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A B S T R A C T   

Autoencoders are the backbones of many imputation methods that aim to relieve the sparsity issue in single-cell 
RNA sequencing (scRNA-seq) data. The imputation performance of an autoencoder relies on both the neural 
network architecture and the hyperparameter choice. So far, literature in the single-cell field lacks a formal 
discussion on how to design the neural network and choose the hyperparameters. Here, we conducted an 
empirical study to answer this question. Our study used many real and simulated scRNA-seq datasets to examine 
the impacts of the neural network architecture, the activation function, and the regularization strategy on 
imputation accuracy and downstream analyses. Our results show that (i) deeper and narrower autoencoders 
generally lead to better imputation performance; (ii) the sigmoid and tanh activation functions consistently 
outperform other commonly used functions including ReLU; (iii) regularization improves the accuracy of 
imputation and downstream cell clustering and DE gene analyses. Notably, our results differ from common 
practices in the computer vision field regarding the activation function and the regularization strategy. Overall, 
our study offers practical guidance on how to optimize the autoencoder design for scRNA-seq data imputation.   

1. Introduction 

Single-cell RNA-sequencing (scRNA-seq) enables the measurement 
of genome-wide gene expression at the single-cell level [1–3]. 
State-of-the-art scRNA-seq technologies can measure tens of thousands 
of genes and up to millions of cells [4], allowing the investigation of 
cell-to-cell heterogeneity [5], the identification of cell types [6], and the 
inference of cell state transitions [7]. A notable characteristic of 
scRNA-seq data is the high proportion of zeros (i.e., high sparsity). 
Depending on the sequencing platform and sequencing depth, the zero 
proportion can range from 50% to more than 90% [8]. Two types of 
zeros exist in scRNA-seq data: biological zeros and non-biological zeros 
[9]. Biological zeros indicate the actual absence of gene expression in 
cells, while non-biological zeros are originated from technical biases and 
noise in scRNA-seq experiments [10]. Without spike-ins or prior bio-
logical knowledge, it is difficult to distinguish between these two types 
of zeros in scRNA-seq data [8]. 

The high sparsity of scRNA-seq data hinders data analysis. Many 

computational methods have been developed to reduce data sparsity, 
and they can be divided into three broad categories [8]. First, 
model-based imputation methods use probabilistic models to describe 
gene expression distributions in scRNA-seq data (e.g., scImpute [11] and 
BISCUIT [12]). These methods aim to first distinguish between biolog-
ical zeros and non-biological zeros based on gene expression distribu-
tions and then only impute the identified non-biological zeros. Second, 
data-smoothing methods modify each cells’ gene expression levels based 
on its similar cells’ gene expression levels (e.g., MAGIC [13] and 
DrImpute [14]). Two cells may be defined as similar if they share 
common neighboring cells in a low-dimensional space. Unlike 
model-based imputation methods, data-smoothing methods do not 
distinguish non-biological zeros and alter all gene expression levels, 
including the nonzeros. Third, data-reconstruction methods first learn a 
latent low-dimensional space of cells and then reconstruct cells in the 
original high-dimensional space (e.g., ZIFA [15] and DCA [16]). Most 
data-reconstruction methods use the reconstructed data to replace all 
zeros in the original data but keep the original nonzeros unchanged. 
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Among the data-reconstruction methods, autoencoder-based 
methods are popular for their imputation accuracy and scalability [17, 
18]. Specifically, an autoencoder is a neural network that contains an 
encoder for dimension reduction and a decoder for data reconstruction. 
Then the reconstructed data are regarded as the imputed scRNA-seq 
data. Despite the popularity of autoencoders in the scRNA-seq field, 
there lacks a formal discussion on how to optimize the autoencoder 
design, including the neural network architecture, the activation func-
tion, and the parameter regularization [8]. Existing autoencoder-based 
methods either adopt the wisdom in other fields (e.g., computer 
vision) or design autoencoders with limited justification. 

Here, we conduct an empirical study to explore how to optimize the 
autoencoder design for imputing scRNA-seq data. Our study consists of 
three investigations. The first investigation is the optimization of 
autoencoder design for imputation accuracy. In detail, we generate 36 
semi-synthetic scRNA-seq datasets with artificial zeros (whose original, 
non-missing values are known) by applying three masking schemes to 12 
real scRNA-seq datasets. Then, we train autoencoders with varying 
depths (depth means the number of layers) and widths (width means the 
number of nodes per layer), seven activation functions, and two regu-
larization strategies on each semi-synthetic dataset. Next, we evaluate 
the trained autoencoders’ imputation accuracies in terms of the 
normalized root mean squared error (NRMSE) and the Pearson corre-
lation coefficient, which are calculated between the imputed values and 
the original values of the artificial zeros. Based on the evaluation results, 
we find the autoencoder designs that lead to the best imputation 
accuracies. 

The second investigation is the optimization of autoencoder design 
for cell clustering. In detail, we train autoencoders with the aforemen-
tioned designs on 20 real scRNA-seq datasets containing curated cell 
type information. Next, to examine the impact of autoencoder design on 
downstream cell clustering, we apply the trained autoencoders for 
imputation and evaluate the clustering accuracies on the imputed 
datasets in terms of the adjusted Rand index (ARI) and the adjusted 
mutual information (AMI). 

The third investigation is the optimization of autoencoder design for 
differentially expressed (DE) gene identification. In detail, we simulate 
20 synthetic datasets with ground-truth DE genes by applying the 
scDesign simulator [19], which is trained on 20 real scRNA-seq datasets 
(see Methods). Then we train autoencoders with the aforementioned 
designs on these synthetic datasets. Next, to examine the impact of 
autoencoder design on downstream DE gene analysis, we apply the 
trained autoencoders for imputation and evaluate the DE gene identi-
fication accuracies on the imputed datasets in terms of the precision, 
recall, and true negative rate (TNR). 

In the above three investigations, we consider many choices of neural 
network depths, widths, activation functions, and regularization stra-
tegies. Since a full combination of those design aspects is computa-
tionally infeasible, we adopt a sequential, greedy search strategy to 
explore the best design. In each investigation, we first examine a full 
combination of neural network depths and widths, the two most 
important aspects, with the other design aspects fixed as in common 
practices (see Results). Based on the optimized combination of width 
and depth, we next optimize the activation function. Finally, given the 
optimized width, depth, and activation function, we optimize the reg-
ularization strategy. 

Our results yield the following guidelines about autoencoder design 
for scRNA-seq data imputation (Table 1). First, deeper and narrower 
autoencoders lead to more accurate imputation, cell clustering, and DE 
gene identification, yet the benefit of depth saturates at 10 hidden 
layers. Second, the sigmoid and tanh activation functions consistently 
have the best performance in all evaluations. Third, parameter regula-
rization is critical to the performance of autoencoder-based imputation 
methods. In particular, weight decay regularization is more capable of 
improving cell clustering and DE gene analysis, while dropout regula-
rization shows superiority in improving the overall imputation accuracy 

for the artificial zeros. Moreover, the optimal degree of regularization is 
dataset-specific. 

Our findings suggest that many autoencoder-based imputation 
methods have used suboptimal autoencoder designs, including shal-
lower and wider autoencoders and the rectified linear unit (ReLU) 
activation function. Moreover, our findings highlight the importance of 
using empirical benchmarking to optimize autoencoder designs, and 
more generally, neural network designs, in bioinformatics research. 

2. Results 

2.1. Impacts of autoencoder architecture (depth and width) on imputation 
accuracy 

We collect 12 real scRNA-seq datasets to evaluate the overall 
imputation accuracy of a variety of autoencoder architectures. These 
datasets cover a wide range of cell types, sequencing depths, zero pro-
portions, and experimental platforms (Supplementary Table S1). We 
apply three masking schemes (i.e., random masking, double exponential 
masking, and medium masking, which reflect different degrees of 
dependence of missingness on the actual values; see Methods) to these 
12 real datasets, obtaining 36 masked datasets. To evaluate the impu-
tation accuracy on each masked dataset, we calculate the NRMSE and 
the Pearson correlation coefficient between the masked values and the 
imputed values (Methods), referred to as the “imputation NRMSE” and 
the “imputation correlation,” respectively, in the following text. 

We build autoencoders of various architectures by increasing the 
depth (i.e., the number of hidden layers) from 1 to 15. For each depth, 
we set the width (i.e., the number of hidden units per layer) to 32, 64, 
128, or 256. All hidden layers are fully connected with the same width. 
In total, we have 60 autoencoder architectures, corresponding to 15× 4 
depth-width combinations. We choose the ReLU function [20] as the 
activation function and train the autoencoders by the Adam optimiza-
tion algorithm [21] (Methods). For each autoencoder architecture and 
each masked dataset, we set 10 random seeds in the autoencoder 
training to obtain 10 autoencoders, whose imputation NRMSEs and 
imputation correlations are averaged to represent the overall imputation 
accuracy of the autoencoder architecture on the masked dataset. 

Under the random masking scheme, Fig. 2a–b show the impacts of 
autoencoder depth-width combinations on the imputation NRMSE and 
the imputation correlation. First, deeper autoencoders achieve lower 
imputation NRMSEs and higher imputation correlations. The benefit of 
depth is more prominent when the autoencoder has no more than 10 
layers. Second, narrower autoencoders (with 32 hidden units per layer) 
typically have higher imputation accuracy than wider autoencoders 
(with 64 or more hidden units per layer) of the same depth. This finding 
is consistent with the observation that deeper and narrower neural 
networks perform better in computer vision tasks (e.g., image classifi-
cation and object detection) [22,23]. Under the double exponential 
masking scheme, we observe a similar relationship between the 

Table 1 
Guidelines of autoencoder design for scRNA-seq data imputation. Each row 
represents one of four design characteristics. Each column represents one of 
three evaluation metrics. Each entry corresponds to the marginally optimized 
design characteristic under each evaluation metric.  

Autoencoder design 
characteristics 

Evaluation metrics 

Imputation 
accuracy 

Cell 
clustering 

DE gene 
identification 

Number of hidden layers ≥ 10 ≥ 10 ≥ 5 
Number of units per 

hidden layer 
32 Robust Robust 

Activation function Sigmoid or 
Tanh 

Sigmoid or 
Tanh 

Sigmoid or Tanh 

Regularization strategy Dropout Weight 
decay 

Weight decay  
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autoencoder depth-width combinations and the imputation accuracy, 
except for the dataset bmmc (Supplementary Fig. S1). However, the 
relationship no longer holds under the median masking scheme: while 
deeper autoencoders still have better imputation accuracy on certain 
datasets, the width does not have a significant impact on the imputation 
accuracy (Supplementary Fig. S2). Among the three masking schemes, 
random masking has the highest imputation accuracy, followed by 
double exponential masking and then median masking. Note that under 
median masking, the imputation accuracy is low on most datasets, 
indicated by many larger-than-one imputation NRMSEs and 
close-to-zero imputation correlations (Supplementary Fig. S2). 

A possible explanation of the results is that, among the three masking 
schemes, random masking best preserves gene-gene correlations. Since 
random masking is performed independent of gene expression levels, the 
gene-gene correlations in the masked data are unbiased estimates of the 
gene-gene correlations in the original, unmasked data. Unlike random 
masking, double exponential masking assumes an inverse relationship 
between a gene’s masking probability and average expression (i.e., the 
probability of masking increases as a gene’s average expression level 
decreases); hence, the gene-gene correlations in the masked data are no 
longer unbiased estimates of the gene-gene correlations in the original 
data. While random masking and double exponential masking are both 
stochastic schemes, median masking is a deterministic scheme where the 
50% lowest expression levels of all genes are masked as zeros. Hence, 
median masking distorts gene-gene correlations to the greatest extent 
among the three masking schemes. Under the hypothesis that gene-gene 
correlations play a crucial role in determining the imputation accuracy 
of an autoencoder, it is unsurprising that the best imputation accuracy is 
achieved under the random masking scheme, followed by the double 
exponential masking scheme. Hence, the following analysis on impu-
tation accuracy will focus on random masking and double exponential 
masking. 

2.2. Impacts of activation function on imputation accuracy 

An activation function is a nonlinear transformation applied to 
generate the hidden units in an autoencoder [25]. It provides an 
autoencoder with the capacity to learn complex nonlinear relationships 
among features, e.g., nonlinear interactions among genes in scRNA-seq 
data. ReLU is a widely used activation function in autoencoder-based 
imputation methods, motivated by its success in computer vision [25]. 
However, justification is lacking for using ReLU to impute scRNA-seq 
data, and no empirical comparison has been done between ReLU and 
other activation functions. 

Here, we train autoencoders with seven activation functions, 
including sigmoid, tanh, ReLU, LeakyReLU (with two hyperparameter 
settings) [26], ELU [27], and SELU [28], to evaluate the impacts of 
activation functions on the imputation accuracy (Methods). For each 
activation function, we impute 24 masked datasets (the aforementioned 
12 scRNA-seq datasets after random masking or double exponential 
masking) by training 20 autoencoders using 20 random seeds on each 
masked dataset. Fig. 3 and Supplementary Fig. S3 compare the seven 
activation functions’ resulting imputation NRMSEs and imputation 
correlations under the random masking and double exponential masking 
schemes. Surprisingly, the most popular ReLU function is not the top 
performer. Instead, the sigmoid and tanh functions outperform the other 
activation functions on all datasets under both masking schemes. 
Additionally, the sigmoid and tanh functions result in significantly 
smaller variances of the imputation NRMSEs and the imputation cor-
relations than the other functions do, indicating that the sigmoid and 
tanh functions lead to more stable imputation accuracy. Between sig-
moid and tanh, although they have similar performance, sigmoid has 
higher imputation accuracy on the datasets pbmc and human_mix and 
more stable imputation accuracy on the datasets mbrain, pbmc, 
human_mix, and mouse_cortex. 

The comparison of the seven activation functions reveals three in-
sights. First, unlike ReLU that introduces sparsity into hidden layers (i.e., 

Fig. 1. Autoencoder and the measurement of imputation accuracy. a, The basic structure of an autoencoder [24]. b, The introduction of artificial zeros by masking. c, 
The training of an autoencoder for imputation. The reconstructed data are the autoencoder’s output during the training process. d, The calculation of an autoen-
coder’s imputation accuracy on masked values. The imputed data are the final autoencoder’s output after the training process. 
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many hidden units are zeros) [26], sigmoid and tanh generate dense 
hidden layers (i.e., many hidden units are nonzeros). Our empirical re-
sults suggest that dense hidden layers lead to higher imputation accu-
racy for scRNA-seq data. Second, Leaky ReLU, ELU, and SELU are 
modified forms of ReLU that output a close-to-zero negative value when 
the input is negative (Methods). They generate pseudo-sparsity in the 
hidden layers to avoid the “dead ReLU” problem (i.e., most hidden units 
are zeros, causing the autoencoder to stop learning) [29]. However, our 
empirical results show no consistent improvement of these modified 

ReLU functions over ReLU in terms of imputation accuracy, though these 
modified ReLU functions lead to dense hidden layers as sigmoid and 
tanh do. A possible interpretation is that sigmoid and tanh have 
continuous derivatives, while the modified ReLU functions have 
discontinuous derivatives. Third, we do not observe vanishing gradients 
or exploding gradients [30], two common problems in training deep 
neural networks using sigmoid or tanh. We hypothesize that appropriate 
preprocessing and normalization of scRNA-seq data might help stabilize 
gradients in the training process. 

Fig. 2. Impacts of the autoencoder depth and width on the imputation NRMSE (a) and the imputation correlation (b) based on the random masking scheme. Each 
point is the average of the results obtained from 10 random seeds used for autoencoder training. 
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2.3. Impacts of regularization on imputation accuracy 

Some autoencoder-based imputation methods use weight decay or 
dropout as the regularization strategy [31,32]. However, the selection of 
the regularization strategy and the corresponding hyperparameters (i.e., 
λ in weight decay and p in dropout, Methods) is mostly ad hoc [8]. To 
examine the impact of regularization on imputation accuracy, we train 

autoencoders with weight decay or dropout as the regularization strat-
egy (Methods) to impute the aforementioned 24 masked datasets (the 12 
real scRNA-seq datasets after random masking or double exponential 
masking). We vary λ ∈[1e-7, 5e-4] and p ∈[0.01, 0.4] and compare the 
resulting imputation NRMSEs and imputation correlations (Methods;  
Figs. 4 and 5; Supplementary Figs. S4 and S5). All autoencoders have the 
same architecture and activation function: 10 fully connected hidden 

Fig. 3. Impacts of the activation function on the imputation NRMSE (a) and the imputation correlation (b) based on the random masking scheme. Sg: sigmoid; Th: 
tanh; RL: ReLU; LRL: LeakyReLU (α = 0.01); LRL.2: LeakyReLU (α = 0.2); EL: ELU; SEL: SELU. Each boxplot shows the results obtained from 20 random seeds used 
for autoencoder training. 
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layers, 32 hidden units per hidden layer, and the sigmoid activation 
function. For each dataset and regularization strategy (with a given 
value for the corresponding hyperparameter), we use 10 random seeds 
to train 10 autoencoders and average the resulting imputation NRMSEs 
and imputation correlations. 

Under random masking, the weight decay strategy barely improves 
the imputation accuracy except on datasets mouse_spleen and 

human_mix. Larger values of λ even lead to worse imputation accuracy, 
suggesting over-regularization (Fig. 4). In contrast, the dropout strategy 
with a proper dropout rate p improves the imputation NRMSEs on six 
datasets and the imputation correlations on 11 datasets. The optimal 
range of p depends on the evaluation metric: 0.02–0.2 for imputation 
NRMSE and 0.2–0.4 for imputation correlation (Fig. 5). Hence, p = 0.2 is 
a reasonable choice. 

Fig. 4. Impacts of the weight decay regularization on the imputation NRMSE (a) and the imputation correlation (b) based on the random masking scheme. Each point 
is the average of the results obtained from 10 random seeds used for autoencoder training. 
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Under double exponential masking, both the weight decay and 
dropout strategies improve the imputation accuracy (Supplementary 
Figs. S4 and S5). Specifically, the weight decay strategy reduces the 
imputation NRMSEs on six datasets and increases the imputation cor-
relations on 11 datasets (Supplementary Fig. S4). The optimal range of λ 

depends on the evaluation metric: 1e-7–5e-5 for imputation NRMSE and 
5e-6–5e-4 for imputation correlation. Hence, 5e-6–5e-5 is a reasonable 
range for λ. The dropout strategy exhibits a stronger positive impact on 
the imputation accuracy, with the imputation NRMSEs reduced on 10 
datasets and the imputation correlations increased on all 12 datasets 

Fig. 5. Impacts of the dropout regularization on the imputation NRMSE (a) and the imputation correlation (b) based on the random masking scheme. Each point is 
the average of the results obtained from 10 random seeds used for autoencoder training. Some y-axis tick values appear to be identical due to the four-digit resolution, 
reflecting the negligible variation of y-axis values across dropout rates. 
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(Supplementary Fig. S5). The optimal range of the dropout rate p is 
similar to that under random masking. 

We summarize the impacts of regularization on the imputation ac-
curacy from three perspectives. First, compared with the weight decay 
strategy, the dropout strategy is more capable of improving both the 
imputation NRMSE and the imputation correlation under both random 

masking and double exponential masking. Second, both the weight 
decay and dropout strategies are more effective under double expo-
nential masking than random masking. As discussed in “Impacts of 
autoencoder architecture (depth and width) on imputation accuracy,” 
double exponential masking masks small nonzero values in the scRNA- 
seq data matrix, thus distorting gene-gene correlations. In contrast, 

Fig. 6. Impacts of the autoencoder design on cell clustering accuracy measured by ARI. a, Depth and width. b, Activation function. The dash lines in (a) show the cell 
clustering performance without imputation. Each point in (a) is the average of the results obtained from five random seeds used for autoencoder training. Each 
boxplot in (b) shows the results obtained from 10 random seeds used for autoencoder training. 
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random masking does not have this issue. Hence, we hypothesize that 
regularization has a bigger benefit under double exponential masking 
because regularization’s improvement of robustness is more needed 
after double exponential masking’s distortion on gene-gene correlations. 
Third, the optimal hyperparameter for each regularization strategy 
largely depends on the dataset and the masking scheme, making it 
impossible to find a universally optimized hyperparameter value Inter-
estingly, compared with the imputation NRMSE, the imputed correla-
tion requires a higher degree of regularization to be optimized, under 
both the weight decay and dropout strategies. Future research is 
required to find the reason underlying this phenomenon. 

2.4. Impacts of autoencoder design (architecture, activation function, and 
regularization) on cell clustering 

The ultimate goal of imputation is to improve downstream analysis 
through the enhancement of signals in the sparse scRNA-seq data [33]. 
We collect 20 real scRNA-seq datasets containing annotated cell types to 
examine the impact of autoencoder design on cell clustering (Supple-
mentary Table S2). Here, the datasets are different from those used in 
the evaluation of the imputation accuracy because evaluating clustering 
accuracy does not require the knowledge of non-missing values. Spe-
cifically, we first conduct K-means clustering on each original dataset 
and calculate the adjusted Rand index (ARI) and the adjusted mutual 
information (AMI) to measure the clustering performance (Methods). 
Note that we choose K-means clustering instead of the more popular 
graph-based Louvain or Leiden clustering in the Seurat package [34] 
because we want to set K, the number of clusters, to the number of cell 
types for fair evaluation. While setting K to a specific number is natural 
for K-means clustering, it requires manual tuning for Louvain and Leiden 
clustering and is too labor-intensive for our evaluation. Second, we train 
autoencoders with various architectures, activation functions, and reg-
ularization strategies to impute the 20 datasets. Finally, we conduct 
K-means clustering on each imputed dataset and calculate the corre-
sponding ARI and AMI. 

Fig. 6a and Supplementary Fig. S6a show the impact of autoencoder 
architecture on cell clustering. Similar to the previous analysis, we in-
crease the depth of autoencoders from 1 to 15 and set the width to 32, 
64, 128, or 256 for each depth. All hidden layers in each autoencoder are 
fully connected with the same width. In total, we have 60 (15× 4) 
depth-width combinations. We use the sigmoid activation function 
because of its superior performance in the previous imputation accuracy 
evaluation. On each dataset, we use five random seeds for autoencoder 
training to obtain five imputed datasets, on which we calculate the 
imputation ARIs and the imputation AMIs; then we report the average 
imputation ARI and the average imputation AMI. Our results, which are 
consistent between ARIs and AMIs, show that deeper autoencoders lead 
to a larger improvement in cell clustering accuracy than their shallower 
counterparts do. The benefit of depth saturates after 10 hidden layers. 
Unlike the autoencoder depth, the autoencoder width has no obvious 
impact on cell clustering accuracy (Fig. 6a; Supplementary Fig. S6a). 
Surprisingly, imputation does not always improve cell clustering accu-
racy: imputation only improves ARIs on eight datasets and AMIs on four 
datasets, regardless of autoencoder architectures. 

Fig. 6b and Supplementary Fig. S6b show the impact of activation 
functions on cell clustering. Similar to the previous analysis, we train 
autoencoders with seven activation functions, including sigmoid, tanh, 
ReLU, LeakyReLU (with two different hyperparameters), ELU, and 
SELU. For each activation function, we impute the 20 scRNA-seq data-
sets using 10 autoencoders trained under 10 random seeds. All 
autoencoders have 10 fully connected hidden layers with 32 hidden 
units per layer, an optimized architecture based on our previous anal-
ysis. We observe that sigmoid and tanh outperform other activation 
functions on all datasets in terms of both imputation AMI and imputa-
tion ARI. They also lead to more stable cell clustering accuracy than 
other activation functions do. The performance of sigmoid and tanh is 

similar except for datasets mouse_cortex and Klein, where tanh has 
a slight advantage over sigmoid. 

Fig. 7 and Supplementary Fig. S7 show the impact of regularization 
on cell clustering. Similar to the previous analysis, we use the weight 
decay and dropout strategies and vary λ ∈[1e-7, 5] and p ∈[0.01, 0.4] 
(Methods). Based on our previous analysis, all autoencoders have 10 
fully connected hidden layers, with 32 hidden units per layer, and the 
sigmoid activation function. Interestingly, the weight decay strategy 
significantly improves cell clustering accuracy—with the optimized 
weight decay hyperparameter λ’s (mostly between 0.01 and 0.1), all 20 
datasets have improved ARIs, and 18 datasets have improved AMIs. 
However, the dropout strategy does not lead to same improvement—-
with the optimized dropout hyperparameter p’s (in a broad range), only 
eight datasets have improved ARIs, and only four datasets have 
improved AMIs. Hence, unlike the previous imputation accuracy eval-
uation, which prefers the dropout strategy, here the weight decay 
strategy is preferred. However, we do not want to over-interpret the 
results because the autoencoders we use do not consistently lead to 
better ARIs and AMIs, suggesting that imputation might not be needed 
for cell clustering, consistent with our previous report [9]. 

2.5. Impacts of autoencoder design (architecture, activation function, and 
regularization) on DE gene analysis 

The signal enhancement in scRNA-seq data by imputation is ex-
pected to benefit another important downstream analysis—the identi-
fication of differentially expressed (DE) genes. To examine the impact of 
autoencoder design on DE gene analysis, we utilize the simulator 
scDesign [19] to generate 20 synthetic datasets with ground-truth DE 
genes (Methods). Each synthetic dataset is generated by learning the 
distributions of genes’ expression levels in one real scRNA-seq dataset 
(20 real datasets in total; Supplementary Table S3). These real datasets 
(and their synthetic counterparts) cover a wide range of biological and 
technical conditions. We use synthetic data in this analysis since the 
ground-truth DE genes are unknown in real scRNA-seq datasets. 

After simulation, we apply the MAST method [35] to the 
pre-imputed synthetic datasets to identify DE genes and calculate the 
corresponding precision, recall, and true negative rate (TNR), which are 
considered as the baseline accuracies. Next, to impute each synthetic 
dataset, we train autoencoders with various architectures, activation 
functions, and regularization strategies. Finally, we apply MAST to each 
imputed dataset and calculate the corresponding precision, recall, and 
TNR (Methods). 

Fig. 8a, Supplementary Fig. S8a, and Supplementary Fig. S10a show 
the impacts of autoencoder architecture on the recall, precision, and 
TNR. The settings of depth, width and activation function for autoen-
coders are the same as in the evaluation of cell clustering (1–15 fully- 
connected hidden layers; 32, 64, 128, or 256 hidden units per layer; 
sigmoid activation function). On each synthetic dataset, we set five 
random seeds in the autoencoder training to obtain five imputed data-
sets, whose precisions, recalls, and TNRs are averaged to represent the 
autoencoder’s performance. First, deeper autoencoders lead to better 
recalls on 10 datasets, while the benefit of depth saturates after five 
layers (Fig. 8a). In contrast, width has no significant improvement on the 
recall. Unexpectedly, 11 synthetic datasets show no improvement in 
recall after imputation, regardless of the autoencoder architecture. 
Second, depth and width have no significant impact on the precision, 
except for the datasets Interneurons, Epithelial_cells, and 
astrocytes, where deeper autoencoders lead to slightly higher pre-
cisions (Supplementary Fig. S8a). Overall, 19 synthetic datasets have 
improved precisions after imputation. Third, the impact of depth and 
width on the TNR is limited, because all TNRs are already close to one 
before imputation, and most TNRs are increased by less than 0.05 after 
imputation (Supplementary Fig. S10a). Altogether, our results suggest 
that autoencoder-based imputation benefits the precision instead of the 
recall or the TNR for the identification of DE genes. 
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Fig. 8b, Supplementary Fig. S8b, and Supplementary Fig. S10b show 
the impacts of the activation function on the recall, precision, and TNR. 
Again, we train autoencoders with seven activation functions; for each 
function, we impute the aforementioned 20 synthetic datasets using 10 
autoencoders trained by setting 10 random seeds. All autoencoders have 
10 fully connected hidden layers with 32 hidden units per layer. In terms 

of the recall, sigmoid and tanh outperform the other activation functions 
on 15 datasets (Fig. 8b). The advantage of sigmoid and tanh is similar for 
the precision—they outperform the other activation functions on 12 
datasets (Supplementary Fig. S8b). All activation functions have similar 
performance based on the TNR, which is consistently close to one 
(Supplementary Fig. S10b). Overall, sigmoid and tanh have similar 

Fig. 7. Impact of the autoencoder regularization strategy on cell clustering accuracy measured by ARI. a, Weight decay regularization. b, Dropout regularization. The 
dash lines show the cell clustering performance without imputation. Each point is the average of the results obtained from five random seeds used for autoen-
coder training. 
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performance, and they both provide a more stable improvement in the 
identification of DE genes than the other activation functions do. 

Fig. 9, Supplementary Fig. S9, and Supplementary Fig. S11 show the 
impacts of regularization on the recall, precision, and TNR. Again, we 
add either weight decay or dropout to autoencoders and adjust the 
corresponding hyperparameter, as in the previous analysis. All autoen-
coders have 10 fully connected hidden layers, with 32 hidden units per 
layer, and the sigmoid activation function. We observe that, compared 

to dropout, weight decay exhibits a stronger improvement in recall, 
precision, and TNR: weight decay outperforms the no-regularization 
autoencoders on 20, 12, and 20 datasets, respectively, with the 
optimal hyperparameter λ’s (in the range of [5e-6, 0.05]) (Fig. 9a, 
Supplementary Fig. S9a, and Supplementary Fig. S11a); in contrast, 
dropout outperforms the no-regularization autoencoders on 17, 6, and 
17 datasets, respectively, with the optimal p’s (in the range of [0.05, 
0.25]) (Fig. 9b, Supplementary Fig. S9b, and Supplementary Fig. S11b). 

Fig. 8. Impacts of the autoencoder design on DE gene identification accuracy measured by recall. a, Depth and width. b, Activation function. The dash lines in (a) 
show the recall without imputation. Each point in (a) is the average of the results obtained from five random seeds used for autoencoder training. Each boxplot in (b) 
shows the results obtained from 10 random seeds used for autoencoder training. 
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Moreover, weight decay with the optimal λ’s improves the recall, pre-
cision, and TNR from the baseline values (before imputation) on every 
dataset, while dropout with the optimal p’s fails to improve the recall 
and TNR from the baseline values on 6 and 20 datasets, respectively. The 
preference of weight decay over dropout is similar to our evaluation of 
cell clustering but different from our evaluation of imputation accuracy. 
A possible reason is that we use manual masking (random or double 

exponential) in the evaluation of imputation accuracy but not in the 
evaluation of cell clustering or DE gene identification. Our results reveal 
the importance of evaluation metrics in autoencoder design. However, 
despite the discrepancy in preferring weight decay or dropout, our 
evaluation results consistently suggest that regularization is crucial to 
the imputation performance of autoencoders. 

Fig. 9. Impacts of the autoencoder regularization strategy on DE gene identification accuracy measured by recall. a, Weight decay regularization. b, Dropout 
regularization. The dash lines show the recall without imputation. Each point is the average of the results obtained from five random seeds used for autoen-
coder training. 
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3. Discussion 

Sparsity is one of the major hurdles in scRNA-seq data analysis [36]. 
To address the sparsity issue, more than 70 computational imputation 
methods have been developed, many of which are autoencoder-based 
[37], motivated by the success of neural networks in computer vision 
and natural language processing [38]. Compared with traditional sta-
tistical and machine learning methods, autoencoder-based imputation 
methods have unique characteristics. First, autoencoder-based imputa-
tion methods require no assumptions on the underlying distribution of 
scRNA-seq data. This data-driven characteristic avoids the model spec-
ification bias in traditional methods. Second, autoencoder-based impu-
tation methods can effectively handle large-scale scRNA-seq data by 
using innovative hardware, especially the GPU. Third, 
autoencoder-based imputation methods have high flexibility granted by 
their neural network design. With a carefully-designed loss function, 
they have incorporated multiple functionalities such as imputation, 
dimension reduction, and batch effect normalization [39]. 

However, how to optimize the design of autoencoders for scRNA-seq 
data remains a challenge. Successful applications of autoencoders in 
other fields, especially computer vision, rely on empirical studies that 
optimize the autoencoder design on massive datasets. Existing 
autoencoder-based imputation methods for scRNA-seq data follow 
certain guidelines (e.g., using the ReLU activation function) but ignore 
other guidelines (e.g., using a deep and narrow neural network) without 
comprehensive investigations. Our study partially fills this gap, and our 
results confirm the deep learning field’s common wisdom that deeper 
and narrower autoencoders have better imputation performance. 
Meanwhile, we have an unexpected finding that sigmoid and tanh 
outperform ReLU and ReLU-modified forms as activation functions. This 
finding is consistent with another study, in which a neural network with 
the tanh activation function outperforms the ReLU counterpart in the 
cell-type classification task based on scRNA-seq data [40], reflecting the 
fact that scRNA-seq data are distinct from image data and thus need 
specific investigations. 

Although our results favor deep and narrow neural networks, a 
previous study found that deep neural networks do not improve cell- 
type classification on scRNA-seq data [41]. We hypothesize that this 
discrepancy is due to the two tasks’ different natures: our imputation 
task is a regression problem whose predictive targets are continuous 
gene expression values (after preprocessing), while the previous study’s 
task is a classification problem whose predictive targets are discrete 
cell-type labels. We hypothesize that, compared to classification, 
imputation requires deeper neural networks with a higher predictive 
capacity. Moreover, even though deeper autoencoders exhibit advan-
tages in our study, the benefit of depth saturates when the number of 
layers surpasses 10, which is a much shallower architecture compared to 
the state-of-the-art deep neural networks with hundreds of layers used in 
computer vision. However, this discrepancy is consistent with the rela-
tionship between data complexity and model capacity. One image is 
typically a three-dimensional tensor (RGB channels × width × length) 
[42] and much more complex than one cell encoded in a 
one-dimensional vector in scRNA-seq data. Hence, it is unsurprising that 
scRNA-seq data need a shallower neural work than image data do. 

Regarding the regularization strategy, we find that dropout excels in 
improving the overall imputation accuracy, and weight decay (using the 
L2 penalty) excels in improving the downstream cell clustering and DE 
gene analysis. Although dropout does not penalize all weight parame-
ters, it randomly sets a certain proportion of weight parameters to zeros 
and thus can be interpreted as a stochastic L1 penalization. From this 
point of view, the L1 and L2 penalizations have complementary advan-
tages in improving the overall imputation accuracy and the downstream 
cell clustering and DE gene analysis, respectively. We should also note 
that the three masking schemes are simplified approximations of, but are 
not themselves, the true missing mechanism, and the ultimate goal of 
imputation is to enhance downstream analyses. Therefore, weight decay 

may provide stronger benefits in real-world applications. 
We observe that a similar autoencoder design exhibits distinctive 

imputation performance on scRNA-seq datasets with different charac-
teristics. Datasets generated by 10X Genomics, e.g., jurkat, monocyte, 
and 293 t, show higher overall imputation accuracies (Fig. 2). Those 
datasets share some common characteristics, including high throughput 
(i.e., large numbers of cells) and large zero proportions (Supplementary 
Table S1). On the other hand, datasets generated by Smart-seq-total, 
Smart-seq2, and Fluidigm C1 show lower overall imputation accu-
racies (Fig. 2). Those datasets have lower throughput with smaller zero 
proportions (Supplementary Table S1). When it comes to enhancing 
downstream cell clustering, datasets that contain more ground-truth cell 
types, such as manno_human, chen, and lake, pose a greater challenge 
for autoencoders to enhance the separation of cell types. This is evident 
from Fig. 6 and Supplementary Table S2. Even when the correct number 
of clusters is set in K-means clustering, it is more difficult for autoen-
coders to improve the cell clustering in those datasets. We also observe 
that autoencoders are less effective at improving DE gene identification 
on smaller datasets, such as Astrocytes, Macrophages, and Tanycytes, 
which only have hundreds of cells (Supplementary Table S3). Since the 
number of ground-truth DE genes is the same for all datasets, we suspect 
that the number of cells plays a critical role in the effectiveness of 
autoencoder-based imputation methods. 

Our findings indicate that the performance of autoencoder-based 
imputation methods is contingent upon the data characteristics and 
the downstream tasks involved. While deep autoencoders have the 
ability to capture non-linear and complex relationships in scRNA-seq 
data, their effectiveness may be limited in datasets with low 
complexity. As a result, we observe performance saturation as the 
number of layers increases to a point (Figs. 2, 6, and 8). Considering the 
higher computational resources required for deeper autoencoders, it 
becomes crucial to balance the tradeoff between imputation perfor-
mance and computational time for autoencoder design. Researchers 
must weigh the potential gains in imputation performance against the 
increased computational demands associated with deeper autoencoders. 

Our study is conducted based on the original autoencoder. Some 
imputation methods use variants extended from the original autoen-
coder. For example, scVI is based on a variational autoencoder to learn a 
probabilistic latent space of the input data [39]; scScope adopts an 
iterative autoencoder to impute data using many iterations [43]; DCA 
uses the negative log-likelihood of a zero-inflated negative binomial 
model as the loss function to estimate the parameters of an autoencoder 
[16]. Despite their differences, these autoencoder variants all have the 
encoder-decoder neural network structure and a non-linear activation 
function, with some including a regularization strategy. Therefore, our 
study can be easily generalizable to these autoencoder variants. 

A major limitation of our study is that we adopt a greedy search 
strategy, instead of a global search strategy, to optimize the autoencoder 
design, due to the high computation complexity of autoencoder training. 
Hence, the autoencoder designs we find as optimal in this study are not 
guaranteed to be globally optimal. One potential solution is to use 
advanced experimental design strategies, such as the space-filling design 
[44,45] and the fractional factorial design [46,47], to expand the search 
space so that the optimized design is closer to the global optimum. 
Another limitation is that we set all hidden layers to the same width (32, 
64, 128, or 256) in each autoencoder, aiming to reduce the complexity 
of varying widths. Although there is no consensus on how the width 
heterogeneity across layers would affect an autoencoder’s learning ca-
pacity [48], it is possible that an autoencoder with hidden layers of 
different widths might have better imputation performance. We will 
leave these two improvements for future research. 

In summary, the performance of autoencoder-based imputation 
methods relies on key aspects of the autoencoder design, including the 
neural network architecture, activation function, and regularization 
strategy. Borrowing guidelines from practices in other fields cannot 
guarantee good performance on scRNA-seq data. Future methodological 
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development should pay more attention to optimizing the autoencoder 
design and allow users to adjust the design for application needs. 

4. Methods 

4.1. Autoencoder for imputing scRNA-seq data 

An autoencoder is a multi-layer neural network that aims to recon-
struct the input data [49]; it includes an encoder that embeds 
high-dimensional data into a low-dimensional latent space and a 
decoder that reconstructs the high-dimensional data from the 
low-dimensional embeddings (Fig. 1a). Let X be a sparse scRNA-seq 
input matrix after appropriate preprocessing and normalization (see 
Methods section “Data preprocessing and normalization”). Let Y be the 
dense matrix output by an autoencoder. Both X and Y have n rows (cells) 
and m columns (genes). Denote Hk, an n-by-lk matrix, as the output of the 
kth hidden layer (with width lk) of the autoencoder, where k = 1,2,…,h, 
with h as the total number of hidden layers. Then the output of the first 
hidden layer is 

H1 = f (XW1 + B1),

where W1 is an m-by-l1 weight matrix, and B1 is an n-by-l1 bias matrix 
with n identical rows. Here, f is an element-wise nonlinear activation 
function. Similarly, the output of the (k+1)th hidden layer is 

Hk+1 = f (HkWk+1 +Bk+1),

where Wk+1 is an lk-by-lk+1 weight matrix, and Bk+1 is an n-by-lk+1 bias 
matrix with n identical rows. Finally, the output of the autoencoder is 

Y = HhWh+1 +Bh+1,

where Wh+1 is an lh-by-m weight matrix and Bh is an n-by-m bias matrix 
with n identical rows. Training the autoencoder means estimating 
(learning) the parameters in the weight matrices W1,W2,…,Wh+1 and 
the bias matrices B1,B2,…,Bh+1 by minimizing the mean squared error 
(MSE) between the input X and the output Y on the nonzero values of X. 
Let W be the set of weight matrices W1,W2,…,Wh+1 and B be the set of 
bias matrices B1,B2,…,Bh+1. Then the loss function is. 

MSE(W ,B ) =

∑n
i

∑m
j (Yij − Xij)

2
I(Xij∕=0)

∑n
i

∑m
j

I(Xij∕=0)
,where I(⋅) is an indicator func-

tion. The sets of weight and bias matrices {Ŵ , B̂ } are estimated by 
{Ŵ , B̂ } = argmin(W ,B )MSE(W ,B ).

Since the minimization of MSE is a non-convex optimization problem 
[48], the backpropagation algorithm [50] is utilized to train the 
autoencoder (see Methods section “Autoencoder training and imputa-
tion”). In the imputation step, the zero entries in the input matrix X are 
replaced by their nonzero counterparts in the output matrix Y. That is, 
the imputed scRNA-seq data matrix X̂ is calculated as 

X̂ = X + Y∘I(X = 0),

where ◦ is the element-wise product. 
Several modifications to the original autoencoder have been made 

since the debut of autoencoder-based imputation methods. For example, 
DCA [16] models the scRNA-seq data by a negative binomial (NB) dis-
tribution with or without zero-inflation (ZI) (that is, ZINB or NB distri-
bution) and learns the autoencoder by maximizing the likelihood of 
ZINB or NB calculated on the output Y; scVI [39] learns a variational 
autoencoder [51] by forcing each hidden unit in the hidden layer to 
follow a ZINB distribution; DeepImpute [31] learns an autoencoder by 
minimizing the weighted MSE, in which a gene’s weight is its expression 
level; LATE [52] considers cells or genes as observations, learns an 
autoencoder for each consideration, and selects the autoencoder with a 
smaller MSE; scScope [43] learns an autoencoder by using the imputed 
data as input iteratively. Despite these modifications, all 

autoencoder-based imputation methods require the specification of the 
autoencoder design aspects we examine in this work. 

4.2. Regularization in autoencoder 

Regularization is a technique for constraining the complexity of a 
machine learning model so that the model would have better general-
izability [53]. There are two regularization strategies, among others, 
commonly used to improve the imputation accuracy of autoenco-
ders—weight decay [48] and dropout [54]. Weight decay incorporates 
the L2 norm of weight parameters into the loss function to penalize large 
weights in an autoencoder. The weight and bias parameters under the 
weight decay {Ŵ , B̂ }weight decay are given by 

{Ŵ , B̂ }weight decay = argmin(W ,B ) MSE(W , B ) + λ||W| |
2
2, where 

||W| |2 is the L2 norm of weight parameters, and λ is a tuning parameter 
that controls the degree of penalization. 

Rather than penalizing the magnitudes of weight parameters, 
dropout regularization randomly sets a proportion of hidden units to 
zero in the training of an autoencoder. Dropout forces the autoencoder 
not to rely on particular hidden units and thus reduces overfitting [54]. 
Specifically, suppose that zk is a random vector with lk elements, where 
lk is the number of hidden units in the hidden layer Hk. Each random 
variable in zk independently follows a Bernoulli distribution with a 
parameter pk ∈ (0,1). A matrix Zk is constructed to have the same di-
mensions as those of the hidden layer matrix Hk, and every row in Zk is 
set to zk. Then in the training, the calculation of hidden layer Hk+1 under 
dropout regularization is 

Hk+1 = f [(Hk∘Zk)Wk+1 +Bk+1],

where ◦ is the element-wise product. Note that with a trained autoen-
coder, the calculation of hidden layers in the imputation step does not 
involve the dropout operation. In our analysis, we set p1 = p2 = … =

ph = p, where h is the total number of hidden layers. We call p the 
dropout rate in the following text. 

4.3. Three masking schemes for introducing artificial zeros 

In scRNA-seq data, distinguishing biological zeros and non- 
biological zeros (i.e., missing values) is challenging without external 
information [17,18]. Hence, to evaluate the overall imputation accu-
racy, we design three masking schemes to introduce artificial zeros into 
scRNA-seq data and measure the differences between the artificial zeros’ 
imputed values and original values (Fig. 1b-d). The three masking 
schemes represent three typical assumptions of missing mechanisms in 
scRNA-seq data [9]. 

Random masking: we randomly mask (by setting values to zeros) 
50% of nonzero entries in the scRNA-seq data matrix. Random masking 
means that the missing mechanism is independent of the gene expres-
sion levels, and it has been widely used in previous work to evaluate the 
imputation accuracy [18]. 

Median masking: we mask the nonzero entries less than or equal to 
the overall median in the scRNA-seq data matrix. Median masking as-
sumes a complete dependence of the missing mechanism on the gene 
expression levels. 

Double exponential masking: we assume that a gene’s probability of 
having missing values depends on the gene’s mean expression level 
across all cells. Hence, lowly expressed genes are more likely to have 
missing values than highly expressed genes. Specifically, for gene j, let 
X. j be the mean expression level (natural-log-plus-one-transformed read 
count) of nonzero values across all cells and pj be the probability of 
missing values. Then gene j’s probability of having missing values is 
modeled by a double exponential function [9]. 

pj = exp 
(
− λX2

.j

)
. 

Let Zij be a random variable that indicates whether to mask the 
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nonzero expression of gene j in cell i. Then Zij ∼ Bernoulli
(

pj

)
. If Zij = 1, 

then the nonzero expression of gene j in cell i will be masked. The value 
of λ is determined such that 50% nonzero entries in the scRNA-seq data 
matrix are masked. 

A previous study showed that artificial zeros introduced by the three 
masking schemes exhibited different impacts on scRNA-seq data anal-
ysis [9]. Although random masking has been widely used to evaluate 
imputation accuracy, its assumption is unrealistic. In contrast, median 
masking is an extreme way of modeling the observation that lowly 
expressed genes have more zeros than highly expressed genes have [15, 
55]. Between the two masking schemes, double exponential masking 
uses a probabilistic model to reflect this observation at the individual 
gene level. Together, the three masking schemes provide a compre-
hensive evaluation of imputation accuracy from different perspectives. 

4.4. Data preprocessing and normalization 

All real and synthetic scRNA-seq datasets used in this study are cell- 
by-gene count matrices. They are preprocessed and normalized in three 
steps. First, we remove the genes expressed in fewer than three cells and 
the cells having fewer than 200 genes expressed. Second, we divide each 
count by its cell library size (i.e., the cell’s total count) and then multiply 
it by 10000 (library size normalization). Then we add one to the 
normalized count and apply the natural-log transformation. Third, we 
select 2000 highly variable genes using the vst method implemented in 
the FindVariableFeatures function of the Seurat package [34] 
(v4.0). After preprocessing and normalization, the dimensions of all 
scRNA-seq data matrices are cell number × 2000. Note that the pre-
processing and normalization steps apply to the pre-imputed datasets 
only. The imputed datasets, when used as the input of cell clustering and 
DE gene analysis, will not go through the preprocessing and normali-
zation steps. 

4.5. Training of autoencoders and imputation 

The training of autoencoders is implemented using the Pytorch 
deep learning library [56] (v 1.8.1) on a server with two Intel Xeon 
E5–2687 W v4 CPUs, 256 GB memory, an Nvidia GeForce RTX 2080 Ti 
GPU, and Ubuntu 18.04 system. After preprocessing, normalization, and 
masking (masking is only necessary for the evaluation of overall impu-
tation accuracy), we split each dataset’s cells into a training set (80% of 
cells) and a validation set (20% of cells). We utilize the Adam optimi-
zation algorithm [21] to train the autoencoder with a 0.001 learning 
rate and a 64 batch size. After every epoch of training on the training set, 
we impute the validation set using the current autoencoder and calcu-
late the MSE between the original nonzero values in the validation set 
and their corresponding imputed values. We continue the training until 
either the MSE does not decrease over 20 epochs or the total number of 
epochs surpasses 10000. In the imputation step, the trained autoencoder 
accepts the preprocessed and normalized scRNA-seq data matrix as 
input (with the dimensions as cell number × 2000) and outputs a data 
matrix of the same dimensions. The final imputed data matrix is con-
structed by replacing the zero values in the input matrix with their 
counterparts in the output matrix. The nonzero values in the input 
matrix remain in the final imputed data matrix. 

4.6. Calculation of imputation normalized root mean squared error 
(NRMSE) 

Denote by X the sparse scRNA-seq input matrix after preprocessing 
and normalization; X̂ is the imputed scRNA-seq data matrix; M is the set 
of masked entries in the scRNA-seq data matrix. The MSE between the 
imputed values and the original values of the masked entries, MSEmask, is 
calculated as 

MSEmask =

∑n
i

∑m
j
(Xij − X̂ ij)

2I(Xij∈M)
∑n

i

∑m
j

I(Xij∈M)
. 

Denote the mean masked values Xmask as 

Xmask =

∑n
i

∑m
j

Xij I(Xij∈M)
∑n

i

∑m
j

I(Xij∈M)
. 

Then the imputation NRMSE is calculated as 
NRMSEimputation =

̅̅̅̅̅̅̅̅̅̅̅̅̅
MSEmask

√

Xmask
. 

4.7. Activation functions 

We evaluate seven activation functions in this study, including lo-
gistic function (sigmoid), hyperbolic tangent function (tanh), rectified 
linear unit (ReLU), leaky ReLU (with two hyperparameters), exponential 
linear units (ELU), and scaled exponential linear units (SELU). An acti-
vation function accepts a linear combination of the outputs from the last 
layer as input and applies a nonlinear transformation to the linear 
combination. All activation functions take a real-valued scalar as input 
and output a real-valued scalar. 

The sigmoid activation function is a bounded differentiable function 
with positive and continuous derivatives. Its value ranges from 0 to 1. 
The function form of sigmoid is 

f (x) =
1

1 + e− x.

The tanh activation function is also a bounded differentiable function 
with positive and continuous derivatives. Its value ranges from -1 to 1. 
The functional form of tanh is 

f (x) =
ex − e− x

ex + e− x.

The ReLU activation function conducts a threshold operation that 
outputs zero for a negative input and acts as an identity function for a 
positive input. Its value ranges from 0 to + ∞, and it has discrete de-
rivatives. The functional form of ReLU is 

f (x) =
{

x if x ≥ 0
0 if x < 0 .

The leaky ReLU activation function modifies ReLU by introducing a 
small negative slope when the input is negative. Its value ranges from 
− ∞ to + ∞, and it has discrete derivatives. The functional form of leaky 
ReLU is 

f (x) =
{

x if x ≥ 0
ax if x < 0 ,

where α > 0 is a hyperparameter. In our analysis, we set α to 0.01 and 
0.2 — the default values in two popular deep learning libraries Pytorch 
[56] and TensorFlow [57]. 

The ELU activation function replaces the linear negative part of leaky 
ReLU with an exponential function. Its value ranges from − ∞ to + ∞, 
and it has discrete derivatives. The functional form of ELU is 

f (x) =
{

x if x ≥ 0
aex − 1 if x < 0 ,

where α > 0 is a hyperparameter. In our analysis, we set α to 1 — the 
default value in Pytorch. 

The SELU activation function further adds a scale factor to ELU and 
changes the constant in the negative part. Its value ranges from − ∞ to 
+ ∞, and it has discrete derivatives. The functional form of ELU is 

f (x) = τ{ x if x ≥ 0
aex − a if x < 0 ,

where τ > 0 and α > 0 are predefined parameters with τ = 1.05 and α =

1.67. 
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4.8. Weight decay and dropout parameter settings 

When evaluating the impact of weight decay regularization on the 
imputation accuracy, we set the hyperparameter λ to nine values, 
including 0, 1e-7, 5e-7, 1e-6, 5e-6, 1e-5, 5e-5, 1e-4, and 5e-4. Larger λ 
values indicate stronger regularization imposed on the autoencoder, and 
λ = 0 means no regularization. When evaluating the impact of weight 
decay regularization on the cell clustering and DE gene analysis, we set 
the hyperparameter λ to 17 values, including 0, 1e-7, 5e-7, 1e-6, 5e-6, 
1e-5, 5e-5, 1e-4, 5e-4, 5e-3, 0.01, 0.05, 0.1, 0.5, 1, and 5. When evalu-
ating the impact of dropout regularization on the imputation accuracy, 
cell clustering, and DE gene analysis, we set the dropout rate p to 11 
values, including 0, 0.01, 0.02, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, and 
0.4. Larger p values indicate stronger regularization imposed on the 
autoencoder, and p = 0 means no regularization. 

4.9. Cell clustering analysis 

We use the function kmeans in R programming language to conduct 
K-means clustering on the pre-imputed and imputed scRNA-seq datasets 
(Supplementary Table S2). We set the parameter centers (the number 
of clusters k in the K-means clustering) to the correct number of cell 
types in each dataset. We set the parameter nstart to 25, which repeats 
the clustering 25 times by randomly selecting 25 sets of initial cluster 
centers and returns the result with the minimum sum of pairwise dis-
tances within clusters [58]. The dimensions of input data matrices for 
K-means clustering is cell number × 2000 without further dimension 
reduction (that is, each cell is a 2000-dimensional vector). Note that 
before clustering, pre-imputed datasets are preprocessed by following 
the procedure described in the section “Data preprocessing and 
normalization.” The imputed datasets are directly clustered by K-means 
clustering. 

We use adjusted Rand index (ARI) and adjusted mutual information 
(AMI) to measure the performance of cell clustering. Let U = {u1, u2,… 
, uc} be the true partition of c classes and V = {v1, v2,…, vc} be the 
partition obtained by K-means clustering. Let ni and mj be the numbers 
of observations in class ui and cluster vj, respectively. Let rij be the 
number of observations in both class ui and cluster vj. The ARI is 
calculated as 

∑c
i=1

∑c
j=1

( rij
2

)
− [

∑c
i=1

(
ni
2

)∑c
j=1

( mj
2

)]/(
n
2

)
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(
ni
2

)
+
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2
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2
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),

where n is the total number of observations and n =
∑c

i=1ni =
∑c

j=1mj. 
The AMI is calculated as 

2I(U,V)
H(U) + H(V)

,

where I(U,V) is the mutual information of U and V, and H(U) and H(V)
are the entropies of U and V respectively [59]. We utilize the functions 
ARI and AMI in R package aricode to calculate ARI and AMI, 
respectively. 

4.10. Simulation of synthetic scRNA-seq data 

We utilize simulator scDesign [19] to generate 20 synthetic 
scRNA-seq data with ground-truth DE genes. The 20 real datasets for 
training scDesign (Supplementary Table S3) are preprocessed by 
following the procedure described in the section “Data preprocessing 
and normalization.” For each real dataset, we execute the function 
design_data in R package scDesign to simulate one synthetic 
dataset. Each synthetic dataset contains two cell types with 1000 cells 
per type, and 10% of genes are differentially expressed between the two 
cell types. The sequencing depth of each synthetic dataset is equal to the 

median cell library size of the corresponding real dataset multiplied by 
the cell number (2000). Other parameters of the function design_data 
are set to their default values. All synthetic datasets are count matrices 
with dimensions as cell number × 2000. 

4.11. DE gene analysis 

We conduct DE gene analysis on the aforementioned 20 synthetic 
datasets and their imputed counterparts. For pre-imputed synthetic 
datasets, the gene expression counts of each cell are divided by the total 
counts of that cell (library size) and then multiplied by 10000 (library 
size normalization). The results are then added by one before being 
natural-log transformed. We utilize the function FindMarkers in R 
package Seurat to identify the DE genes between the two cell types. We 
set the parameter test.use to “MAST” and identify genes with 
Bonferroni-corrected p-values under 0.05 as DE genes. Based on the 
ground-truth DE genes, we calculate the precision, recall, and TNR for 
each pre-imputed synthetic dataset and the corresponding imputed 
dataset. 

4.12. Sensitivity analysis with varying numbers of highly variable genes 

We perform a sensitivity analysis by varying the number of highly 
variable genes to assess the robustness of our major findings. Specif-
ically, we examine the impacts of autoencoder architecture, activation 
function, and regularization on imputation accuracy using random 
masking. Two scenarios are considered, where the highly variable genes 
are set to 1000 and 3000, respectively. The results of this analysis are 
summarized in Supplementary Figs. S12–S19. Notably, our investigation 
confirms that our major findings remain consistent across the three 
different numbers of highly variable genes (1000, 2000, and 3000). 
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