remove polyA and adaptor sequences. (3)
next, reads were aligned to the C. elegans genome (WormBaseWS279)
by STAR79 (parameter: --runThreadN 4 --alignIntronMax 25000 --out-
FilterIntronMotifs RemoveNoncanonicalUnannotated). (4) Finally, the
output bam file was processed by ESAT80 to obtain the read counts of
genes. In ESAT, we used an extension window of 1000 bp and the
‘proper’ method of multiple mappings. Unique Molecular Identifier
(UMI) features were not used by setting umiMin = 1. Read counts,
rather thanUMI counts, were used as the gene expression quantity.We
did not observe significant PCR duplicates during the development of
our method (i.e., read counts highly correlate with UMI counts, data
not shown), which is consistent with the low number of PCR cycles for
sequencing library construction (Supplementary Protocol). Therefore,
we directly used the read counts regardless of the presence of UMI in
our sequencing library. The dolphinNext pipeline also includes a few
quality control (QC) procedures for sequencing library and alignment
quality and is interactive through the online portal77. The pipeline
processes eachWPS sequence library individually and produces a read
count table for the sequencing library. The pipeline can be down-
loaded at https://github.com/XuhangLi/WPS.

Reads count tables were used as the input for all downstream
analyses. Reads from ribosomal RNA (i.e., mapped to ribosomal genes)
were discarded. The sequencing library depth was measured with the
sum of read counts of each sample after ribosomal gene removal.
Samples with depth lower than 1 million were removed.

WPS RNAi identity QC and dsRNA decontamination
We discovered that the reads from dsRNA in RNA interference (mostly
in anti-sense strand) could be used to determine the identity of the
RNAi clone used. However, these readsmight potentially confound the
quantification of the RNAi target gene expression since some map to
the sense strand at the 3’ end of the gene. In rare cases, they can also
influence the quantification of other genes when their transcripts
extend to regions containing dsRNA reads. Therefore, we developed a
python script to both quantify the dsRNA (anti-sense RNA) signals and
the expression levels of the dsRNA-influenced genes. This is feasible
because dsRNA signals are confined to the coding region of the target
gene,while themRNAsignals predominantly reside at the 3’-UTRof the
transcript. We achieved it by identifying genomic regions covered by

dsRNA signals and re-quantifying genes that were influenced by only
counting the reads in the clean regions.

We performed the dsRNA analysis on a library-by-library basis,
ensuring that any re-quantification of gene expression was uniformly
applied to all samples within a sequencing library. To identify possibly
dsRNA-influenced genes, we searched for genes whose transcripts
overlapped with the exons of any RNAi target gene in the sequencing
library. This gave a set of genes to be corrected for potential dsRNA
contamination. Next, we identified the genomic regions contaminated
by thresholding the readsmapped to the complementary strand of the
mRNA for each RNAi-targeted gene. Finally, the read counts of all
potentially contaminated genes were recounted using the clean (not
contaminated) regions only.

dsRNA signals were quantified by counting reads mapping to the
complementary strand of the mRNA(s) for each RNAi-targeted gene.
This dsRNA quantification procedure was applied to all metabolic
genes to identify the potential cross-contamination and sample swaps.
When applicable, the procedure was applied to a control bam file that
wasmade from an RNA-seq library of animals treated with only vector
control, establishing the background level of reads mapping to the
complimentary strand for each gene and was used to calculate the
enrichment of dsRNA (anti-sense RNA) signal in the RNAi identity QC.
The control sequencing library used in our study was the develop-
mental stage sequencing library (see the corresponding section below
for details).

Since the dsRNA-influenced genes were quantified solely by reads
mapped to the clean region, it may significantly reduce the total reads
(depth) for a gene, potentially resulting in a loss of power. Therefore,
we applied such dsRNA de-contamination only to genes whose loss of
depth was less than 50% (recounted read counts in vector controls
were greater than or equal to 50% of the original read counts). Genes
that were not corrected were noted, and additional scrutiny was
applied when evaluating their RNAi efficiency. The dsRNA (anti-sense
RNA) analysis is available inWPS data analysis pipeline (https://github.
com/XuhangLi/WPS).

WPS RNAi efficiency QC
We performed QC of RNAi efficiency based on two complementary
criteria: the reduction of reads for the targeted gene and/or the
detection of target anti-sense RNA. A reduction in reads for the tar-
geted gene may not always be observed even if the RNAi is successful
because the gene is lowly expressed or if the expression quantification
is influenced by dsRNA and cannot be decontaminated (see above).
Therefore, we considered an RNAi-condition to pass QC when there
was either a two-fold decrease in reads of the targeted gene and/or a
greater than 10-fold increase in anti-sense RNA signals corresponding
to the targeted gene. To simplify this quantification, we calculated the
fold change simply by dividing the TPM of the targeted gene in the
RNAi condition by that in the vector control condition within the same
batch. Similarly for anti-sense RNA signals, we divided the anti-sense
RNA count-per-million (CPM) in a RNAi condition by the background
anti-sense RNACPMbased on a vector-control-only sequencing library
that was described in the previous RNAi identity QC section.

We also used the anti-sense RNA signal to identify potential cross-
contaminations (i.e., one condition contains anti-sense RNA mapping
to two genes). Such cross-contaminated samples were rare and were
either labeled as ‘MULTIPLE’ in the sample metadata and included in
the dataset or removed. Together, the QC pipeline outputs a list of
failed-QC conditions and evaluation figures (such as the heatmap of
anti-senseRNA) formanual interpretation. All QC resultswere carefully
inspected to ensure the quality of the dataset.

For any RNAi conditions that did not pass RNAiQC, weperformed
Sanger sequencing of the RNAi clone. We found these fail-QC RNAi
carried plasmids that (1) contain an insert lacking at least 100 con-
secutive base pairs targeting to a C. elegans gene (‘SHORT); or (2)
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contain an insert that do not target to any C. elegans genomic region
(‘VECTORLIKE’); or (3) contain a recombined vector that lacks the T7
promoter, therefore deficient in expressing dsRNA (‘RCBVECTOR’); (4)
contain an insert that targets tomultiple C. elegans gene (‘MULTIPLE’);
(5) undefined RNAi identity because the Sanger sequencing did not
return a signal (‘NOSIGNAL’), or (6) contain the RNAi insert that targets
to another C. elegans gene. The last were relabeled in the metadata
table and included in the final dataset. The erroneous RNAi such as
short inserts were relabeled with specific prefix (e.g. ‘SHORT_’) in the
sample name and was used in the analysis when applicable (e.g.
forming the set of non-targeting perturbation (NTP)).

As a showcase of the frequency of these fail-QC perturbations, we
found among the 3784 samples generated in the metabolic WPS
experiment, 76 (2.0%) were removed due to low depth (<1 million) or
bad quality (see below), 89 ‘SHORT’ (2.4%), 71 ‘VECTORLIKE’ (1.9%), 38
‘RCBVECTOR’ (1.0%), 33 ‘MULTIPLE’ (0.9%), 20 ‘NOSIGNAL’ (0.5%) and
254 (6.7%) swapped to targeting anotherC. elegans gene. Together, the
on-target pass-QC rate for a large-scale WPS is expected to be ~85%
(3203/3784) including vector control samples.

WPS sample quality QC via exploratory data analysis (EDA)
To identify the ‘outlier’ samples, we performed library-level EDA based
on a serial manual inspection of plots based on Principal Component
Analysis (PCA), Euclidean distance and Pearson correlation, which is a
common practice for RNA-seq analysis (http://bioconductor.org/
packages/devel/bioc/vignettes/DESeq2/inst/doc/DESeq2.html). We
consider a sample to be problematic (‘bad sample’) if it displayed high
distance to other replicates (usually > 50), existed as a clear outlier in
PCA plots, and/or showed poor sample-sample correlation (r-
squared < 0.95) or had large set of outliers in the inter-replicate gene
expression scatter plot. A bad sample usually satisfies most or all of
these criteria. We automated the generation of these QC plots but did
not automate the identification of bad sample. We reasoned that
samples may go wrong in different ways such that the thresholds for
one study/experiment may not be applied to another. For instance, in
the metabolic WPS data, we noticed that a sample could be an outlier
in PCA plot and show significant distance with other replicates, how-
ever, displayed good correlation (i.e., r^2 > 0.98) with other replicates.
Further investigation found that this is due to the difference in their
sequencing depths (i.e., the one is less than 2 million). Therefore, we
did not consider such samples as bad samples. Since being interactive
is the nature of EDA, this part of QC was designed to require manual
inspection of the data by the researcher. This is not a speed limiting
step of the data processing as inspecting the plots of one sequencing
library usually only takes a few minutes. Of note, bad samples are rare
in WPS routine, for instance, only 48 (1.3%) samples were identified in
the metabolic WPS dataset.

Control-dependent differential expression (DE) analysis
Typically, a sequencing library includes 15–16 RNAi conditions in tri-
plicate and six vector control samples. As mentioned above, these six
vector control samples were collected over three different-day repli-
cates, each compromising two independently cultured, same-day
replicates. We initially analyzed the gene expression variance level
within the two same-day replicates and found it was similar to that
among the different-day replicates (Supplementary Protocol). In
addition, we noted that DE analysis solely based on different-day
replicates often produced slightly more DEGs compared with using all
six samples (data not shown). This may be because it is less prone to
underestimating variations with a greater sample size. Together, we
reasoned that since using six replicates practically generates more
conservative results, and theoretically can be more powerful because
of increased sample size, we decided to use the six control samples as
six biological replicates in ourWPSDE analysis. We acknowledged that
the two kinds of replicates may behave differently in the hand of

another researcher, so we advise WPS users to carefully evaluate
before deciding on using only different-day replicates versus all the six
(see Supplementary Protocol).

The control-dependent DE analysis was performed using DESeq2
(v1.26.038). Given that sequencing library construction can introduce
batch effects, we conducted DE analysis on a per-library-basis using
roughly 50 samples in each run of DESeq2. Tomitigate potential batch
effects between replicates, replicate batch information (i.e., rep1, rep2,
and rep3) was incorporated into the DE model (design ~ replicate_bat-
ch_label +RNAi_condition_label). Genes with fewer than 10 read counts
across all samples in a sequencing library were excluded from the DE
analysis. We disabled independent filtering (independentFiltering = F)
and instead employed a custom filter (see below) for consistency
across sequencing libraries. We produced two log-fold-change esti-
mates, including log2FoldChange estimates fromDESeq238 (referred to
as raw fold change) and the shrinkage estimates from apeglm (ape-
Method = ‘nbinomC’) (referred to as shrunk fold change), which were
compared and utilized as descried in the section WPS analysis para-
meter selection.

Together, this control-dependent DESeq2 analysis follows stan-
dard procedures of DESeq2 and is also referred to asDESeq2 approach
(as compared with EmpirDE approach) or conventional DE analysis in
this paper. The outputs here forma foundation for further test statistic
modeling in the EmpirDE analysis.

Control-independent differential expression analysis
The idea of control-independent DE analysis is to perform DE analysis
by comparing an RNAi condition against all the other samples within
the same sequencing library. Given that DE is typically sparse and
condition-specific in large scale screening, we expect most if not all
genes will be affected, and hence exhibit differential expression, in
only a limited number of conditions within a sequencing library (i.e.,
DE call percentage <30%, meaning the frequency of DE call for any
gene is less than5out of 16 conditions in a library). Consequently,most
conditions in a sequencing library can serve as a null population for DE
analysis that does not rely on control labels.

However, if a gene is truly differentially expressed in multiple
conditions within the same sequencing library, the power to detect
DEGs will be reduced when one condition is compared directly with
all others. A more effective approach is to compare an RNAi con-
dition only with a true null population, in which the gene of interest
is not differentially expressed. This approach, however, poses a
challenge of identifying the main (null) population based on gene
expression data. We used AdaTiss81 for robust fitting of the gene
expression across all samples and to exclude samples in which the
gene’s expression was extreme with respect to this fit. With size-
normalized and batch-corrected expression levels (corrected using
the removeBatchEffect function in limma package), we applied
AdaTiss to fit the mean and variance for each gene in each
sequencing library, one at a time (example command: out = AdaR-
eg(model.matrix(~1,data = as.data.frame(y)), y), where y represents
the expression level vector). A fit was deemed successful if pi0 ≥ 0.7
(at least 70% of samples were in the main population), and was then
used to calculate z-scores for each condition (z = (y-out$beta.rob.fit)/
sqrt(out$var.sig.gp.fit)). Overall, the rate of successful AdaTiss fitting
is usually around 95%. In the case of unsuccessful fitting, we used
simple statistics as a surrogate. For genes lowly expressed (median
normalized read count ≤10), we used the mean and standard
deviation to calculate z-score. For those highly expressed ones
(median count greater than 10), we used the median and mad
(median-absolute-deviation). The rationale for using mean/sd for
lowly expressed genes andmedian/mad for highly expressed ones is
tomitigate the high variance for lowly expressed genes (thus, mean/
sd provides amore conservative estimation of themain population)
while maximizing the power for highly expressed genes.
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To define the null population based on the fitting, we used a
z-score cutoff of 2.5 (equivalent to a P valueof approximately 0.01). For
each gene, any condition (including vector controls but excluding the
specific RNAi under analysis) with a median z-score (across three
replicates) below 2.5 or above −2.5 was included in the null population.
Conditions not meeting this criterion were categorized as ‘outlier’
population. In the uncommon event where over 50% of conditions in a
sequencing library were identified as outliers, making it likely that
many RNAi affected the gene, we conservatively designated all con-
ditions within that library as the null population to reduce the risk of
false positives in such scenarios.

To streamline DE analysis with DESeq2, i.e. to build a DE model
using a single gene expression matrix, we replaced the outlier
expression values with imputed values derived from inliers (the null
population). This strategy was adopted to circumvent the need to run
DESeq2 separately for each gene because of different null populations,
which would be computationally impractical without modifying the
DESeq2 package. A bootstrap strategy was used for imputation. For
each expression value in outlier conditions, we randomly selected a
corresponding expression value from inlier conditions in the same
biological replicate. To do so, we use the DESeq2 normalized counts
for inlier samples andmultiply the sampled value by the outlier sample
size factor, rounded to an integer, to get an imputed count value. This
procedure resulted in a new read count matrix, wherein the values for
outlier conditions of each gene were replaced with these imputed
counts, based on inliers identified through robust-fitting z-scores.

Like the control-dependent DE, genes with fewer than 10 read
counts across all samples in a sequencing library were excluded from
the analysis of that library. To manage potential single outlier samples
within the null population, we enabled the outlier replacement func-
tion in DESeq2 by setting minReplicatesForReplace = 7. Other DE
parameters were identical to those used in vector-dependent DE ana-
lysis. DE results were derived by contrasting the targeted RNAi con-
dition against the defined null population.

Combining control dependent and independent DE analysis
results in the EmpirDE framework
The EmpirDE analysis integrates results from both control-dependent
and independent DE analyses to resolve problems caused by control-
outlier genes (Fig. 3d). This is necessary because control-independent
DE analysis can be unreliable when the null population is inaccurately
estimated. Therefore, we combined the control-dependent and inde-
pendent DE results to optimize power and error rates in EmpirDE. The
approach involves applying control-independent DE analysis solely for
control-outlier genes.

Wedeveloped a single parameter, the outlier threshold (P_out), a P
value cutoff, to determine whether a gene should be regarded as a
control-outlier gene. The control-outlier genes were identified based
on two criteria: (1) within a sequencing library, this gene was uni-
directionally (i.e., either all increased or decreased) differentially
expressed in at least 50% of RNAi conditions in control-dependent DE
analysis with a P value below the threshold of P_out; and (2) con-
currently, at least 75% of RNAi conditions were coherently differen-
tially expressed under a relaxed threshold of P_out * 10. By managing
the 50% and 75% quantiles, this approach pinpointed genes where the
overall RNAi conditions shifted up or down in gene expression com-
pared to the vector control. By default, EmpirDE used a P_out of 0.005,
whose determination is described in the following section EmpirDE
parameter selection.

In each sequencing library, we applied control-independent DE
results to all identified control-outlier genes. There were a few addi-
tional considerations. First, if any gene was found to be differentially
expressed with substantially greater statistical significance in control-
independent DE analysis – defined by P values at least 100 times lower
and a higher fold-change – control-independent DE results were used

to enhance the power of DEG discovery. Second, to maintain con-
sistent empirical null modeling (see details below), genes marked as
control-outlier genes in more than 25% of libraries (e.g., for metabolic
WPS, this is 72 libraries * 0.25 = 18) had control-independent DE results
applied across all libraries. This was regardless of whether they were
identified as outlier genes in each individual library.

Empirical null modeling of DE test statistic
The empirical null was modeled individually for each gene by com-
bining all conditions in aWPS experiment (dataset). In a standardWPS
application, at least 96 conditions are experimented, providing a
substantial sample size for building the empirical null.

We used the fitting function of the locfdr package in R to
model the empirical null. For each gene, its Wald statistics gen-
erated by DESeq2 across all experimental conditions (>100) were
used as the input for the locfdr function. The command used was:
locfdr(target_gene_wald_statistics, bre = brk, plot = 0, type = 0),
where brk = length(target_gene_wald_statistics) %/% 8. This break
size (bre) formula was empirically determined based on what gave
the best fit in manual inspections. Extreme outliers in the Wald
statistic (defined as greater than the 99% quantile plus 3 MAD
(Median Absolute Deviation) or less than the 1% quantile minus 3
MAD) were excluded from the fitting, as the presence of such
outliers could cause the program to fail. Occasionally, locfdr
would exit with an error due to issues in fitting the distribution. In
these cases, we incrementally increased the break size (bre = brk
+ 1, 2, 3,…) until a successful fit was achieved. In rare situations
where fitting could not be completed after 100 increments, we
used the median and MAD of the Wald statistic distribution to
estimate the empirical null. Upon determining the null’s para-
meter estimates, we rescaled the Wald statistic to compute a
corrected Wald statistic and subsequently calculated the new
empirical P values (Fig. 3d).

To compute the empirical FDR, we applied a bi-directional mul-
tiple testing correction to conservatively control the FDR. This strategy
was also benchmarked through simulations (see below for details). To
increase power and exclude very lowly expressed genes (akin to
independent filtering in DESeq2), we first filtered the genes with
median normalized counts in both vector control and RNAi samples of
30 or less (individually for each DE comparison). These filtered genes
were assigned with an adjusted P value of NA. To adjust for multiple
testing, a row-wise adjusted P value was calculated using the
Benjamini-Hochberg (BH) method across all conditions for a given
gene. Simultaneously, a column-wise adjusted P value was calculated
using BH method across all pass-filter genes for a given condition. We
defined the empirical FDR as the maximum of the row-wise and
column-wise adjusted P values. This worst-case FDR approach ensures
that the rate of false DE calls among all genes for a given RNAi condi-
tion, and the rate of false calls among all conditions for a given gene,
are both below the desired threshold.

WPS data simulation
To mimic the real metabolic WPS dataset collected from 72 WPS
sequencing libraries across 12 RNAi plates, we used scDesign348 to
simulate each batch, i.e., each sequencing library, individually. A
typical sequencing library contains 16 RNAi conditions in triplicates
and 6 vector control samples. In the simulation, we first removed lowly
expressed genes with a maximum read count of 10 or less. The read
count matrix was then used to estimate simulation parameters via
fit_marginal function in scDesign3. We incorporated the RNAi condi-
tion as the sole covariate in fitting mu (mu_formula = ‘condition’) and
bypassed the marginal distribution fitting of standard deviation (sig-
ma_formula = ‘1’). The canonical negative binomial model was used
throughout (family_use = ‘nb’). Marginal distribution estimates were
subsequentially input into fit_copula (copula = ‘gaussian’) to determine
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gene correlation parameters. These together established the simula-
tion parameters for a sequencing library.

To simulate differential expression, we defined the ground truth
for DEGs using a total of 117,782 DEGs identified in real data by the
default WPS data analysis method (FDR <0.1, FC > 1.5). This ground
truth table decides which genes in which RNAi conditions should be
simulated as DEGs and their desired fold changes. Next, we recon-
structed themeanestimatematrix from the parameter estimation step
to reflect the DEGs to be simulated. To achieve this, we first calculated
the average fittedmean for each gene using the meanmatrix to define
its reference expression level. For genes designated as differentially
expressed, we defined their new means in the reconstructed mean
matrix as their reference expression levels multiplied by the desired
fold changes from the ground truth table. For other genes, their new
means were simply defined as the reference expression level, simu-
lating no differential expression. Finally, a simulated sequencing
library was generated using simu_new function, employing the recon-
structed mean matrix and other estimated parameters as input.

In simulations incorporating Δμ, we added random noises (Δμ) to
the reconstructed mean matrix before generating simulated data. We
empirically determined the individual level of random noise for each
gene based on comparisons between real data and standard-NB
simulated data (the simulation data generated without adding Δμ, as
stated above). Specifically, we first identified inflated genes that
required delta µ addition to align with real data (Supplementary
Fig. 2c). These are genes whose log2(FC) variation across all conditions
(also see below) was greater in real data than in standard-NB model
simulations (Supplementary Fig. 2c, σreal > σNB, referred to as inflated
genes). A randomdelta µwas then added to these inflated genes using
a heuristic formula that best captured gene-specific mean fluctuation
(Supplementary Fig. 2c, Eqs. 1–2). Notably, this random delta µ was
added to the means of inflated genes, irrespective of their differential
expression status.

log 2ðFCΔμÞ=N 0, 0:8 ×
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

σreal
2 � σNB

2
q

� �2
 !

ð1Þ

Δμ=μ0 × ðFCΔμ � 1Þ,μ0is the ref erence expression level ð2Þ

Benchmarking EmpirDE using simulation data
The DE analysis on simulated data follows the same procedures as
those used for real data analysis stated above. There were a few
modifications because of the differences between real and simulated
data. Firstly, control-independent DE analysis was omitted because
control-outlier effects were not simulated, given that it is irrelevant to
the analysis of empirical null modeling. Therefore, for empirical null
fitting,wedirectlyusedDE results fromcontrol-dependentDE analysis.
Secondly, we excluded DE analysis for two sequencing libraries
(met2_lib5 and met3_lib4) because they either lacked three replicates
pooled in the same library (met2_lib5) or were without vector controls
(met3_lib4) (for details on these two libraries, see ref. 31). This reduced
the total number of DEGs used for benchmarking analysis to 117,096.
Thirdly, we implemented a simplified DE model using only the RNAi
condition as covariate, as batch effects in replicates were not simu-
lated. Other procedures remained consistent for both DESeq2 and
EmpirDE analysis.

Using DE analysis outputs, we analyzed the distribution of
log2(FC) in both simulated and real metabolic WPS data to derive
parameters (σreal and σNB) for delta µ modeling. The log2(FC) dis-
tribution for each gene was fitted following the same method as that
for fitting the empirical null with the Wald statistic, to produce the
corresponding σ. To increase the robustness of this parameter esti-
mation, we performed standard NB simulations of WPS data 10 times

and averaged the σ generated for each gene to determine its para-
meter σNB.

We benchmarked EmpirDE performance with the pool of 117,096
ground truth DEGs across the entire dataset. For each FDR threshold
(ranging from 1e-30 to 1), we calculated the actual False Discovery
Proportion (FDP, FP/(FP + TP)) and power (TP/(TP + FN)) based on
DEGs solely defined by the FDR threshold. The metabolic WPS data
were independently simulated 10 times to evaluate variability in FDP
and power. To compare multiple testing adjustment strategies, we
applied BH adjustments post-filtering of lowly expressed genes, as
stated above. The lowly expressed genes were those with median
normalized counts below 30 in both control and the RNAi condition
(approximately equivalent to 5 in TPM). ‘Column-wise’ adjustment
refers to adjusting multiple tests for genes within a single condition,
using P values of all pass-filter genes in that condition. ‘Row-wise’
adjustment was for multiple tests across different conditions for a
specific gene, using that gene’s P values across 1078 conditions in this
simulation. The worst-case adjustment took the higher adjusted P
values from these two approaches.

Benchmarking EmpirDE using non-targeting
perturbations (NTPs)
We identified 71 RNAi conditions, including the four spike-in controls,
as non-targeting perturbations (NTP) based on the RNAi identity QC
and Sanger sequencing. These RNAi clones failed RNAi identity QC,
lacking substantial dsRNA detection and targeted gene knockdown,
and were found to be either ‘SHORT’, ‘VECTORLIKE’, or ‘RCBVECTOR’
in Sanger sequencing. Thus, they should not effectively target any C.
elegans genes, and can serve as independent negative controls (Sup-
plementary Data 3). We used the number of DEG calls in these condi-
tions to evaluate false discoveries. Given an FC and FDR threshold, we
used the 90% quantile of the number of DEGs in these 71 conditions as
an estimate of false positive calls. Choosing the 90% quantile, rather
than the median, mean or max, aims to be conservative (‘over-
estimating’ false positives) while also allowing for a few outlier con-
ditions that might not act as true negative controls.

Benchmarking EmpirDE using reproducibility
A total of 36 RNAi conditions were independently experimented 2-3
times (each with three replicates), serving to assess the reproduci-
bility, which in turn provided a proxy of false positives. The strictly
unreproducible DE calls were considered as empirical false posi-
tives. These were defined as DEGs in one experiment (FDR < 0.2,
FC > 1.5 for Supplementary Fig. 3e and FDR < 0.1, FC > 1.5 elsewhere;
using a slightly relaxed FDR threshold in Supplementary Fig. 3e was
to include more DEG calls for better evaluating parameters) but the
gene showed no significant change in expression in another (FC <
1.1) or exhibited a reverse expression change (e.g., one increased
while the other decreased). This approach offers a qualitative
assessment of DEG reproducibility, thus serving as a proxy for false
discoveries in DE analysis. The unreproducible DEG rate was cal-
culated as the number of strictly unreproducible DEG calls divided
by the total DEG number of that experiment. The average rate of the
two repeats is shown in Fig. 4f.

Of note, two of the 36 conditions had more than two (i.e., three)
independent repeats. We conducted all pairwise comparisons among
the three (resulting in three combinations). Therefore, a total of 40
pairs were used and displayed.

EmpirDE parameter selection
We systematically evaluated parameters in the EmpirDE framework,
using NTPs and independent repeats. These included the P_out
threshold for control-outlier gene selection, two FC estimates
(log2(FC) from DESeq2 and the shrunk log2(FC) from apeglm), and
thresholds to define DEGs (FC and FDR thresholds).
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Evaluationusing the 71NTP conditions showed that false positives
were insensitive to the type of FC estimates when the FDR cutoff was
adequate (e.g., FDR <0.1, data not shown). A similar observation was
made with the 36 repeats. Given that FC estimates from DESeq2 yiel-
ded slightly more DEG calls (~5%) and are simpler, we opted for this FC
in our standard EmpirDE analysis. Accordingly, this FC was also used
when reporting the result of DESeq2 analysis (Fig. 3a).

Regarding P_out, we evaluated thresholds ranging from0 to 1, and
found that the values between 0.001 and 0.01 were optimal when
evaluated with NTP conditions (Supplementary Fig. 3e). A similar
optimal range (0.0025–0.0075) was observed with the 36 repeated
conditions (Supplementary Fig. 3f). Thus, we selected 0.005 as the
P_out parameter, which is ten-fold lower than the common statistical
threshold of 0.05 but is reasonable because this threshold is on P
values without multiple testing adjustments.

Regarding the thresholds for defining DEGs, we reasoned that an
FDR of 0.1, expecting 10% false discoveries, is ideal to balance power
and error, given that benchmark analyses demonstrate the FDR in
EmpirDE approach is statistically rigorous (Fig. 4). We then selected a
fold-change threshold (1.5) that controlled false positives in NTPs
below five under this FDR threshold (Fig. 4d). This fold-change
threshold can further eliminate false discoveries and uninteresting
DEGs that only changed subtlety.

Together, we settled on a parameter combination of P_out =
0.005, empirical FDR <0.1 and DESeq2 fold change estimate greater
than 1.5 to define the final DEGs. This parameter set demonstrated
stringent FDR control and established a responsiveness cutoff
of 5 DEGs.

Alterations in experimental setup of NHR WPS
The NHR WPS dataset was generated during the early stages of this
project, and due to historical reasons, has a different sequencing
library design. Consequently, data processing was slightly altered to
accommodate.

The primary distinction lies in the arrangement of the sequencing
library. In the NHR experiment, samples from the same biological
replicate were pooled together in a sequencing library, comprising 47
RNAi conditions and 2 vector controls. Accordingly, the three repli-
cates of a RNAi condition were sequenced in three separate sequen-
cing libraries, which is different from the metabolic WPS. Most NHR
data were collected from an experiment using a single 96-well RNAi
plate, producing two sequencing libraries that contained vector con-
trol samples derived from the same total RNA extraction. Conse-
quently, the vector controls in the two sequencing libraries were
technical replicates and should not be included simultaneously in DE
analysis. Themajority of NHR data were from 6 sequencing libraries (3
replicates x 2 libraries each), and there were two supplementary
libraries created to incorporate extra NHR conditions and to redo the
experiments for someconditions that failed quality control. This led to
a total of 104 unique NHR RNAi conditions with 100 out of the 104
conditions assessed in triplicate or more (up to five biological repli-
cates). The remaining four were in duplicate.

Lastly, the construction of NHR sequencing library followed an
earlier version of WPS library construction protocol. A notable differ-
ence is the use of SuperScript™ II instead of SuperScript™ III that is
used in standardWPS (Supplementary Protocol). However, we did not
notice obvious differences in the detection sensitivity of genes driven
by this change of reverse transcriptase (data not shown).

NHR WPS QC
Quality control (QC) for NHRWPS dataset was conducted in a manner
similar to themetabolic sequencing library. However, it is important to
note that the NHR sequencing library was collected in the initial phase
of the project, a period when many methodology optimizations were
still ongoing, the pass-QC rate for the NHR sequencing library is

somewhat lower than that observed for the metabolic sequencing
library.Out of 392 samples, a totalof 353 (~90%) passedquality control.
The fail-QC samples include 19 bad quality samples (5%), a frequency
notably higher than metabolic sequencing library (2%), and 20 failed
RNAi identity QC due to a pipetting error that caused cross-
contamination.

NHR WPS DE analysis
The DE analysis for the NHR sequencing library posed unique
challenges due to its distinct library arrangement, necessitating a
different DE strategy rather than the within-library analysis. We
divided all samples (across 8 sequencing libraries) into four DE
groups to maximize sample pooling, which aids in better esti-
mating dispersion, and to prevent the co-occurrence of technical
replicates of vector controls. The four DE groups were defined as
follows: Group 1 included most conditions from the first half of
the 96-well plate, along with additional conditions from the
supplementary library #1. Group 2 comprised the remaining
conditions from the first half of the 96-well plate, plus their extra
replicates sequenced in supplementary library #2. Group 3 con-
tained most conditions from the second half of the 96-well plate,
plus their extra replicates from supplementary library #1. Group 4
involved the remaining conditions from the second half of the 96-
well plate, plus their extra replicates from supplementary library
#2. This grouping strategy was complex and a compromise,
reflecting the less refined experimental design at the early stages
of the project. This issue was unique to the NHR dataset.

The standard EmpirDE analysis was applied to the NHR dataset,
with control-dependent and -independent DE performed using sam-
ples from the four DE groups separately. The parameter choices
remained consistent with those used in the rest of the project. Addi-
tional modifications specific to the NHR dataset are as follows:

1. We noted that the NHR sequencing library exhibited a sig-
nificantly lower incidence of control-outlier genes compared to the
metabolic WPS (~10-fold less, data not shown). We suspect a relevance
to the preparation of bacterial diet: for NHR WPS, control bacteria
were cultured in the same 96-well plate with the RNAi bacteria. How-
ever, formetabolicWPS, control bacteriawere cultured in a second96-
well plate because of the inclusion of more RNAi conditions in each
experiment (usually ~120 conditions, Supplementary Protocol). Based
on this observation, weproposed anoptimized experimental design in
the Supplementary Protocol for future users.

2. A comparison of empirical nulls between the metabolic and
NHR WPS revealed distinct, albeit moderately correlated, standard
deviations (data not shown), suggesting each experiment exhibits
unique noises to address. Therefore, the gene-specific random fluc-
tuations can be influenced by experimental batches, and the empirical
null needs to be reconstructed in each individualWPS study for its best
outcome.

Transcriptional profiling of animals in different
developmental stages
We profiled the transcriptome of animals at different developmental
stages, ranging from L2 larvae to adult, using the WPS sequencing
library construction method. This includes 51 samples from animals at
17, 25, 35, 40, 45, 50, 55, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69 h post L1
plating in biological triplicate. Animals were fed on HT115 bacteria
expressing empty vector control (L4440), i.e., the dsRNA expression
was induced as in regular WPS experiments. This is to be aligned with
the dietary condition of WPS study. The raw data were processed
following standard WPS procedures to obtain the read count matrix.

For methodological development purposes, we constructed two
technical replicates of this sequencing library using different reverse
transcriptases (SuperScript™ II and III). The library generated by
SuperScript™ III was used as the non-RNAi control in the RNAi identity
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analysis of standard WPS (for RNAi identity analysis, see above sec-
tions). Analysis of the two sequencing libraries did not find notable
differences in detecting gene expression other than batch effects.
Therefore, for downstream analysis, we aggregated data from the two
replicates by adding up read counts. In five samples (55h_rep1,
68h_rep1, 67h_rep1, 63h_rep3, and 55h_rep2), we noted a slight dec-
orrelation with their biological replicates, a deviation from the corre-
lation levels observed in other samples. This decorrelation can be
related to variations in development rate or sample quality in these
specific samples. To ensure the integrity of data interpretation, these
five samples were excluded from downstream analysis. Sample-to-
sample Pearson correlation coefficients were calculated using variance
stabilized read counts obtained through the vst function in DESeq2
package38. These coefficients were then visualized using the pheatmap
from pheatmap package in R.

The raw and processed sequencing data are available at Gene
Expression Omnibus (GEO) session GSE255865. Sequencing libraries
constructed with SuperScript™ II and III were made available sepa-
rately for reference.

Subsampling analysis for optimal sequencing depth
To generate a reference profile for subsampling analysis, we aggre-
gated WPS data (i.e., adding up read counts) from one replicate of the
developmental stage samples collected at 62, 63, 64 and 65 h. This
produced a transcriptome profile with a sequencing depth of ~50
million reads.We used R package subSeq82 to subsample this reference
data 10 times at 9 different depths (39M, 30M, 20M,10M, 8M, 6M,
4M, 2M and 1M reads). The coefficient of variation (CV) for each gene
at each depth was then calculated. Genes with a CV <0.15 at a specific
depth were classified as quantified at that depth. This CV cutoff
represents that the majority of sampling population (~95%, two stan-
dard deviations) is within a ± 30% interval of the true value, identifying
the genes that can be accurately quantified. At each sampling depth,
we calculated the fraction of genes quantified at varying TPM thresh-
old (greater than 1, 2, 4, 8 or 16) to determine the sensitivity of gene
detection. This analysis was repeated individually using each of the
three biological replicates in the developmental stage experiments,
whose standard deviations defined the error bars in Fig. 2b. A similar
analysis with error bars defined by the three replicates was included in
Supplementary Fig. 1e. The combined data of the first replicate was
used as reference profile for analyses that need a referenceTPMprofile
of the wild-type animal (Fig. 5a and Supplementary Fig. 1c, g).

We opted for sampling final read counts to better compare effects
of different final depths rather than raw read depth, however, a similar
result was also observed in the subsampling of fastq files (data
not shown).

Regular RNA-seq profile for benchmarking gene detection
A transcriptional profile of adult C. elegans (64 hours post L1 seeding)
was generated using regular RNA-seq approach to benchmark gene
detection sensitivity of WPS (Supplementary Fig. 1e). The total RNA
sample from one replicate of the developmental stage time-course
experiment was sent to BGI for Transcriptome Resequencing Pure-
sequencing service, which is a commonly used commercial RNA-seq
service similar to Illumina TruSeq RNA. Data were processed using
standard RSEM processing pipeline (v1.7.0) in Via Foundry platform77,
which aligns the reads to genome by Bowtie and estimate gene-level
counts using RSEM. The resulting gene-level TPM profile was used for
the benchmark analysis.

Gene set enrichment analysis (GSEA) of noisy genes
Gene Set Enrichment Analysis (GSEA)wasperformedusing the original
Java program83 executed via command line. To construct a ranking
metric, we used the standard deviations of empirical null for each
gene. Specially, we subtracted one from these standard deviations,

thereby calculating the difference between empirical and theoretical
nulls. These adjusted values were used as ranking metric for the ana-
lysis. The “GSEAPreranked” method was used with parameters “-scor-
ing_scheme weighted -nperm 10000”. The analysis was performed on
WormCat annotations Category 3.

Functional enrichment analysis of NHR GRN
We performed the functional enrichment analysis for NHR perturba-
tions with more than 10 DEGs. DEGs of the RNAi targeted gene were
excluded from the analysis. Functional enrichment analysis was per-
formed by enricher function from clusterProfiler package84 in R. The
universe (universe parameter) of the enrichment analysis was defined
by all genes (16,245) analyzed in the differential expression analysis.
WormCat v2 (Nov. 11, 2021)85 was used for the gene sets.

NHR perturbation-perturbation similarity
Perturbation-perturbation similaritywas calculated following the same
methodology used in metabolic WPS analysis31. In brief, we used fil-
tered log2(FC), derived by masking log2(FC) of RNAi target genes and
non-DEGs to zero, to compute cosine similarity values. These cosine
values were used to quantify the perturbation-perturbation similarity.
Only responsive perturbations were included in this analysis.

To define the nhr pairs based on cosine similarity, we constructed
a hierarchical tree by hclust function in R using 1-cosine similarity as
distance input and ‘complete’ linkagemethod. The treewas then cut at
its first merge of the leaves, yielding either singleton leaves or clus-
tered pairs (Fig. 6c). Using these pairs as clusters, we calculated the
silhouette score of each data point by silhouette function from cluster
package. The average silhouette score for all pairs formed a metric
measuring the fitness of assigning nhr into pairs. To determine the
statistical significance, we randomized the NHR GRN 10,000 times
using edge swapping approach (50−100x coverage each randomiza-
tion, i.e., the edges were swapped 50–100 × the total number of edges
times each randomization)86, producing a distribution of average sil-
houette score with random networks. An empirical P value was cal-
culated based on this distribution.

Comparing NHR perturbation-perturbation similarity with pro-
tein sequence similarity
We analyzed the protein sequence of the longest transcript for 52 nhr
genes sharing a significant overlap of DEGs with another NHR. These
sequences were used as input for Clustal Omega online tool provided
by EMBL-EBI87. Default parameters were used except for choosing ‘yes’
for ‘DISTANCEMATRIX’ and ‘No’ for ‘mBed-like Clustering Guide-tree’.
The output distance matrix and percent identity matrix were down-
loaded and used for the downstream analysis. We also analyzed the
DNA biding domain (DBD) sequence similarity of the same 52 nhr
genes by the same method. The DBD of NHRs were predicted by
Conserved Domain Search Service (CD Search) from NCBI with the
default settings.

The distance matrix was used to build a hierarchical tree with
which the percent identitymatrixwas visualized in Fig. 6d. Thepercent
identitymatrixwas also used to comparewith cosine similarity directly
(Fig. 6e, f).

Compare NHR WPS perturbation-perturbation similarity with
gene coexpression
To comprehensively characterize nhr gene coexpression, we used a C.
elegans gene expression compendium that comprises 4796 samples
across 177 datasets68. Given that genes can be coexpressed in one
dataset but not in another, we first calculated the Pearson Correlation
Coefficient (PCC) for gene-gene correlation within each individual
dataset. The median PCC in these 177 datasets was then used to
quantify the overall strength of coexpression between pairs of nhr
genes. We compared this median PCC with the corresponding
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perturbation-perturbation cosine similarity. To quantify the con-
cordance of these two quantities, we focused on the NHR pairs with
high cosine similarity (>0.2) and calculated the median level of their
overall strengthof coexpression. Thisobserved valuewas compared to
its distribution by random, generated by shuffling the name label of
NHR genes in cosine similarity matrix for 10,000 times, to produce an
empirical P value.

Validation of potential AND-logic gate between NHR pairs
The pairwise modularity observed in NHR perturbations suggests the
potential presence of AND-logic gates within the NHR gene regulatory
network. We reasoned that such motifs could be observed by by
comparing the effect of double NHR knockdownon the transcriptome
to single RNAi conditions. We performed new WPS experiments for
two NHR pairs: nhr-10/68, a known AND-logic gate pair67, and nhr-68/
101, a newly identified pair. For each pair, we performed single-gene
RNAi for each NHR and double-gene RNAi targeting both genes
simultaneously.

The double-gene RNAi constructs were generated by inserting
~400bp cDNA fragments of each target gene into a single L4440-Dest-
RNAi vector, which was linearized using HindIII and BglII restriction
enzymes88. The cloning was carried out using the Gibson assembly
method. WPS experiments were performed as described above.

Statistics and reproducibility
No statisticalmethodswere used to predetermine sample size. All data
were analyzed without exclusion, except for low-quality RNA-seq
samples (see Fig. 2c, Supplementary Fig. 1f and corresponding section
in Methods for details). The experiments were not randomized, and
investigators were not blinded to group allocation during experiments
or outcome assessment. For most RNA-seq experiments, three biolo-
gical replicateswere used.Differential expression analysismethods are
detailed in the correspondingMethods section. Statisticalmethods for
other experiments are specified in the relevant figure panels or
legends.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Source codes and data for reproducing all results related to core
computational analyses (simulation, benchmarking and DE analysis)
have been deposited in Zenodo for full reproducibility [https://doi.
org/10.5281/zenodo.15223779]. Other source data are provided with
this paper. Raw and processed data in this study are available in Gene
Expression Omnibus (GEO) under accession code GSE255865.
Downloadable read count data together with detailed documenta-
tion of experimental metadata are also available at the WPS portal
hosted in our WormFlux website [https://wormflux.umassmed.edu/
WPS]. Source data are provided with this paper.

Code availability
The WPS data analysis pipeline is available at our GitHub repository
[https://github.com/XuhangLi/WPS] under MIT license, including
detailed procedures of raw data processing, quality control and
EmpirDE analysis. A walkthrough of the pipeline can be found in the
repository. A standalone R package for EmpirDE can be found at
GitHub repository [https://github.com/XuhangLi/EmpirDE] under MIT
license.
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