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Background
Single-cell RNA-seq (scRNA-seq) is a widely used technique for studying cell heter-
ogeneity in organs. Various studies and large databases, such as the human cell atlas, 
have taken advantage of scRNA-seq, especially droplet-based platforms such as 
Chromium X, BD Rhapsody, and inDrop [1–3]. Droplet-based scRNA-seq requires 
every cell to be sealed with a barcoded bead in a droplet so that the cell’s mRNAs can 
be labeled by the specific barcode. However, ambient RNA contamination is ubiqui-
tous [4–7]: ambient RNA molecules in the solution would cause systematic contami-
nation by inflating the measured expression levels of endogenous genes in cells, thus 
impeding the identification of cell-type marker genes. In parallel to scRNA-seq, sin-
gle-nucleus RNA-seq (snRNA-seq) has been developed to investigate cells that are 
too fragile or difficult to dissociate into single cells [8, 9]. Yet, ambient RNA contam-
ination is likely more common in snRNA-seq than in scRNA-seq because the nuclei 

Abstract 

In droplet-based single-cell and single-nucleus RNA-seq assays, systematic contamina-
tion of ambient RNA molecules biases the quantification of gene expression levels. 
Existing methods correct the contamination for all genes globally. However, there 
lacks specific evaluation of correction efficacy for varying contamination levels. Here, 
we show that DecontX and CellBender under-correct highly contaminating genes, 
while SoupX and scAR over-correct lowly/non-contaminating genes. Here, we develop 
scCDC as the first method to detect the contamination-causing genes and only cor-
rect expression levels of these genes, some of which are cell-type markers. Compared 
with existing decontamination methods, scCDC excels in decontaminating highly 
contaminating genes while avoiding over-correction of other genes.
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extraction procedure would cause many RNAs in the cytoplasm to be released into 
the solution. Although enzymatic degradation is theoretically possible to remove 
ambient RNAs, it is often too challenging to perform experimentally, especially for 
snRNA-seq, because endogenous RNAs are difficult to protect against degradation. 
Hence, ambient RNA contamination needs to be corrected in a post hoc manner in 
most cases.

Various experimental and computational strategies have been developed to cor-
rect the contamination in scRNA-seq and snRNA-seq data. Sanchez et al. developed 
an experimental approach that uses spike-in cells as a reference to correct the con-
tamination [6]. However, this approach complicates the experimental procedure and 
has not been integrated into common commercial platforms. Several computational 
methods have been developed for decontamination, including SoupX [5], CellBender 
[10], and scAR [11], whose common idea is to first estimate the distribution of ambi-
ent RNA levels from empty droplets and then use the estimated distribution to cor-
rect the gene expression levels in cells. However, since SoupX, CellBender, and scAR 
require empty-droplet data, they are inapplicable to processed data in which empty 
droplets have been removed. Although another computational method, DecontX [4], 
does not require empty-droplet data, it and the three above methods alter all genes’ 
expression levels, possibly leading to an over-correction of the genes that did not 
cause the contamination. Such over-correction, especially for lowly expressed genes, 
will likely result in the missingness of informative genes in relevant cell types. How-
ever, the field lacks a comprehensive evaluation of computational decontamination 
methods for correcting genes at varying contamination levels.

In this study, we performed snRNA-seq assays in mouse mammary glands at the 
virgin and lactation stages. In our snRNA-seq datasets, we observed sample-spe-
cific contamination by ambient RNAs. To correct the contamination, we applied the 
above computational methods but found that DecontX and CellBender exhibited an 
under-correction of highly contaminating genes, while SoupX and scAR over-cor-
rected many genes, including housekeeping genes (Fig. 1).

Motivated by this result, we developed scCDC (single-cell Contamination Detec-
tion and Correction), which first detects the “contamination-causing genes,” which 
encode the most abundant ambient RNAs, and then only corrects these genes’ meas-
ured expression levels. We show that scCDC successfully corrected the contamina-
tion in our in-house snRNA-seq datasets. Moreover, scCDC improved the accuracy 
of identifying cell-type marker genes and constructing gene co-expression networks. 
Compared with DecontX, SoupX, CellBender, and scAR on synthetic datasets and 
real datasets, scCDC excelled in robustness and decontamination accuracy for 
correcting highly contaminating genes, while it avoids over-correction for lowly/
non-contaminating genes. Not requiring empty-droplet data, scCDC has general 
applicability to all processed scRNA-seq and snRNA-seq datasets in public repos-
itories. In addition, scCDC can be used in combination with DecontX to remove 
the remaining low contamination not caused by the contamination-causing genes 
scCDC identifies, by leveraging the complementary advantages of the two methods.
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Fig. 1 Performance evaluation of existing methods on correcting contaminated mammary gland snRNA-seq 
data. A The cell clusters identified in L5 and virgin mammary gland datasets are shown in UMAP plots. B 
Heatmap of the expression of selected marker genes in L5 and virgin mammary gland datasets. Notably, 
highlighted genes supposed to express exclusively in a cluster are widely detected in all the cells. C The 
expression of Wap and Acaca in the nucleus are shown in UMAP plots. D, E The violin plots show the 
normalized expression levels of the selected marker genes (D) and housekeeping genes (E) before and after 
correction using the indicated methods by the default Seurat (V3). Adipo, adipocytes; AlveoProg, alveolar 
progenitors; AlveoDiff, differentiated alveolar cells; Bas/Myo, basal cells/myoepithelial cells; Endo, endothelial 
cells; Fibro, fibroblasts; HormSens, hormone sensing cells; HormSensDiff, differentiated hormone sensing 
cells; HormSensProg, hormone sensing progenitors; Immune, immune cells; LumProg, luminal progenitors; 
SkelMusc, skeleton muscle cells
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Results
Ambient RNA contamination in snRNA‑seq data of mouse mammary glands

The mammary gland is a unique mammalian organ whose sole function is to feed the 
young. Hence, the mammary gland undergoes dramatic developmental changes during 
pregnancy and lactation. To investigate mammary gland development, several studies 
have performed scRNA-seq on epithelial cells of mammary glands [12–15]. However, 
the development of mammary glands also requires the interplay between epithelial cells 
and cells in the niche, including adipocytes, fibroblasts, and immune cells [16–18].

Instead of scRNA-seq, we employed snRNA-seq to profile a complete cellular map of 
virgin and lactating (lactation day 5, denoted by L5) mouse mammary glands. In addi-
tion to epithelial cells and subsets of luminal and basal cells, we successfully identified 
adipocytes, fibroblasts, and immune cells, which had not been efficiently captured by 
previous scRNA-seq studies (Fig. 1A). However, we found several well-known cell-type 
marker genes unexpectedly detected in nearly all cell types. For example, the genes Wap 
and Csn2 encode the whey acidic and casein proteins, respectively. Previous studies 
employing genetic reporter mouse strain and RNA in situ hybridization demonstrated 
that Wap and Csn2 are expressed exclusively in the differentiated alveolar epithelial 
cells (AlveoDiff) during lactation [19, 20], whereas the gene Acaca, which encodes the 
acetyl-CoA carboxylase for fatty acid synthesis, is expected to be expressed exclusively 
in adipocytes (Adipo). Surprisingly, however, these genes’ mRNAs were also detected in 
nearly all the other cell types. Similarly, AlveoDiff marker Glycam1 and Adipo marker 
Ghr, Slc1a5, and Nnat were detected globally in lactating and virgin datasets, respec-
tively (Fig. 1B, C). These data suggest the presence of systematic contamination caused 
by ambient RNAs. In addition, comparing the data generated from experiments with or 
without the nuclei sorting procedure, we observed that contamination was slightly lower 
but still noticeable when nuclei sorting was added (Additional file 1: Fig. S1).

Performance evaluation of four existing decontamination methods on in‑house mouse 

mammary gland snRNA‑seq datasets

The four aforementioned computational methods—DecontX, SoupX, CellBender, and 
scAR—were developed to correct contaminated scRNA-seq and snRNA-seq data [4–6, 
10, 11]. Here, we evaluated the performance of these methods in correcting our in-house 
snRNA-seq data of mouse mammary glands.

Applied to the lactating dataset, DecontX barely removed any contamination of Alve-
oDiff markers Wap, Csn2, and Glycam1 in both the “default” mode (DecontX-default) 
and the “pre-clustered” mode that takes user-specified cell clusters (DecontX-preclus-
tered). Similarly, SoupX failed to correct the three genes’ contamination in the “auto-
mated” mode (SoupX-automated), and only SoupX “manual” mode (SoupX-manual, 
which takes user-defined contamination-causing genes) achieved a reasonable correc-
tion performance. Moreover, CellBender and scAR under-corrected the contamination 
of the three genes (Fig. 1D, upper panel).

Applied to the virgin dataset, only scAR successfully corrected the contamination 
of Adipo markers Ghr, Slc1a5, and Nnat. Specifically, SoupX-automated failed to cor-
rect these three genes’ contamination; DecontX-default, DecontX-preclustered, and 
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CellBender all under-corrected these three genes’ contamination; SoupX-manual under-
corrected Ghr’s contamination (Fig. 1D, lower panel).

Since DecontX, SoupX, CellBender, and scAR alter all genes’ counts, we also checked 
how they changed the counts of the genes other than the above cell-type marker genes. 
Although SoupX-manual and scAR had less of an under-correction issue for cell-type 
marker genes, they undesirably removed the counts of some housekeeping genes, such 
as Rps14, Rps8, Rpl37, and Rplp27, in multiple cell types (Fig. 1E). Examining the counts 
of 66 housekeeping genes before and after each method’s correction, we found that 
SoupX-manual and scAR undesirably removed the counts of many housekeeping genes 
in more than 95% of cells (Additional file 1: Fig. 2). These results revealed the over-cor-
rection issue of SoupX-manual and scAR.

Taken together, our evaluation results show that DecontX, SoupX-automated, and 
CellBender under-corrected the genes that caused extensive contamination (usually cell-
type marker genes), while SoupX-manual and scAR over-corrected some other genes, 
including housekeeping genes.

Overview of scCDC

Motivated by these decontamination methods’ unsatisfactory performance on our in-
house datasets, in particular, SoupX-manual and scAR’s over-correction, we investigated 
the composition of ambient RNA contamination; that is, whether the contamination was 
caused by a small number of genes or all genes globally. Previous research has used RNA 
abundance in empty droplets to estimate ambient RNA contamination [5, 11]. Accord-
ingly, we examined the empty droplets in our in-house datasets, public scRNA-seq 
datasets of PBMCs (peripheral blood mononuclear cells) and pancreas [6], and a public 
snRNA-seq dataset of skeletal muscle [21]. We found in each dataset that the ambient 
RNAs in the empty droplets are mainly contributed by a small group of genes, which we 
refer to as “super-contaminating genes” in Additional file 1: Fig. S3 and Method Appen-
dix [22] (See Additional file 1). For example, in our in-house lactating mammary gland 
dataset, RNAs in the empty droplets were dominantly from Wap and other milk protein-
coding genes, such as Csn2 and Csn1s1, while the counts of housekeeping genes Rps14 
and Rps8 were less than 1% of Csn2’s. Similarly, in our in-house virgin mammary gland 
dataset, the majority of RNAs in the empty droplets were from a small group of genes, 
including Gm42418, Malat, and Ghr, while housekeeping genes like Rpl37 and Rplp27 
only contributed small amounts of RNAs (Additional file 1: Fig. S3). These results sug-
gest that ambient RNA contamination is mainly caused by a small number of genes.

Based on this finding, we devised a gene-specific strategy to identify contamination-
causing genes without requiring empty droplets and correct only these genes’ con-
tamination. In contrast to the global strategy used by the existing correction methods 
to correct all genes’ possible contamination, our gene-specific strategy can better avoid 
the under-correction of contamination-causing genes and the over-correction of other 
genes. Following this strategy, we developed a new method, scCDC, which has two func-
tionalities: contamination detection and correction.

A contamination-causing gene has abundant ambient RNAs, so its observed 
count in a droplet is the sum of the counts from its endogenous and ambient RNAs 
(Fig. 2A). The method scCDC is designed to identify each of such genes first and then 
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correct the gene’s observed counts. Because the gene’s ambient RNAs are abundant 
but less variable in droplets, the existence of ambient RNA counts would deflate the 
entropy of the gene’s observed counts in droplets. Following this rationale, scCDC’s 
contamination detection functionality consists of three steps (Fig.  2B). (Note that 

Fig. 2 An overview of scCDC workflow. A The diagram of contamination shows ambient RNAs 
cause contaminated profiles for scRNA-seq (or snRNA-seq). B Workflow of scCDC. The theoretical 
entropy-expression curves of endogenous RNAs are simulated and the divergence of observed and 
expected entropy are calculated. Genes with significant entropy divergence were selected in each cluster 
and the common genes were defined as GCGs. For contamination correction, the clusters of cells do or do 
not express endogenous GCGs were first defined (eGCG + and eGCG − cells). Youden index-based method 
was used to correct the contaminated counts based on the count distribution of the eGCG + cluster with 
the lowest expression and the count distribution of all eGCG − clusters. The contamination ratio of a GCG 
is calculated based on the proportion of the GCG’s total UMI count among all genes’ total UMI count in 
eGCG − cells (details in “Methods”)
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scCDC requires cells to be pre-clustered, an issue we will discuss in the Discussion 
and Method Appendix. See also Additional file  1.) First, under the assumption that 
most genes produce little or no ambient RNAs (defined as “endogenous genes”), 
scCDC estimates the expected entropy-expression curve of endogenous genes within 
each cell cluster (see “Methods”). Second, in each cell cluster, scCDC calculates 
the “entropy divergence,” defined as a gene’s expected entropy (which is calculated 
based on the gene’s expression and the expected entropy-expression curve) minus its 
observed entropy, to represent the gene’s contamination level. Third, scCDC identifies 
the “global contamination-causing genes” (GCGs; details in “Methods”) as the genes 
with statistically significant entropy divergences in more than 50% of the cell clusters. 
(Note that 50% is the default value of the “restriction factor,” a tuning parameter that 
can be user-specified: the larger the restriction factor, the fewer GCGs scCDC identi-
fies; we set the default restriction factor to 50% based on empirical results—details 
are in the “Methods,” Method Appendix, and Additional file 1).

After detecting the GCGs, scCDC’s contamination correction functionality corrects 
these GCGs’ observed counts. For each GCG, scCDC corrects the observed counts in 
two steps. First, scCDC finds the cell clusters in which the GCG is unlikely expressed and 
labels these clusters as eGCG − and the remaining clusters as eGCG + (Fig. 2B). Techni-
cally, scCDC locates the cell cluster in which the GCG has the lowest mean expression; 
then, scCDC groups the cell cluster with similar clusters, with the similarity defined 
based on the GCG’s count distribution in each cluster (details in “Methods”). The jus-
tification is that the GCG should have similar count distributions in the clusters where 
it is unexpressed because its count distributions in these clusters are all determined by 
its ambient RNAs. Second, scCDC corrects the GCG’s counts in the eGCG + clusters by 
subtracting from the GCG’s observed counts a positive value, which is determined by 
the Youden index-based method using two distributions: (1) the GCG’s count distribu-
tion in the eGCG + cell cluster that has the highest similarity with the eGCG − clusters 
and (2) the GCG’s count distribution in the pooled eGCG − cell clusters (Fig.  2B and 
“Methods”).

In addition, for each GCG, scCDC calculates the “contamination ratio” (defined 
as the GCG’s total count in the eGCG − cells over the total count of all genes in the 
eGCG − cells) to evaluate the level of contamination caused by the GCG (Fig. 2B; details 
in “Methods”).

Contamination detection by scCDC for scRNA‑seq or snRNA‑seq data

We first validated the contamination detection functionality of scCDC using simulation. 
We simulated an uncontaminated PBMC scRNA-seq dataset using a realistic simula-
tor scDesign2 [19] and then artificially contaminated the data with three contaminating 
genes LYZ, S100A8, and S100A9. The three genes’ entropy divergences increased in all 
cell clusters after artificial contamination was added (Additional file  1: Fig. S4A), and 
their mean entropy divergences (across clusters) correlated positively with the artificial 
contamination levels (i.e., the proportions of “ambient” counts) (Additional file  1: Fig. 
S4B). All three genes were successfully identified by scCDC as GCGs, and their con-
tamination ratios calculated by scCDC correlate positively with their artificial contami-
nation levels, suggesting that the contamination ratio is a reasonable measure of a gene’s 
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contamination level (Additional file 1: Fig. S4C). These results supported scCDC’s con-
tamination detection functionality.

Next, we applied scCDC to our two in-house mammary gland datasets and thir-
teen public scRNA-seq and snRNA-seq datasets of various mouse and human tissues 
(Additional file 2: Table S1) [6, 21, 23–30]. From these datasets, scCDC identified vari-
ous numbers of GCGs. Of note, the identified GCGs are generally the most abundant 
genes in the empty droplets (Additional file 1: Fig. S3) and were detected in all cell types, 
supporting the contamination detection functionality of scCDC. More importantly, the 
GCGs are mostly known as cell-type marker genes instead of housekeeping genes, so the 
detection and decontamination of GCGs is necessary for cell-type discovery. Below, we 
describe the GCG detection results of scCDC on five exemplar datasets.

From our in-house snRNA-seq datasets of mouse lactating and virgin mammary 
glands, scCDC identified 72 and 106 GCGs, respectively (Additional file  2: Table  S1). 
The identified GCGs included the top contaminating genes in empty droplets (Fig. 3A, 
B). Bulk RNA-seq data of the same tissues confirmed the high expression of these 

Fig. 3 Contamination detection by scCDC in snRNA-seq and scRNA-seq datasets. A, B The plots show the 
counts vs rank in empty droplets in the snRNA-seq datasets in mammary glands. The top ranked 200 and 
500 genes are shown. Selected GCGs are highlighted and labeled on the plot. The dash line separated the 
“super-contaminating genes” and the other genes (details in Method Appendix. See Additional file 1). C, 
D Distribution of GCGs is significantly deviated from negative binomial (NB) distribution. Box plots of the 
p-values of NB distribution goodness-of-fit test of GCGs and housekeeping genes. E scCDC identifies highly 
contaminating genes in the “barnyard” scRNA-seq dataset of mixed human 293 T cells and mouse 3T3 cells. 
The scatter plots show the average counts vs. ranks of cross-species contaminating genes in the indicated 
cells. The average cross-species contaminative counts of GCG and non-GCGs are shown in the boxplots on 
the right. F Box plots show the contamination ratios of GCGs in the indicated datasets
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GCGs (Additional file 1: Fig. S5A, B). Moreover, we observed that the count distribu-
tions of these GCGs deviated significantly from the negative binominal (NB) distribu-
tion, i.e., the expected count distribution in a cell cluster without contamination [19, 20] 
(Fig.  3C,D), confirming the heavy contamination caused by these genes. These GCGs 
included known cell-type marker genes. For example, AlveoDiff marker genes, includ-
ing Wap, Csn2, and Glycam1, were identified as GCGs in the lactating mammary gland; 
Adipo marker genes, such as Acaca, Ghr, Slc1a5, and Nnat, were found as GCGs in the 
virgin mammary gland (Fig. 3A and Additional file 2: Table S1).

In a highly contaminated scRNA-seq dataset of mouse pancreas [6], insulin encoding 
genes Ins1 and Ins2 should be expressed exclusively and abundantly in Beta cells [31], but 
they were unexpectedly detected in almost all cells (Additional file 1: Fig. S6A). Apply-
ing scCDC to the dataset, we identified 12 GCGs, including Ins1 and Ins2 (Additional 
file 1: Fig. S6B and Additional file 2: Table S1). Among the GCGs identified by scCDC, 
11 GCGs were confirmed as highly expressed by bulk RNA-seq (Additional file 1: Fig. 
S6C; the only GCG not found in the bulk RNA-seq data was a pseudogene). Similar to 
our observation from our in-house mammary gland datasets, the GCGs’ count distri-
butions in each cell cluster deviated significantly from the NB distribution; in contrast, 
the housekeeping genes’ count distributions in each cell cluster were approximately NB 
(Additional file 1: Fig. S6D).

Applying scCDC to a commonly used benchmark “barnyard” dataset of mixed human 
293 T and mouse 3T3 cells [4], we found that the cross-species contamination was dom-
inantly from the GCGs scCDC identified, although the GCGs had low contamination 
ratios in general (Fig. 3E and Additional file 1: Fig. S7).

In the PBMC-4  K dataset, it has been widely reported that the gene LYZ, a marker 
gene of mononuclear phagocytes (MNPs), is a contamination-causing gene [4]. Applied 
to the dataset, scCDC successfully identified LYZ as a GCG (Additional file 1: Fig. S8A).

Notably, examining the contamination ratios of the GCGs scCDC identified from 
these datasets, we found that the contamination ratios could vary significantly in one 
dataset (Fig. 3F), consistent with the fact that genes’ ambient RNA levels could vary in a 
wide range in empty droplets (Additional file 1: Fig. S3). Moreover, the mean contamina-
tion ratio of GCGs varied greatly from dataset to dataset. In particular, the mean con-
tamination ratio of GCGs was significantly lower in the “barnyard” dataset, which was 
commonly used for benchmarking decontamination methods, than in the other 14 data-
sets (Fig. 3F). In contrast, the mouse pancreas dataset had the highest mean contamina-
tion ratio of GCGs (Fig. 3F). Hence, it is insufficient to use the “barnyard” dataset only 
for benchmarking decontamination methods because its contamination level is not rep-
resentative of many datasets.

Four existing methods under‑corrected GCGs or over‑corrected lowly/non‑contaminating 

genes

Regarding contamination correction, we compared scCDC with four existing meth-
ods: DecontX, SoupX, CellBender, and scAR. Table 1 summarizes the five methods in 
five aspects: (1) whether a method can work without empty-droplet data, (2) whether 
a method can run with CPU only, (3) whether a method corrects all genes, (4) whether 
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a method evaluates a gene’s contamination within each cell cluster, and (5) whether a 
method requires preclustering. For scCDC, the answers are yes, yes, no, yes, and yes.

Using eight out of the fifteen scRNA-seq or snRNA-seq datasets we applied scCDC to 
(Additional file 3: Table S2), we evaluated the four existing methods’ decontamination 
efficacy on the GCGs detected by scCDC. We were only able to apply the four meth-
ods to the eight datasets that contained empty droplets because SoupX, CellBender, and 
scAR required empty droplets as input.

We first verified the decontamination efficacy of scCDC on the GCGs, which we had 
confirmed to be likely contaminated in our previous analysis. For each GCG, we calcu-
lated its median expression level in the eGCG − cells after the correction (Fig. 4A), and 
a low level would indicate an effective decontamination of the GCG. The results showed 
that scCDC effectively corrected the GCGs in all eight datasets (Fig. 4A). Since we pre-
viously observed the over-correction of some of the 66 housekeeping genes by SoupX-
manual and scAR in our in-house mammary gland datasets, we examined if scCDC 
over-corrected the 66 housekeeping genes in the eight datasets. Since scCDC by design 
only corrects its detected GCGs, which did not include the housekeeping genes in gen-
eral (Additional file 2: Table S1), we did not observe the over-correction of housekeeping 
genes by scCDC (Additional file 4: Table S3).

Next, we evaluated the decontamination efficacy of the four existing methods for the 
GCGs detected by scCDC in the eight datasets (Fig. 4A). The results showed that the 
four methods had overall good decontamination efficacy for the GCGs exhibiting low 
contamination ratios, such as the GCGs in the “barnyard” dataset (Fig. 4A). However, 
we observed that DecontX, SoupX-automated, and CellBender under-corrected the 
GCGs exhibiting high contamination ratios, such as the GCGs in the human liver and 
mouse pancreas datasets (Fig. 4A). These results suggested that DecontX, SoupX-auto-
mated, and CellBender provided insufficient correction for highly contaminating GCGs 
(Additional file 4: Table S3). Compared to DecontX, SoupX-automated and CellBender, 
although SoupX-manual and scAR had a much less under-correction issue, they still 
under-corrected a subset of GCGs in the lactating mammary gland and mouse pancreas 
datasets (Fig. 4A and Additional file 4: Table S3).

Based on our previous observation of the over-correction issue of SoupX-manual 
and scAR, we examined if the two methods over-corrected any of 66 housekeeping 

Table 1 Comparison of scCDC with DecontX, SoupX, CellBender and scAR in five aspects

Only a filtered 
gene‑by‑cell matrix 
needed (no empty 
droplets)

Only 
CPU 
needed

Data correction Contamination 
evaluation in 
individual cluster

Preclustering 
required

scCDC √ √ GCGs only √ √
DecontX-default √ √ Globally  ×  × 

DecontX-preclus-
tered

√ √ Globally  × √

SoupX-automated  × √ Globally  ×  × 

SoupX-manual  × √ Globally  ×  × 

CellBender  ×  × Globally  ×  × 

scAR  × √ Globally  ×  × 
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genes in the eight datasets. The results showed that SoupX-manual over-corrected 
some housekeeping genes and lowly contaminating GCGs in four datasets, and scAR 
exhibited an over-correction of some of these genes in five datasets (Additional file 4: 
Table S3).

Fig. 4 scCDC is a robust method for correcting highly contaminating GCGs in real datasets. A The box plots 
show the medium expression of GCGs in eGCG − cells before and after correction in the indicated datasets. 
B Box plots show the counts of GCGs before and after correction by the indicated method in the “barnyard” 
scRNA-seq dataset of mixed human 293 T cells and mouse 3T3 cells. Of note, SoupX-automated fails to run 
on the data. *, no output. C scCDC efficiently corrects highly contaminating genes in the snRNA-seq dataset 
of the lactating mammary gland. The violin plots show the normalized expression levels of the indicated 
GCGs before and after correction by scCDC. D DecontX and SoupX-automated displayed under-correction in 
the scRNA-seq data in mouse pancreas islet with spike-ins. The violin plots show the normalized expression 
levels of the indicated GCGs before and after correction using the indicated methods. The plots were made 
by the default Seurat (V3)
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In summary, Additional file 4: Table S3 lists the observed under-correction of GCGs 
and the over-correction of housekeeping genes and lowly contaminating GCGs by each 
of the five methods in the eight datasets.

Below we discuss in detail the decontamination performance of the five methods on 
five exemplar datasets, ordered by an increasing decontamination level (measured as 
the mean contamination ratio of the GCGs): (1) the “barnyard” dataset of mixed human 
293  T and mouse 3T3 cells, (2) the human liver dataset, (3) our in-house data from 
the lactating mammary gland, (4) the PBMC-4 K dataset, and (5) the mouse pancreas 
dataset.

In the “barnyard” dataset with lowly contaminating GCGs only [4], DecontX-preclus-
tered performed the best among the methods, removing almost all the contamination 
from the dataset; however, DecontX-default barely corrected the contamination. Inter-
estingly, scAR removed the contamination completely in mouse cells but not in human 
cells (Fig.  4B), and it over-corrected lowly expressed mouse genes in mouse cells and 
housekeeping genes in both mouse and human cells (Additional file  1: Fig. S9). For 
SoupX, SoupX-automated could not successfully run on this dataset. Notably, scCDC 
was secondary to DecontX-preclustered in correcting the contamination in human cells, 
and it was secondary to DecontX-preclustered and scAR in decontaminating mouse 
cells (with performance similar to SoupX-manual and CellBender) (Fig. 4B).

In the liver dataset [32], contamination was detected for ambient RNAs of HBB from 
erythroid cells and those of ALB and APOA2 from hepatocytes (Additional file 1: Fig. 
S10A). SoupX-manual and scAR provided sufficient correction for these genes, while 
DecontX and CellBender exhibited an under-correction (Additional file  1: Fig. S10B). 
For housekeeping genes, scAR had a slight over-correction (Additional file 1: Fig. S10C). 
In contrast, scCDC effectively corrected the contamination of HBB, ALB, and APOA2, 
and it did not exhibit an over-correction of housekeeping genes (Additional file 1: Fig. 
S10B).

As previously shown in Fig. 1, in our snRNA-seq dataset of the lactating mammary 
gland, DecontX, SoupX-automated, and CellBender under-corrected the contamina-
tion on AlveoDiff marker genes Wap, Csn2, and Glycam1. Although SoupX-manual 
and scAR provided sufficient correction for the three genes, they over-corrected a few 
housekeeping genes. Unlike these methods, scCDC effectively corrected Wap, Csn2, and 
Glycam1 (Fig. 4C) but did not over-correct the housekeeping genes (Additional file 1: 
Fig. S2).

In the PBMC-4 K dataset, all five methods successfully corrected the contamination of 
LYZ (Additional file 1: Fig. S8B). Nevertheless, we observed an under-correction of the 
highly contaminating gene CD74 by DecontX, SoupX-manual, and CellBender (Addi-
tional file 1: Fig. S8B). In addition, we found a severe over-correction of housekeeping 
genes by SoupX-manual and scAR (Additional file 1: Fig. S8C).

Lastly, we examined the five methods on the mouse pancreas dataset that exhibited 
the highest level of contamination among the eight datasets (Fig.  3F). In the study 
that generated this dataset, Sanchez et al. estimated genes’ contamination fractions 
using spike-in cells in the experiment and corrected the data based on the estimated 
contamination fractions [6]. Accordingly, we used the spike-in data as a reference. 
In our results, DecontX, SoupX-automated, and CellBender failed to sufficiently 
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correct the highly contaminating GCGs, such as the known Beta cell marker Ins2, 
Alpha cell marker Gcg, and Delta cell marker Sst (Fig. 4D) [6]. In contrast, SoupX-
manual and scAR removed the contaminative counts of GCGs, resulting in even 
cleaner decontamination results than the spike-in-based correction in the original 
study, which did not remove all contaminative counts in the endothelial cells and 
B cells (Fig.  4D and Additional file  1: Fig. S11A). Among these methods, SoupX-
manual and scAR achieved the overall best correlations between their corrected 
counts and the spike-in-based corrected counts (Additional file 1: Fig. S11B). Again, 
we assessed if SoupX-manual and scAR over-corrected any lowly or non-contami-
nating genes in the dataset. Similar to the observations in our in-house snRNA-seq 
datasets and PBMC dataset, SoupX-manual and scAR, but not the other methods, 
undesirably removed the counts of many housekeeping genes in more than 95% 
of cells (Additional file 1: Fig. S11C). In addition, we found that the counts of Irx1 
and Irx2, the marker genes of Alpha cells [33], were removed by scAR in Alpha cells 
(Additional file  1: Fig. S11D), while these two genes were not identified as GCGs 
by scCDC and showed very low contamination levels in empty droplets (Additional 
file 1: Fig. S6B). These results were also in line with a previous report about poten-
tial gene loss caused by scAR [11]. Similar to the results in other datasets, scCDC 
provided sufficient correction for the highly contaminating cell-type marker genes 
like Ins1, Ins2, and Gcg (Fig. 4D), and it did not over-correct the lowly or non-con-
taminating genes like Irx1 and Irx2 (Additional file 2: Table S1).

Collectively, our thorough analysis of real datasets has revealed the under-correction 
of highly contaminating GCGs, including cell-type marker genes, by DecontX, SoupX-
automated, and CellBender. Additionally, we have observed the over-correction of 
lowly/non-contaminating genes, particularly housekeeping genes, by SoupX-manual 
and scAR. Addressing these limitations, scCDC provided robust correction on highly 
contaminating GCGs and avoided over-correction on the other genes.

Simulation confirmed the effectiveness of scCDC in correcting highly contaminating genes 

and suggested a combined use of scCDC and DecontX

To better validate the robustness of scCDC in a scenario with ground truths, we simu-
lated artificially contaminated pancreas datasets by mimicking the real data in Sanchez 
et al.’s study [6]. First, we simulated an uncontaminated single-cell dataset by a realistic 
simulator scDesign2 [34] trained on the filtered, spike-in-corrected real data (Additional 
file 1: Fig. S12A). Second, to mimic the real-data contamination of genes with varying 
contamination levels, we simulated artificial contaminative counts of the 500 genes 
that had the most counts in the empty droplets of the real data. Specifically, the 500 
genes’ simulated contaminative levels (i.e., the contaminative level of each gene is the 
mean parameter of the NB distribution for contaminative counts) were proportional to 
their total counts in empty droplets, under each of three contamination scenarios (low, 
medium, and high) (Fig.  5A). Then we generated contaminated datasets with varying 
contamination levels by adding each of the 500 genes’ uncontaminated counts (simu-
lated in the first step) and artificial contaminative counts (simulated in the second step). 
We used these contaminated datasets to evaluate the robustness of scCDC in correcting 
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highly and lowly contaminating genes. We also compared scCDC with DecontX-
preclustered, the better-performing mode of DecontX and the only one that does not 
require empty droplets among the four existing methods.

Fig. 5 Simulation confirms the effectiveness of scCDC in correcting highly contaminating genes and 
suggests a combined use of scCDC and DecontX. A The diagram shows the simulation strategy of artificial 
contamination with varying levels. Artificial contamination of 500 genes at low, medium, and high 
levels is added to the uncontaminated simulated data. B Scatter plots show the artificial contaminative 
counts vs. corrected counts of the 500 artificial contaminating genes in (A) by indicated methods. Top 
contaminating genes are labeled. Lowly contaminating genes are circled. C DecontX slightly over-corrects 
non-contaminating genes in highly contaminative data. Scatter plots show the counts before and after 
correction of the genes that are not artificially contaminated. D The violin plots show the normalized 
expression levels of indicated top GCGs before and after correction by different computational methods. 
E DecontX helps scCDC correct lowly contaminating genes. Scatter plots show the artificial contaminative 
counts vs. corrected counts of the 500 artificial contaminating genes as in (B)



Page 15 of 29Wang et al. Genome Biology          (2024) 25:136  

In the low contamination scenario, DecontX-preclustered successfully removed the 
artificial contaminative counts, although it had an under-correction of the highly con-
taminating genes. In the medium and high contamination scenarios, DecontX exhib-
ited an obvious under-correction for all contaminating genes (Fig. 5B, D). These results 
confirmed our finding that DecontX is sensitive to the contamination levels of con-
taminating genes: it provides a sufficient correction for lowly contaminating genes but 
an insufficient correction for highly contaminating genes. Interestingly, DecontX also 
removed a small number of non-contaminating genes (i.e., over-correcting these genes) 
when the overall contamination level was high (Fig. 5C).

In contrast, under all three contamination scenarios, scCDC successfully identified 
highly contaminating genes as GCGs (Additional file 1: Fig. S12B) and effectively cor-
rected their contaminative counts. Moreover, scCDC did not alter the counts of non-
contaminating genes as designed (Fig. 5B-D). Consistent with what we observed from 
the aforementioned real datasets, scCDC was insensitive to the contamination levels of 
GCGs and provided an effective correction for GCGs (Fig.  5B–D). These results con-
firmed that scCDC is a robust correction method for highly contaminating genes.

We noticed that scCDC did not identify some lowly contaminating genes among the 
500 artificial contaminating genes as GCGs, so it did not provide correction for these 
genes (circled in Fig. 5B, Additional file 1: Fig. S12B). Together with the results in the 
“barnyard” dataset of mixed human 293 T and mouse 3T3 cells (Fig. 4B), these results 
suggested that scCDC is more effective in the “highly contaminating” scenario than the 
“low-contaminating” scenario. Given the effectiveness of DecontX for correcting lowly 
contaminating genes, we explored the combined use of scCDC and DecontX (that is, 
DecontX is applied to the data corrected by scCDC) for their comparative advantages. 
Indeed, scCDC followed by DecontX corrected the counts of both highly and lowly con-
taminating genes (circled in Fig. 4E). These results suggested that the combined use of 
scCDC and DecontX could lead to more effective decontamination than each method 
alone. Based on our results in real and simulated datasets, we found that under-cor-
rection by DecontX occurred when a GCG’s contamination ratio exceeds 3.16 ×  10−4. 
Therefore, we recommend employing the combined approach of scCDC and DecontX-
preclustered for decontaminating datasets that contain GCGs with contamination ratios 
exceeding 3.16 ×  10−4.

Furthermore, we used the simulated data to investigate if an iterative application of 
scCDC (i.e., applying scCDC again to its corrected data from the previous iteration) 
could improve the decontamination accuracy. Our results from three iterations showed 
that the number of GCGs dramatically decreased after the first iteration and became 
stable (Additional file 1: Fig. S13A). Of note, few genes were identified as GCGs in more 
than one iteration, and their corrected expression remained stable after the first itera-
tion (Additional file  1: Fig. S13B). Meanwhile, housekeeping genes were not found as 
GCGs in all iterations, as expected (Additional file  1: Fig. S13C). Similar results were 
observed when scCDC was iteratively applied to our in-house dataset of lactating mam-
mary glands (Additional file 5: Table S4). Hence, one iteration of scCDC (GCG detection 
followed by correction) is sufficient.

Noting that scCDC requires the pre-clustering of cells, we further tested if scCDC is 
applicable to data that do not have clear cell cluster separation. First, we simulated an 
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uncontaminated pancreas developmental trajectory dataset by scDesign3 [35] and arti-
ficially added contamination of four genes: Ins2, Ins1, Nnat, and Iapp (Fig. 6A). Based 
on default pre-clustering in Seurat, the cells were grouped into eleven clusters, from 
which scCDC identified six GCGs (Fig. 6B and Additional file 1: Fig. S14). Notably, the 
top four GCGs were the artificial contaminating genes (Fig. 6B). Moreover, scCDC suc-
cessfully corrected the counts of the four GCGs (Fig. 6C). In contrast, DecontX failed to 
correct the data effectively (Fig. 6C). Second, we applied scCDC to a scRNA-seq dataset 
of developmental pituitary glands [36]. scCDC identified cell-type marker genes TSHB, 
POMC, and HBG1 as GCGs and successfully corrected their contamination. In contrast, 

Fig. 6 scCDC effectively corrects contamination in synthetic scRNA-seq trajectory dataset. A The 
diagram shows the simulation strategy of artificial contamination. B scCDC successfully identifies artificial 
contaminating genes. Upset plot shows the identification of GCGs from candidate GCGs in each cluster. GCGs 
are highlighted in red, and the artificial contaminating genes are labeled. C scCDC effectively corrects the 
artificial contamination. The expression of the artificial contaminating genes in uncontaminated, artificially 
contaminated, and corrected data are shown in the UMAP plots
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DecontX provided insufficient correction for POMC and HBG1 (Additional file 1: Fig. 
S15). These results confirmed the robustness of scCDC in correcting contaminated data 
when cell clusters are less distinct.

Application of scCDC improved cell‑type marker gene profiling and gene network 

construction

Eventually, we examined if downstream analysis could benefit from the correction by 
scCDC in our datasets. Owing to its robustness, correction by scCDC unmasked the 
expression patterns of some GCGs as cell-type marker genes, thus facilitating the iden-
tification of cell types. For instance, in the lactating mammary gland (L5) snRNA-seq 
dataset we produced, scCDC revealed the unique expression of milk protein-coding 
genes, such as Wap and Csn2, in AlveoDiff (differentiated alveolar) cells (Fig.  7A). In 
the virgin mammary gland snRNA-seq dataset, scCDC showed the exclusive expression 
of adipocyte markers Ghr, Acaca, Slc1a5, Nnat, and luminal progenitor marker Erbb4 
(Fig. 7A).

Cell-type-specific gene network is informative in scRNA-seq analysis, which demands 
accurate cell-type-specific gene profiling. Therefore, we examined if corrected cell 
marker profiling by scCDC also improves gene network construction. We applied sin-
gle-cell weighted gene co-expression network analysis (scWGCNA) [37] to the lactating 
mammary gland snRNA-seq dataset before and after scCDC’s correction (Additional 

Fig. 7 Contamination detection and correction of scCDC improves cell-type marker gene profiling and 
network construction in the snRNA-seq datasets of mammary glands. A Dotplots show the expression of 
selected GCGs in L5 mammary gland and virgin mammary gland before (left) and after correction (right), 
respectively. B, C The significant gene network module associated with GCGs after correction is identified in 
L5 mammary gland after application of scCDC. B The mean expression of identified AlveoDiff specific module 
genes by scWGCNA analysis after scCDC correction. C The AlveoDiff specific gene network in (B) is presented. 
GCGs are highlighted in red; ribosomal genes are highlighted in gray
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file  6: Table  S5). Although the GCGs Csn2, Csn3, Wap, and Glycam1 are well-known 
lactation-specific genes regulated by the same transcriptional machinery [38], they were 
not identified in any network modules before scCDC’s correction. In contrast, these 
four lactation-specific genes were identified in a network module of AlveoDiff cells after 
scCDC’s correction (Fig. 7B,C and Additional file 6: Table S5). Notably, a dozen of ribo-
somal protein-coding genes were also enriched in the module, in line with the biological 
fact that translation machinery is extensively active to produce a large amount of milk 
proteins in AlveoDiff cells at lactation [39, 40]. The results indicate that scCDC’s decon-
tamination helped scWGCNA identify gene co-expression modules masked by ambient 
RNA contamination.

We also examined if the correction by scCDC facilitated marker gene profiling and 
gene network construction in the pancreas dataset. Similar to the observations in our in-
house mammary gland datasets, scCDC unmasked the expression patterns of cell-type 
marker genes. For example, scCDC revealed the exclusive expression of Ins1 and Ins2 in 
Beta cells and Gcg in Alpha cells (Additional file 1: Fig. S16A). Additionally, in the pan-
creas scRNA-seq dataset, many cell-type marker genes found as GCGs (such as Alpha-
cell marker Gcg and Delta-cell marker Sst) were not identified in network modules 
before scCDC’s correction. Only after scCDC’s correction, Sst and Gcg were identified 
as central genes of Delta cells’ and Alpha cells’ network modules, respectively. Notice-
ably, Irx1 and Irx2, the two genes incorrectly wiped out by scAR, were also identified 
in the Alpha cell module as expected (Additional file 1: Fig. S16B and Additional file 6: 
Table S5). Taken together, scCDC significantly improved cell-type-specific marker pro-
filing and downstream co-expression network construction.

Discussion
Here, we developed a computational method, scCDC, to identify GCGs and correct the 
counts of GCGs, without requiring experimental spike-in controls or empty droplets. 
Our results indicate that ambient RNA contamination warrants attention, and scCDC 
effectively identified GCGs and corrected their contamination in scRNA-seq and 
snRNA-seq data. Compared to the existing computational methods, scCDC avoids the 
under-correction issue of DecontX, CellBender, and SoupX-automated on highly con-
taminating genes and the over-correction on other genes by SoupX-manual and scAR, 
via the detection of GCGs (Table  1), ensuring robust correction for varying levels of 
contamination.

Among the existing computational methods, SoupX, CellBender, and scAR esti-
mated the contaminative count distribution from empty droplets. However, these 
three methods have two limitations. First, it is too simplistic to assume that ambient 
RNA levels have the same distribution in empty droplets and in cell- or nucleus-con-
taining droplets. The two reasons are (1) empty droplets only contain ambient RNAs 
randomly distributed in the cell suspension, but cell- or nucleus-containing drop-
lets may also contain ambient RNAs specifically attached to or absorbed by cells or 
nucleus; (2) unlike cell- or nucleus-containing droplets, in empty droplets, the lack of 
endogenous RNAs may lead to more amplification of ambient RNAs and thus over-
estimation of the contamination, e.g., the over-correction by SoupX and scAR on the 
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scRNA-seq datasets. Second, these three methods are inapplicable to the processed 
gene-by-cell count matrices, which are common in public datasets and do not contain 
empty-droplet data.

In contrast, scCDC avoids these limitations by estimating the distribution of con-
taminated counts from real cells or nuclei, so scCDC can be applied to processed 
count matrices. Although DecontX can also be applied to processed count matrices, 
the correction efficacy of DecontX is low on highly contaminating genes. We specu-
late that the DecontX algorithm’s convergence and iteration setting require further 
optimization. However, scCDC also has its own limitation in that it may not be capa-
ble of identifying certain lowly contaminating genes as GCGs and, therefore, does 
not offer correction for these genes. For datasets with both highly and lowly contami-
nating genes, we recommend a combined use of scCDC and DecontX to harness the 
complementary advantages of both methods to achieve an effective correction for all 
genes.

What mainly distinguishes scCDC from the existing methods is that scCDC detects 
GCGs and only corrects the expression counts of GCGs. This gene-specific strategy, 
which was also used in scImpute for the imputation problem, minimizes data alter-
ation to avoid the over-correction issue of SoupX and scAR [41]. In correcting the 
counts of GCGs, scCDC, SoupX-manual, and scAR are all effective methods, correct-
ing the median expression of GCGs in eGCG − cells to around zero in most datasets 
(Fig.  4A). Nevertheless, none of the methods could clear all the counts of GCGs in 
eGCG − cells, leaving certain contaminative counts of GCGs in a small population of 
eGCG − cells (Additional file 3: Table S2), which may slightly affect cell clustering and 
other analyses. Of note, we were able to design scCDC to clear the counts of GCGs in 
eGCG − cells aggressively. However, this strategy will alter the natural count distribu-
tion of GCGs in the entire dataset and may hinder the combined use of scCDC with 
other methods.

It is noted that scCDC and DecontX require the pre-clustering of cells, an issue we 
discussed in the Method Appendix (Additional file 1). Notably, identifying known cell 
types is not significantly affected by ambient RNA contamination, at least in the datasets 
we have tested. This is verified by examination of cluster ARI before and after iterative 
correction by scCDC (Additional file 5: Table S4). And a number of cell-type annotation 
tools (Azimuth [42], SingleR [43], Cell Blast [44], SciBet [45]) and databases (CellMarker 
[46], PanglaoDB [47]) have been developed to help define cell types in a supervised way. 
For example, the NIH HuBMAP consortium has released Azimuth, which provides ref-
erence cell types for many human tissues (https:// azimu th. hubma pcons ortium. org). 
Moreover, novel tools like scDesign3 can be used to justify the preclustering accuracy. 
In contrast to DecontX and scCDC, SoupX, CellBender, and scAR do not require cell 
pre-clustering (Table  1). However, we noticed that manually pre-defining contaminat-
ing genes after preclustering strikingly improved the correction accuracy of SoupX in 
all datasets we tested. In the automated setting, SoupX failed to provide sufficient cor-
rection, consistent with the result in a recent report [48]. These results again suggest the 
necessity of cell pre-clustering before contamination correction.

Similar to scRNA-seq and snRNA-seq data, single-cell proteomics data were also 
found to have contamination [11]. Accordingly, decontamination methods such as 

https://azimuth.hubmapconsortium.org
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dbs were developed [49]. Although we focused on correcting the contamination in 
scRNA-seq and snRNA-seq data in this study, scCDC is also applicable to single-cell 
proteomics data in theory. The performance of scCDC on single-cell proteomics data 
can be benchmarked in a future study.

Conclusions
Contamination by ambient RNAs is ubiquitous in single-cell and single-nuclei RNA-seq 
assays. We proposed scCDC as a novel computational method to detect global contam-
ination-causing genes and correct these genes’ expression data. The gene-specific cor-
rection strategy enables scCDC to correct highly contaminating genes and be less likely 
to over-correct lowly/non-contaminating genes, compared to the existing computational 
methods. Decontamination by scCDC improves marker gene identification and gene 
network construction.

Methods
Calculation of cell‑cluster‑specific gene entropy divergences in scCDC

For gene g in cell cluster c , the entropy is defined as

where V  is the set of unique values in vg ,c , a vector of gene g ’s counts in the cells in clus-
ter c ; pn,g ,c is the frequency of the count value n in vg ,c , defined as

For cell cluster c , the following procedure is used to calculate the cell-cluster-specific 
expected entropy-expression curve, inspired by the ROGUE score in [50].

1. Calculate each gene g’s mean expression in cell cluster c as

And calculate Eg ,c defined above.

2. For b = 1, . . . , 10 , in the b-th subsampling run, do the following.

 i. Randomly sample 80% of genes.
 ii. Use the R function smooth.spline() to fit a curve between the sampled genes’ 

entropy values (y; response variable) and mean expression values (x; explana-
tory variable), using the following R code:

Eg ,c = −

n∈V

pn,g ,clog2(pn,g ,c),

pn,g ,c =
# of occurrences of value nin vg ,c

length of vg ,c
.

Mg ,c = log
(
(average ofvg ,c)+ 1

)
,

smooth.spline(Mb
c, E

b
c , spar = 1),
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 where Mb
c  is a vector containing the randomly sampled genes’ Mg ,c values, and Eb

c  is a 
vector containing the randomly sampled genes’ Eg ,c values. Denote the fitted 
curve by function f̂ b that maps a gene’s mean expression to entropy.

 iii. For each sampled gene g , calculate the residual rbg ,c = f̂ b
(
Mg ,c

)
− Eg ,c , i.e., the 

difference between the gene’s fitted entropy from step ii and the actual entropy. 
Pool all residuals into a vector rbc  . Assuming all residuals follow a normal distri-
bution, define gene g as an outlier if its residual falls into the top 1% tail of the 
fitted normal distribution, i.e., using R code, if

 

 iv. Remove the outlier genes detected in step iii and refit the curve as in step ii.
 v. Detect outlier genes as in step iii based on the refitted curve in step iv.
 vi. Remove the outlier genes detected in step v and refit the curve as in step ii.
 vii. Output the curve from step vi.

3. Calculate the expected entropy-expression curve by averaging the 10 curves from the 
subsampling runs. Specifically, for each gene g , its expected entropy is the average of 
the 10 fitted entropy values.

Finally, the entropy divergence of g in cell cluster c is defined as

where Êg ,c is the expected entropy of gene g in cell cluster c , calculated based on gene 
g ’s average expression and the expected entropy-expression curve in cell cluster c . Since 
we expect that gene g ’s ambient RNAs would deflate its entropy Eg ,c , a large and positive 
�Eg ,c would indicate severe contamination of gene g in cell cluster c.

GCG identification in scCDC

Small cell clusters (with fewer than 100 cells) are not considered in this GCG identifica-
tion step. Figure 2B illustrates the GCG identification procedures described below.

1. Among the considered cell clusters, in every cluster c , the genes with “significantly” 
large entropy divergences would be identified as the candidate GCGs of cluster c . Spe-
cifically, we fit a normal distribution of all genes’ entropy divergences �Eg ,c’s, denoted by 
the vector �Ec . Then we calculate a pseudo-p-value of gene g , denoted by ppg , as
ppg = 1− pnorm(�Eg ,c , mean = mean(�Ec ), sd = sd(�Ec)), and set a 0.05 threshold on 

the adjusted pseudo-p-values based on the Benjamini–Hochberg procedure. That is, any 
gene g whose post-adjustment ppg ≤ 0.05 would be called a candidate GCG in cluster c , 
if gene g is expressed in at least 80% of the cells in cluster c.

2. Across the considered cell clusters, the genes found as candidate GCGs in at least 
50% (referred to as the restriction factor, which can be user-specified; the selection of 
an appropriate restriction factor is discussed in the Method Appendix) of the clusters 
and have non-zero counts in at least 20% cells in each cell cluster would be found as the 

1− pnorm(r_(g, c)b, mean = mean(r_cb), sd = sd(r_cb)) ≤ 0.01

�Eg ,c = Êg ,c − Eg ,c,
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GCGs. In other words, the GCGs are the genes that are stably found as candidate GCGs 
in many clusters.

Estimation of a GCG’s contaminative count distribution in scCDC

Each GCG’s contaminative count distribution is estimated by the GCG’s counts in the 
cells that are not expected to express the GCG endogenously (i.e., eGCG − cells; illus-
trated in Fig. 2B). To identify a GCG’s eGCG − cells, we take the following procedure. 
First, we filtered out cell clusters of less than 50 cells and identified the cluster in which 
the GCG has the lowest mean expression, calling this cluster an eGCG − cluster. Sec-
ond, we use the GCG’s expression level as the only feature in a binary classification set-
ting: distinguishing the eGCG − cluster from another cluster, so we can compute the 
area under the ROC curve (AUROC) to indicate the similarity of the other cluster to the 
eGCG − cluster (the larger the AUROC, the higher the similarity); the AUROC compu-
tation is done using the “pROC” (v1.17.0.1) package [51]. All clusters with AUROC val-
ues of less than 0.9 (a tuning parameter; see Table 2) are pooled with the eGCG − cluster 
and defined as the eGCG − cells. A GCG’s eGCG  + cells are defined as the remaining 
cells, which are expected to have the GCG endogenously expressed.

Contamination ratio of a GCG by scCDC

The contamination ratio (C) of gene g is calculated by the total UMI count of gene g in 
eGCG − cells divided by the total UMI count of all genes in eGCG − cells:

where Xg ,j represents the observed UMI count of gene g in cell j , Ng represents the 
eGCG − cells of gene g , and G represents all genes in the data.

Correction of a GCG’s contaminative counts by scCDC

Given a GCG, scCDC uses the Youden index-based method to find a threshold c so that 
the GCG’s contaminative counts in all cells would be corrected by subtracting c . To find 
c , we generate the ROC curve for classifying the eGCG − cells (class 0) and the least 
eGCG + cells (the eGCG + cell cluster in which the GCG has the lowest AUROC value 
against the GCG − cluster with the lowest expression of GCG). Based on the ROC curve, 
we calculate the Youden Index (J ) [52] of a given threshold c:

Rg =

∑
j∈Ng

Xg ,j
∑

g ′∈G

∑
j∈Ng

Xg ′,j

Table 2 Tuning parameters in the functions of scCDC

Function Parameter Description Default

Contamination detection restrict_factor The minimum proportion of cell clusters in which a GCG is 
found as a candidate GCG 

0.5

min.cells The minimum cell number of the cell clusters used for 
finding candidate GCGs

100

Contamination correction auc_thres The threshold of the AUROC used to define eGCG − clus-
ters

0.9

min.cell The threshold to filter the cell populations with an insuf-
ficient number of cells

50
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where Sec is the sensitivity at the threshold c , and Spc is the specificity at the threshold 
c . Then we find the threshold c by maximizing Jc . Given the threshold c , we correct the 
GCG’s count in every cell by subtracting c , with a truncation at zero so that the GCG 
would not have negative counts.

In summary, scCDC has four tuning parameters listed in Table 2.

Count correction by SoupX, DecontX, CellBender and scAR

SoupX (v1.5.2), DecontX in Celda (v1.10.0), CellBender (v0.3.0), and scAR (v0.4.3) were 
employed for count correction.

For SoupX, both the raw feature matrix and filtered feature matrix generated by Cell-
ranger (v6.0.1) are used to create the Soup Channel object, followed by the standard cor-
rection workflow in the tutorial [5]. The “automated” and “manual” modes are applied, 
respectively. The identified GCGs are provided as the “non-expressed genes,” whose 
RNAs in specified cells are treated as ambient, in the “manual” mode.

For DecontX, the correction is applied to the filtered feature matrix. The default pro-
cedure, referred to as the “default” mode, is performed. Alternatively, the pre-clustering 
information obtained from Seurat [53] is provided manually in the “pre-clustered” mode.

For CellBender, the correction uses the raw feature matrix with the remove-back-
ground function, following the tutorial (https:// cellb ender. readt hedocs. io/ en/ latest/ getti 
ng_ start ed/ remove_ backg round/ index. html).

For scAR, both the raw feature matrix and filtered feature matrix are used based on the 
tutorial (https:// scar- tutor ials. readt hedocs. io/ en/ latest/ tutor ials/ scAR_ tutor ial_ mRNA_ 
denoi sing. html). The filtering scale is applied to the filtered feature matrix for each of the 
datasets, as listed in Additional file 7: Table S6.

Generation of simulated single‑cell datasets

To generate the simulated PBMC single-cell dataset, we first obtained a real PBMC 
dataset “pbmcsca.SeuratData” from the SeuratData R package (https:// github. com/ satij 
alab/ seurat- data). We then sub-selected the dataset generated by the 10 × Chromium 
(v2) technology under the experiment “pbmc2,” using the “meta. data” information from 
“pbmcsca.SeuratData.” Next, we filtered out the ERCC spike-in’s, the mitochondrial 
genes, and the gene MALAT1, and we select five cell types (B cells, CD14 + monocytes, 
natural killer cells, CD4 + T cells, and cytotoxic T cells). Using the filtered and sub-
selected real dataset from above, we applied the simulator scDesign2 [34, 54] to fit one 
multivariate probabilistic model to each of the five cell types.

The resulting gene expression matrix is stored as the file sce_10x_pbmc2_hca_cor-
rected.rds.

The sce_10x_pbmc2_hca_corrected.rds file and the code for reproducing it are avail-
able at https:// zenodo. org/ record/ 63955 74#. YrXp5 JPMKEt. In particular, the rds file 
is under Code summary.zip/Fig. 7 and supplementary S3 to S10/imputation_compari-
son_0614/Data_gen/data/; the code is under Code summary.zip/Data simulation/. The 
rds file can be generated by sequentially executing the seven steps in the code directory.

Jc = Sec + Spc − 1,

https://cellbender.readthedocs.io/en/latest/getting_started/remove_background/index.html
https://cellbender.readthedocs.io/en/latest/getting_started/remove_background/index.html
https://scar-tutorials.readthedocs.io/en/latest/tutorials/scAR_tutorial_mRNA_denoising.html
https://scar-tutorials.readthedocs.io/en/latest/tutorials/scAR_tutorial_mRNA_denoising.html
https://github.com/satijalab/seurat-data
https://github.com/satijalab/seurat-data
https://zenodo.org/record/6395574#.YrXp5JPMKEt
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To generate the simulated pancreas data with discrete cell types, we first obtained a 
real pancreas dataset based on the procedures in the “General single-cell and single-
nuclei data processing” section. We selected four major cell types (Alpha, Beta, Gamma, 
and Delta cells) and sequentially filtered out non-Beta cells whose both Ins1 and Ins2’s 
count expression is below 1, non-Alpha cells whose Gcg’s count expression is below 1, 
and non-Delta cells whose Sst’s count expression is below 1 to obtain a dataset with 
unambiguous cell clusters. Using this filtered real dataset, we then applied the scDesign2 
[34, 54] to fit one multivariate probabilistic model to each of the four cell types.

To generate the simulated pancreas data that follow a continuous trajectory, we first 
obtained a real pancreas dataset from scDesign3’s [38] Zenodo repository (https:// 
zenodo. org/ record/ 77509 30). The data file is PANCREAS_sce.rds, a preprocessed and 
filtered dataset of pancreatic endocrinogenesis from scVelo [55]. It contains the top 
1000 highly variable genes and four cell types that form a single trajectory, as well as 
the Slingshot [56] inferred cell pseudotime values, which are further normalized into the 
interval [0, 1]. We then applied scDesign3 [35] to fit one multivariate probabilistic model 
for all the cells using the pseudotime values as the cell covariates. Finally, we generated 
the simulated dataset using the scDesign3 fitted model with cell pseudotime values uni-
formly distributed in [0, 1].

Artificial contamination of simulated single‑cell datasets

To simulate a contaminated PBMC dataset, we blended the simulated uncontami-
nated count matrix with artificial contaminative counts of three marker genes of 
CD14 + monocytes, S100A9, S100A8, and LYZ. In Additional file 1: Fig. S4A, the arti-
ficial contaminative counts of each gene were generated following a NB distribution, 
whose mean was the gene’s average original count and whose size was 10. Alternatively 
in Additional file  1: Fig. S4A, B, the three genes’ artificial contaminative counts were 
generated from a NB distribution with a fixed mean (0.5, 1, 1.5, 2, 2.5, or 3, indicating 
the contamination level) and a size of 1, 10, 50, or 100. Then for each of the three genes, 
we added to each of its original counts an artificial contaminative count, which was ran-
domly picked from the generated ones.

We also generated a contaminated pancreas dataset by generating artificial contami-
native counts of top 500 contaminating genes, which had the largest total counts in the 
empty droplets of the real pancreas dataset [6]. Specifically, we used the average count of 
Ins2 in non-Beta cells, in which Ins2 should not be expressed, as the baseline contamina-
tion level. Then for each of the 500 contaminating genes, we calculate its contamination 
level by multiplying the baseline contaminative level with the ratio of (the gene’s total 
count in the empty droplets)/(Ins2’s total count in the empty droplets). Finally, corre-
sponding to the low, medium, or high contamination, each contaminating gene’s con-
taminative counts were sampled from a NB distribution, whose mean was 0.3, 1, or 3 
times the gene’s contamination level and whose size was 10.

An additional contaminated pancreas trajectory dataset is generated by randomly 
blending the original raw count matrix with an artificial contaminative count matrix 
composed of four marker genes of Beta cells, Ins1, Ins2, Iapp, and Nnat. The contamina-
tive count matrix is generated following NB distributions using the mean of the average 

https://zenodo.org/record/7750930
https://zenodo.org/record/7750930
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count of the original raw count matrix and a size of 30. Then a contaminative count is 
randomly selected from the matrix and added to each original raw count.

Single‑nuclei RNA‑seq of mammary glands

Eight-week-old female C57BL/6N mice were timed mated. Abdominal and thoracic 
mammary tissues from nulliparous mice (virgin) and mice at lactation day 5 (L5) were 
harvested and lymph nodes in abdominal mammary tissues were removed. Mammary 
tissues were snap-frozen in liquid nitrogen followed by nuclei extraction and single-
nuclei RNA sequencing (snRNA-seq) on a 10X Genomics platform in Lianchuan Biol-
ogy Technology Co.

General single‑cell and single‑nuclei data processing

Cellranger (v6.0.1) was used to map raw reads to mouse or human reference genomes 
and obtain raw and filtered count matrixes of genes. Seurat (v4.0.3) was used for data 
filtration, principal component analysis (PCA), dimension reduction, clustering, marker 
gene identification, and data visualization. Specifically, for each dataset, cells with insuf-
ficient genes, molecules, and high mitochondria gene percentage were first filtered. The 
data were then normalized, and top variable genes were identified. Scaling, dimension 
reduction, and clustering were then performed. The specific parameters for filtering, 
dimension reduction, and clustering used in each dataset are provided in Additional 
file 7: Table S6.

When benchmarking for pre-clustering, the top 1000 variable genes identified by 
SeuratVST [53], scPNMF (v1.0) [57], and Scater (v1.20.1) [58] were used for dimension 
reduction, respectively.

Visualization of clusters and identification of marker genes was done in Seurat. 
Weighted gene co-expression network analysis (WGCNA) was done using the scW-
GCNA (v1.0.0) package [37].
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