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Abstract. Double dipping is a common analytical pitfall in single-cell
and spatial transcriptomics data analysis: after a clustering algorithm
finds clusters as putative cell types or spatial domains, statistical tests are
applied to the same data to identify differentially expressed (DE) genes
as potential cell-type or spatial-domain markers. Because the genes that
contribute to clustering are inherently likely to be identified as DE genes,
double dipping can result in false-positive markers, especially when clus-
ters are spurious, leading to ambiguously defined cell types or spatial
domains. To address this challenge, we propose ClusterDE, a statistical
method designed to identify post-clustering DE genes as reliable mark-
ers of cell types and spatial domains, while controlling the false discovery
rate (FDR) regardless of clustering quality.
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1 Introduction

A key task in single-cell RNA-seq (scRNA-seq) and spatially resolved transcrip-
tomics (SRT) data analysis is the annotation of cell types or spatial domains
using marker genes. This process typically involves first clustering cells or spa-
tial spots into putative cell types or spatial domains, followed by differential
expression (DE) analysis to identify genes that are highly expressed in each
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cluster. However, it has been realized that this post-clustering DE procedure is
conceptually flawed, with one important issue being “double dipping”’—using
the same gene expression data twice: first to find clusters and then to identify
DE genes. This leads to an inflated false discovery rate (FDR) when identifying
post-clustering DE genes as putative cell-type or spatial-domain marker genes.

To explain this double-dipping issue in scRNA-seq cell-type annotation, we
discuss two extreme scenarios. If two cell types are distinct and the inferred
clusters are accurate, double dipping has no impact on post-clustering DE anal-
ysis, and cell-type marker genes can be successfully identified (Fig. la, top). In
contrast, if a single cell type is over-clustered, post-clustering DE analysis will
falsely highlight genes as DE, as the same expression variations used for cluster-
ing also drive DE detection (Fig. 1a, bottom). While methods like the Truncated
Normal (TN) test [4] and Countsplit [2] attempt to address this issue, they do
not work well on real scRNA-seq data where genes are correlated.

The double-dipping issue in post-clustering DE analysis also affects SRT
data analysis, particularly in spatial domain detection, where proximal spatial
spots are clustered, aiming to identify functionally distinct tissue structures.
This issue can lead to unreliable marker genes for “indistinct” domains lacking
sharp gene expression changes across boundaries. To tackle this, we define spatial
domain marker genes as those with sharp expression changes at domain bound-
aries, while non-marker genes may still show spatial variation, but in a smooth
manner (Fig. 1b). Similar to scRNA-seq data analysis, our goal is to enable post-
clustering DE analysis to identify reliable marker genes for annotating distinct
spatial domains.

Here, we introduce ClusterDE, a post-clustering DE method designed to
identify potential cell-type or spatial-domain marker genes while avoiding the
inflated FDR caused by double dipping. Additionally, ClusterDE offers a practi-
cal advantage by allowing users to interpret an abstract statistical null hypothesis
through concrete synthetic null data (i.e., in silico negative controls).

2 Methods

ClusterDE introduces a novel synthetic control and contrastive approach to iden-
tify reliable cell-type or spatial-domain genes that are robust to double dipping.
The approach centers on establishing an in silico negative-control data (referred
to as the “synthetic null data”) to be analyzed in parallel with the real data
(referred to as the “target data”). The contrastive approach identifies reliable
cell-type or spatial-domain marker genes by comparing DE analysis results from
the target data to those from the synthetic null data. To generate the syn-
thetic null data, ClusterDE includes two null models: a scRNA-seq null model,
assuming a homogeneous cell type with unimodal gene expression, and an SRT
null model, assuming a homogeneous spatial domain where genes show smooth
expression variation. Under each null model, no marker genes are expected to
be detected. Leveraging these null models, ClusterDE employs four main steps
to identify potential cell-type or spatial-domain marker genes (Fig. 1¢).
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Fig.1. ClusterDE mitigates double dipping in post-clustering DE analysis
for identifying cell-type and spatial-domain marker genes. a—b, An illustration
of the double-dipping issue in (a) scRNA-seq and (b) SRT post-clustering DE analysis.
¢, An overview of ClusterDE steps. d, ClusterDE mitigates the false discoveries caused
by double dipping in Case 2 shown in a and b.

Step 1 of ClusterDE is synthetic null data generation, where the statistical
simulator scDesign3 [3] is used to generate the synthetic null data that represents
a hypothetical homogeneous cell type or spatial domain. The synthetic null data
preserves per-gene means, variances, and gene-gene correlations of the target
data, while maintaining the same number of cells or spots and the same genes.

Steps 2 and 3 of ClusterDE comprise a user-defined pipeline for clustering
and subsequent DE analysis, allowing flexibility in choosing the pipeline to ana-
lyze the target data and the synthetic null data in parallel. These two steps
yield a “target DE score” and a “null DE score” for each gene, which are sum-
mary statistics that quantify the significance of the gene’s expression difference
between two clusters in the target data and the synthetic null data, respectively.
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By default, the DE score is defined as the negative logarithm of the P value
from a DE test that compares a gene’s expression levels between two clusters.

Step 4 of ClusterDE implements a contrastive strategy to compare each gene’s
target and null DE scores, identifying a gene as a reliable marker only if its
target DE score significantly exceeds its null DE score. Specifically, ClusterDE
computes a “contrast score” for each gene by subtracting its null DE score from
its target DE score. True non-marker genes are expected to have contrast scores
symmetrically distributed around zero. ClusterDE uses Clipper [1] to determine
a contrast score cutoff based on a target FDR (e.g., 0.05). Genes with contrast
scores equal to or exceeding the cutoff are identified as DE genes.

Through these four steps, ClusterDE effectively eliminates false-positive
marker genes caused by double dipping, particularly when the target data con-
sists of a single cell type or spatial domain (Fig. 1d).

3 Results and Conclusion

ClusterDE demonstrates strong performance in both scRNA-seq and SRT post-
clustering DE analysis. In scRNA-seq applications, ClusterDE was benchmarked
against the Seurat pipeline (which includes double dipping), the TN test, and
Countsplit, and was shown to be the only method that effectively controls the
FDR when the target data consists of a single cell type. ClusterDE effectively
avoids false-positive cell-type markers, including housekeeping genes, and prior-
itizes relevant canonical markers in datasets from five cell lines and peripheral
blood mononuclear cells (PBMC). Additionally, ClusterDE outperforms Seu-
rat in distinguishing cell types in an adult Drosophila dataset. When extended
to SRT post-clustering DE analysis, ClusterDE also outperforms the double-
dipping approach (BayesSpace [5] for spatial clustering and Seurat for DE tests),
demonstrating effective FDR control. ClusterDE successfully identifies no DE
genes between spurious spatial clusters in a human brain tissue SRT dataset and
a human pancreas cancer tissue SRT dataset. Moreover, the top marker genes
identified by ClusterDE for spatial domains, which align well with annotated
cancer regions, exhibit distinctly higher expression in these regions compared to
the genes identified by the double-dipping approach.

In conclusion, ClusterDE effectively addresses the double-dipping issue in
post-clustering DE analysis of scRNA-seq and SRT data. ClusterDE adapts
well to a wide range of clustering algorithms and DE tests, effectively avoiding
false discoveries caused by double dipping and identifying biologically meaning-
ful marker genes. The R package ClusterDE is available at https://github.com/
SONGDONGYUAN1994/ClusterDE. The source code and data for reproducing
the results are available at: http://doi.org/10.5281/zenodo.8161964.

Full Paper: A preprint of the full paper is available on bioRxiv at https://
www.biorxiv.org/content/10.1101,/2023.07.21.550107v2.
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