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Abstract

Despite the availability of numerous statistical and machine learning tools for joint
feature modeling, many scientists investigate features marginally, i.e., one feature at a time.
This is partly due to training and convention but also roots in scientists’ strong interests
in simple visualization and interpretability. As such, marginal feature ranking for some
predictive tasks, e.g., prediction of cancer driver genes, is widely practiced in the process of
scientific discoveries. In this work, we focus on marginal ranking for binary classification, one
of the most common predictive tasks. We argue that the most widely used marginal ranking
criteria, including the Pearson correlation, the two-sample t test, and two-sample Wilcoxon
rank-sum test, do not fully take feature distributions and prediction objectives into account.
To address this gap in practice, we propose two ranking criteria corresponding to two
prediction objectives: the classical criterion (CC) and the Neyman-Pearson criterion (NPC),
both of which use model-free nonparametric implementations to accommodate diverse
feature distributions. Theoretically, we show that under regularity conditions, both criteria
achieve sample-level ranking that is consistent with their population-level counterpart with
high probability. Moreover, NPC is robust to sampling bias when the two class proportions
in a sample deviate from those in the population. This property endows NPC good potential
in biomedical research where sampling biases are ubiquitous. We demonstrate the use and
relative advantages of CC and NPC in simulation and real data studies. Our model-free
objective-based ranking idea is extendable to ranking feature subsets and generalizable to
other prediction tasks and learning objectives.

Keywords: model-free; marginal feature ranking; binary classification; classical and
Neyman-Pearson paradigms; sampling bias.

1. Introduction

From scientific research to industrial applications, practitioners often face the challenge
to rank features for a prediction task. Among the ranking tasks performed by scientists
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and practitioners, a large proportion belongs to marginal ranking; that is, ranking features
based on the relation between the response variable and one feature at a time, ignoring
other available features. For example, to predict cancer driver genes, biomedical researchers
need to first extract predictive features from patients’ data. Then they decide whether
each extracted feature is informative by examining its marginal distributions in tumor and
normal tissues, usually by boxplots and histograms (Davoli et al., 2013; Lyu et al., 2020).
Another example is genome-wide association studies, where single nucleotide polymorphisms
are ranked by their marginal associations with a phenotype (Buniello et al., 2019).

From a prediction perspective, marginal feature ranking may seem suboptimal, as
multiple features usually have dependence and would thus be jointly predictive of the
response variable beyond a simple additive manner. Hence, interpretation of all features’
importance in a multivariate predictive model is an active area of research; popular criteria
include the SHAP value (Lundberg and Lee, 2017) and the feature importance measured by
Gini index in the random forest (RF) algorithm. However, such “joint” feature ranking is
too computationally intensive when the candidate feature number is huge, as it requires all
candidate features to be input into one multivariate model; also, it does not reflect a feature’s
marginal predictive power when other highly-correlated candidate features are in the model.
Moreover, the popularity of marginal feature ranking roots in not only researchers’ education
backgrounds and discipline conventions but also their strong desire for simple interpretation
and visualization in the trial-and-error scientific discovery process. As such, marginal feature
ranking has been an indispensable data-analysis step in the scientific community, and it will
likely stay popular.

In practice, statistical tests (e.g., two-sample ¢ test and two-sample Wilcoxon rank-sum
test) and association measures (e.g., Pearson correlation) are often used to rank features
marginally (Davoli et al., 2013; Lyu et al., 2020). However, these tests and association
measures do not reflect the objective of a prediction task. For example, if the classification
error is of concern, it is unclear how the significance of these tests or the values of these
measures are connected to the classification error. This misalignment of ranking criterion
and prediction objective is undesirable: the resulting feature rank list does not reflect the
marginal importance of each feature for the prediction objective. Hence, scientists and
practitioners call for a marginal ranking approach that meets the prediction objective.

In this work, we focus on marginal ranking for binary prediction, which can be formulated
as binary classification in machine learning. Binary classification has multiple prediction
objectives, which we refer to as paradigms here. These paradigms include (1) the classical
paradigm that minimizes the classification error, i.e., a weighted sum of the type I and
type II errors where the weights are the class probabilities (Hastie et al., 2009; James
et al., 2013), (2) the cost-sensitive learning paradigm that replaces the two error weights
by pre-determined costs (Elkan, 2001; Zadrozny et al., 2003), (3) the Neyman-Pearson
(NP) paradigm that minimizes the type II error subject to a type I error upper bound
(Cannon et al., 2002; Scott and Nowak, 2005; Tong, 2013; Tong et al., 2018), and (4) the
global paradigm that focuses on the overall prediction accuracy under all possible thresholds:
the area under the receiver-operating-characteristic curve (AUROC) or the area under the
precision-recall curve (AUPRC). Here we consider marginal ranking of features under the
classical and NP paradigms, and we define the corresponding ranking criteria as the classical
criterion (CC) and the Neyman-Pearson criterion (NPC). To implement CC and NPC, we
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take a model-free approach by using nonparametric estimates of class-conditional feature
densities. This approach makes CC and NPC more adaptive to diverse feature distributions
than existing criteria for marginal feature ranking. The idea behind CC and NPC is easily
generalizable to the cost-sensitive learning paradigm and the global paradigm.

It is worth highlighting that NPC is robust to sampling bias; that is, even when the
class proportions in a sample deviate from those in the population, NPC still achieves
feature ranking consistency between sample and population with high probability. This
nice property makes NPC particularly useful for disease diagnosis, where a long-standing
obstacle is that the proportions of diseased patients and healthy people in medical records
do not reflect the proportions in the population.

The rest of the paper is organized as follows. In Section 2, we define the population-level
CC and NPC as the oracle criteria under the classical and NP paradigms, respectively. In
Section 3, we define the sample-level CC and NPC, and we develop model-free algorithms to
implement them. In Section 4, we derive theoretical results regarding the ranking consistency
of the sample-level CC and NPC in relation to their population counterparts. In Section
5, we use simulation studies to demonstrate the performance of sample-level CC and NPC
in ranking low-dimensional and high-dimensional features. We also implement variants
of sample-level CC and NPC based on the support vector machine (SVM) algorithm and
show that they are less robust than our proposed sample-level CC and NPC to sampling
bias. In Section 6, we apply sample-level CC and NPC to marginal feature ranking in two
real datasets. Using the first dataset regarding breast cancer diagnosis, we show that both
criteria can identify informative features, many of which have been previously reported; we
also provide a Supplementary Excel File for literature evidence. Using the second dataset
for prostate cancer diagnosis from urine samples, we demonstrate that NPC is robust to
sampling bias. In both simulation and real-data studies, we compare sample-level CC
and NPC with joint feature ranking criteria—the SHAP value and the feature importance
measures in the RF algorithm—and commonly-used marginal ranking criteria that may give
feature ranking misaligned with the prediction objective, including the Pearson correlation,
the distance correlation (Székely et al., 2009),! the two-sample t test, and the two-sample
Wilcoxon rank-sum test. We conclude with a discussion in Section 7. Additional materials
and proofs of lemmas, propositions, and theorems are relegated to the Appendix.

The code for reproducing the numerical results is available at http://doi.org/10.5281/
zenodo .4680067. The R package frc is available at https://github.com/JSB-UCLA/frc.

2. Population-level ranking criteria

In this section, we introduce two objective-based marginal feature ranking criteria, on the
population level, under the classical paradigm and the Neyman-Pearson (NP) paradigm. As
argued previously, when one has a learning/prediction objective, the feature ranking criterion
should be in line with that. Concretely, the j-th ranked feature should be the one that
achieves the j-th best performance based on that objective. This objective-based feature
ranking perspective is extendable to ranking feature subsets (e.g., feature pairs). Although
we focus on marginal feature ranking in this work, to cope with this future extension, our

1. In binary classification, the response variable is encoded as 0 and 1 and treated as a numerical variable in
the calculation of of the Pearson and distance correlations.
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notations in the methodology and theory development are compatible with ranking feature
subsets.

2.1 Notations and classification paradigms

We first introduce essential mathematical notations to facilitate our discussion. Let (X,Y)
be a pair of random observations where X € X C IR? is a vector of features and Y € {0,1}
indicates the class label of X. A classifier ¢ : X — {0,1} maps from the feature space to
the label space. A loss function assigns a cost to each misclassified instance ¢(X) # Y,
and the risk is defined as the expectation of this loss function with respect to the joint
distribution of (X,Y). We adopt in this work a commonly used loss function, the 0-
1loss: T(p(X)#Y), where I(-) denotes the indicator function. Let IP and IE denote
the generic probability distribution and expectation, whose meaning depends on specific
contexts. With the choice of the 0-1 loss function, the risk is the classification error:
R(¢) = E[l(¢p(X)#Y)] = IP(¢(X) #Y), which is aligned with most practitioners’
interest in classifier evaluation. Note that in this work, the 0-1 loss is only used as an
evaluation criterion in our development of marginal ranking criteria, not as a loss function
for training a classifier from data.

In this paper, we call the learning objective of minimizing R(-) the classical paradigm.
Under this paradigm, one aims to mimic the classical oracle classifier p* that minimizes the
population-level classification error,

©" = argmin R(¢) .
¢ RI—{0,1}
It is well known in literature that the classical oracle ¢*(-) = W(n(-) > 1/2), where
n(x) = IE(Y|X = x) is the regression function (Koltchinskii, 2011). Equivalently, ¢*(-) =
I(p1(-)/po(:) > mo/m1), where mp = IP(Y = 0), m; = IP(Y = 1), po is the probability density
function of X|(Y = 0), and p; is the probability density function of X|(Y = 1). Note that
the risk can be decomposed as follows:

R@)=P(Y =0)-P(@X) Y [Y=0+PY =1)-P(¢(X)#Y|Y =1)
= moRo (¢) + m1R1 (9) ,

where R (¢) =P (¢(X) #Y | Y =j), for j =0 or 1. The notations Ry(-) and R;(-) denote
the population-level type I and II errors respectively. Note that minimizing R(-) implicitly
imposes a weighting of Ry and R; by 79 and ;. This is not always desirable. For example,
when practitioners know the explicit costs for making type I and II errors: cg and ¢, they
may want to optimize the criterion coRy(-) + ¢1Ri(-), which is often referred to as the
cost-sensitive learning paradigm.

In parallel to the classical paradigm, we consider the NP paradigm, which aims to mimic
the level-ao NP oracle classifier that minimizes the type II error while constraining the type
I error under «, a user-specified type I error upper bound,

©p, = argmin Ry(p). (1)
p:Ro(p)<a

Usually, « is a small value (e.g., 5% or 10%), reflecting a conservative attitude towards the
type I error. As the development of classifiers under the NP paradigm is relatively new, here
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we review the NP oracle classifier ¢} (-). Motivated by the classic NP Lemma (Appendix G)
and a correspondence between classification and statistical hypothesis testing, ¢} in (1) can
be constructed by thresholding p1(-)/po(:) at a proper level C (Tong, 2013):

Pal®) = L(pi(2)/po(z) > C7) (2)

where C% is such that IP(p1(X)/po(X) > Ck|Y = 0) = «, and the estimation of C}, is
introduced in Section 3.2.

In addition to the above three paradigms, a common practice is to evaluate a classification
algorithm by its AUROC or AUPRC, which we refer to as the global paradigm. In contrast
to the above three paradigms that lead to a single classifier, which has its corresponding
type I and II errors, the global paradigm evaluates a classification algorithm by aggregating
its all possible classifiers with type I errors ranging from zero to one. For example, the oracle
AUROC is the area under the curve {(Ro(¢}), 1 — Ri(¢})) : a € [0, 1]}.

2.2 Classical and Neyman-Pearson criteria on the population level

Different learning/prediction objectives in classification induce distinct feature ranking
criteria. We first define the population-level CC and NPC. Then we show that these two
criteria lead to different rankings of features in general, and that NPC may rank features
differently at different o values. We denote by ¢% and ¢ 4, respectively, the classical
oracle classifier and the level-ae NP oracle classifier that only use the features indexed by
A C{1,...,d}. This paper focuses on the case when |A| = 1. Concretely, under the classical
paradigm, the classical oracle classifier on index set A, ¢7, achieves

R(¢y) =min R (pa) = minP(pa(X) #Y),
PA PA

where ¢4 : X € R? — {0,1} is any mapping that first projects X € R? to its |A|-

dimensional sub-vector X 4, which comprises of the coordinates of X corresponding to the

index set A, and then maps from X 4 € Rl to {0,1}. Analogous to ¢*(-), we know

pa(x) = T(na(za) > 1/2) = Lpra(wa)/poa(za) > m0/m1), 3)

where na(xa) = IE(Y|X 4 = x4) is the regression function using only features in the index
set A, and p14 and pg4 denote the class-conditional probability density functions of the
features X 4. Suppose that candidate feature subsets denoted by Ay, ..., Ay are provided,
which may be enumerated by a computational algorithm or curated by domain experts.
We define the population-level classical criterion (p-CC) of A; as its optimal risk R (gpj‘qi);

i.e., Ay,..., Ay will be ranked based on {R (gojh) ,oo oy R <cp*AJ> }, with the smallest being

ranked the top. The prefix “p” in p-CC indicates “population-level.” Note that R(¢%},)
represents A;’s best achievable performance measure under the classical paradigm and does
not depend on any specific models assumed for the distribution of (X,Y).

Under the NP paradigm, the NP oracle classifier defined on the index set A, ¢ 4, achieves

Ri(paa) =  min - Ri(paa) = min Plpa(X) #YIY =1).  (4)
Ro(pan)<a Ppa(X)AY Y =0)<o
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By the NP Lemma,
Paa(®) = T(pra(@a)/poa(za) > CLa) ()

where C , is a constant such that IP(p14(X a)/poa(Xa) > C:4lY =0) = .
For a given level «, we define the population-level Neyman-Pearson criterion (p-NPC)
of A; as its optimal type II error Ry (cpZAi); ie., Ai,...,A; will be ranked based on

{Rl (QDZAI) ooy Ry (QDZAJ) }, with the smallest being ranked the top.

For a graphical illustration of marginal feature ranking by p-CC and p-NPC, please see
Figure H.1 in Appendix H. It is worth noting that p-CC and p-NPC do not always give the
same feature ranking. For a toy example, we compare two features X1y, X9} € IR, whose
class-conditional distributions are the following Gaussians:

Xy (Y = 0) ~ N (5,29, Xy (Y = 1) ~ N(0.22), (6)
Xy | (Y =0) ~N(-5,2%), Xy | (Y =1) ~N(15,35%),
and the class priors are equal, i.e., 1o = m; = .5. It can be calculated that R (‘PE}) = .106
and R (cp?z}> = .113. Therefore, R (go?l}) <R (w’fz}), and p-CC ranks feature 1 higher
than feature 2. The comparison is more subtle for p-NPC. If we set a = .01, Ry (cpz {1}> =
431 is larger than Ry (tpz{2}> = .299. However, if we set a = .20, R; (cpz{l}) = .049 is

smaller than R (‘PZ {2}) = .084. Figure 1 illustrates the NP oracle classifiers for these a’s.

a class 0 class 1
TvON(O0,22 —
N(-5,22) MO g
— 2 \ 2 _ 2
N(-5,2%) - = == N(15,3.5%) @ a=.01
\ ~
\ = ~
Type | error RN
b
a=.20
—
10

Figure 1: A toy example in which feature ranking under p-NPC changes as « varies. Panel a:
a = .01. The NP oracle classifier based on feature 1 (or feature 2) has the type II error .431 (or .299).

Panel b: o = .20. The NP oracle classifier based on feature 1 (or feature 2) has the type II error
049 (or .084).

This example suggests a general phenomenon that feature ranking depends on the
user-chosen criteria. For some « values (e.g., @ = .20 in the example), p-NPC and p-CC

2. Usually, we denote the two scalar-valued features by Xi and Xs, but here we use X {1 and X {2} to be
consistent with the notation X 4.
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agree on the ranking, while for others (e.g., a = .01 in the example), they disagree.® This
observation calls for the development of sample-level CC and NPC.

3. Sample-level ranking criteria

In the following text, we refer to sample-level CC and NPC as “s-CC” and “s-NPC”
respectively. In the same model-free spirit of the p-CC and p-NPC definitions, we use model-
free nonparametric techniques to construct s-CC and s-NPC. Admittedly, such construction
would be impractical when the feature subsets to be ranked have large cardinalities. However,
since we are mainly interested in marginal feature ranking, with intended extension to small
subsets such as feature pairs, model-free nonparametric techniques are appropriate.

In the methodology and theory sections, we assume the following sampling scheme.
Suppose we have a training dataset S = S°US?, 1 where S¥ = {X o, X ,On} are independent
and identically distributed (i.i.d.) class 0 observatlons, Sl = {X ey X}I} are i.i.d. class
1 observations, and S° is independent of S'. The sample sizes m and n are considered as
fixed positive integers. The construction of both s-CC and s-NPC involves splitting the
class 0 and class 1 observations. To increase stability, we perform multiple random splits. In

detail, we randomly divide S° for B times into two halves S?S(b) = {X (1)(6), ey X %If)} and

SYO) {X%?_H, e ,Xo(b) }, where m1 + mo = m, the subscripts “ts” and “lo” stand

lo mi+ma2
for train-scoring and left-out respectively, and the superscript b € {1,..., B} indicates the
b-th random split. We also randomly split S! for B times into S 10 _ {X }(b), ey X 111(117)}

and Slt(b) = {Xl(b) x'® } , where n1 +ng =n and b € {1,..., B}. In this work,

ni+1> 0 “Fni+ng
we make equal-sized splits: m; = [m/2] and n; = [n/2|. We leave the possibility of
data-adaptive splits to future work.

As in the definitions of p-CC and p-NPC, we use notations to allow for the extension to
ranking feature subsets. For A C {1,...,d} with |A| = [, recall the classical oracle classifier
restricted to A, % (x), defined in (3) and the NP oracle classifier restricted to A, % 4(x),
defined in (5). Although these two oracles have different thresholds, mo/m vs. C% 4, the
class-conditional density ratio pia(-)/poa(+) is involved in both oracles. The densities pga
1(b)

and pi4 can be estimated respectively from Stos Y and S.s ~ by kernel density estimators

(®) 1 & (X — s (b) X\ —xa
Poa(Ta) = o ) ZK i - and  pya(Ta) = l ZK ,
mi =1 i=1

(7)

where hp,, and hy,, denote the bandwidths, and K (-) is a kernel in IR.

3.1 Sample-level classical ranking criterion

To define s-CC, we first construct plug-in classifiers qgff)( ) = (pl A(xa) /Dy A(a: A) >my/ n1>
on 81?5( U Sl(b) for b € {1,..., B}. In each classifier, the threshold m;/n; mimics mo/m;. If

3. Under special cases, however, we can derive conditions under which p-NPC gives an a-invariant feature
ranking that always agrees with the ranking by p-CC. In Lemma A.1 of the Appendix, interested readers
can find such a condition under Gaussian distributions.
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classes 0 and 1 are sampled with probabilities my and 7y, respectively, then each classifier
QAS(:) () is a good plug-in estimate of ¢%(x) defined in (3). However, in the presence of
sampling bias, m1/ni cannot mimic 7y /71, and thus g%ff) (@) is not a good estimate of ¢% ().
Armed with the classifiers &S)(-), cee gZA)EL‘B)(~)7 we define the sample-level CC (s-CC) of A as

1 B
CCy ::EZCCQ’% (8)
b=1
. . 1 &) (00 L [ 20 (5 l0)
with CCY = ——— ¢ 3 4 (1) + > [1-60 (x1)]
i=mi1+1 i'=ni1+1

In other words, CC4 is the average of the risks of qgff)(-) on the left-out observations
S us® forbe {1,...,BY.

3.2 Sample-level Neyman-Pearson ranking criterion

To define s-NPC, we use the same kernel density estimates to plug in p14(-)/poa(:), as
in s-CC. To estimate the oracle threshold C? ,, we use the NP umbrella algorithm (Tong
et al., 2018). Unlike s-CC, in which we use both Sloo(b) and Sllo(b) to evaluate the constructed
classifier, for ss-NPC we use Sl(l(b) to estimate the threshold and only Sllo(b)

classifier.

to evaluate the

The NP umbrella algorithm finds proper thresholds for all scoring-type classification
methods (e.g., nonparametric density ratio plug-in, logistic regression, and RF) so that
the resulting classifiers achieve a high probability control on the type I error under the
pre-specified level a. A scoring-type classification method outputs a scoring function that
maps the feature space X to R, and a classifier is constructed by combining the scoring
function with a threshold. To construct an NP classifier given a scoring-type classification

method, the NP umbrella algorithm first trains a scoring function ng)(‘) on Stos(b) U Stls(b) .

In this work, we specifically use .§(b)(-) = ]352(') / 15(()12(-), in which the numerator and the
denominator are defined in (7). Second, the algorithm applies §Ef)(~) to S&(b) to obtain

scores {Ti(b) = §Ef) (X %?LJ i=1,... ,mQ}, which are then sorted in an increasing order

and denoted by {T((S),z' =1,... ,mg}. Third, for a user-specified type I error upper bound

a € (0,1) and a violation rate d; € (0,1), which refers to the probability that the type I
error of the trained classifier exceeds «, the algorithm chooses the order
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When mgy > —2891 , a finite k* exists,® and the umbrella algorithm chooses the threshold

log(1—a)
of the estimated scoring function as 6521 =T ((lfz). Hence, the resulting NP classifier is
(b A(b (b
SO =1(sP0) > %) . (9)

Proposition 1 in Tong et al. (2018) states that there is no more than §; probability for
the type I error of qgébz‘(-) to exceed a:

P (Ro(qujjl) > a) < i (m?) (1—a)yami <§, (10)

j=ke N

for every b =1,..., B. We evaluate the type II error of the B NP classifiers dSS) Y ,qggﬁ)
on the left-out class 1 sets 811(1), L SHB respectively. Our sample-level NPC (s-NPC) of

o 1 %lo

A at level «, denoted by NPC, 4, computes the average of these type II errors:

B
NPCqoy = %ZNPCS’A, (11)
b=1
h Npe® . L ngfm [1 _ 4 (Xl(wﬂ _ 1 ni” I <A<b> (Xl(w) < @@)
w1 ad T oy ad i = g oy SA iA ) = Caal s

where .§ff)(-) = ]552() / }5(()12(-) is the kernel density ratios constructed on Stos(b) U Stls(b)

only the features indexed by A, and 6((117) = T((,fz) is found by the NP umbrella algorithm.

using

The time complexity is O ((m1 + ny) - (ma + ng)) for calculating s-CC, and an additional
complexity of O (mglogmsz) is needed for calculating s-NPC; both time complexities can be
reduced to O(m + n) if approximate kernel density estimation is used and mg is bounded.
We discuss the calculation details of the time complexities in Appendix E, and we illustrate
the calculation of s-CC and s-NPC in Figure H.2.

For the implementation of s-NPC and s-CC, we use the kde() function with default
arguments in the R package ks. By default, the function uses the Gaussian kernel and the
bandwidth selected by the univariate plug-in selector of (Wand and Jones, 1994).

3.3 Revisiting the toy example at the sample level

With the above definitions of s-CC and s-NPC, we demonstrate how they rank the two
features in the toy example (Figure 1) and that their ranks are consistent with their
population-level counterparts p-CC and p-NPC, respectively, with high probability.

We simulate 1000 samples, each of size N = 2000 (two classes combined), from the
two-feature distribution (6) in the toy example (Figure 1). With B = 11, we apply s-CC (8)
and s-NPC with §; = .05 (11) to each sample to rank the two features, and we calculate

4. If one were to assume a parametric model, one can get rid of the minimum sample size requirement on
ma (Tong et al., 2020). However, we adopt the non-parametric NP umbrella algorithm (Tong et al., 2018)
to achieve the desirable mode-free property of our feature ranking framework.
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the frequency of each feature being ranked the top among the 1000 ranking results. Table
1 shows that s-NPC (a = .01) ranks feature 2 the top with high probability, while s-CC
and s-NPC (a = .20) prefer feature 1 with high probability. This is consistent with our
population-level result in Section 2.2: p-NPC («a = .01) prefers feature 2, while p-CC and
p-NPC (a = .20) find feature 1 better.

Table 1: The frequency of each feature being ranked the top by each criterion among 1, 000
samples in the toy example (Figure 1).

Criterion Feature 1 Feature 2
s-CC 78.0% 22.0%
s-NPC (o = .01) 1.6% 98.4%
s-NPC (a = .20) 99.0% 1.0%

4. Theoretical properties

In this section, we investigate the ranking properties of s-CC and s-NPC. Concretely, we will
address this question: for J candidate feature index sets Ay, ..., Ay of size [, is it guaranteed
that s-CC and s-NPC have ranking agreements with p-CC and p-NPC respectively with
high probability? In our theory development, we consider J as a fixed number; for simplicity,
we assume the number of random splits to be B = 1 in s-CC and s-NPC, thus removing the
super index (b) in all notations in this section and the Appendix proofs.

In addition to investigating ranking consistency, we discover a property unique to s-NPC:
the robustness against sampling bias. Concretely, as long as the sample sizes m and n are
large enough, s-NPC gives ranking consistent with p-NPC even when the class size ratio
m/n in the sample is far from the ratio my/7; in the population. In contrast, s-CC is not
robust against sampling bias, except when the population class proportion ratio m /7 is
known and we replace the thresholds in the plug-in classifiers QES)(-), R é;B)(-), which are
used for s-CC, by this ratio.

4.1 Definitions and key assumptions

We assume that the candidate index sets Ajp,...,A; have a moderate size | (K d).
Following Audibert and Tsybakov (2007), for any multi-index t = (tl,...,tl)T e IN!
and = (21,...,7)' € R!, we define |t| = Zézlti, t! = !ty xt = x§1~--xfl,

lell = (a3 +...+7)"/ 24 For all the theoreti-
1 l

cal discussions, we assume the domain of pg4 and p1 4, i.e., the class-conditional densities
of X 4|(Y =0) and X a|(Y = 1), is [-1,1)!, where | = |A|. We denote the distributions of
X al(Y =0) and X 4|(Y =1) by Pya and P; 4 respectively.

2, and the differential operator Dt =

Definition 1 (Holder function class) Let 3 > 0. Denote by || the largest integer
strictly less than 3. For a |B]-times continuously differentiable function g : R! — IR, we

10
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denote by gy its Taylor polynomial of degree | 3] at a value = € R!:

0= ).
[t1<18] '

For L > 0, the (B,L, [—1, 1]l> -Hélder function class, denoted by % (B,L, [—1, 1]l>, is the
set of | B]-times continuously differentiable functions g : R' — R that satisfy the following
inequality:

‘g (x) — gP ()| < L|=— a:’Hﬁ . foralz,x €[-1,1]" .

Definition 2 (Holder density class) The (B, L,[-1, 1]l> -Holder density class is defined
as

Ps, (B,L, [—1,1]1) - {p:pZO,/p: Lpey (B,L, [—1,1]1)} .

The following S-valid kernels are multi-dimensional analogs of univariate higher order
kernels.

Definition 3 (S-valid kernel) Let K(-) be a real-valued kernel function on R! with the
support [—1,1]". For a fized 3 > 0, the function K(-) is a (B-valid kernel if it satisfies
(1) [|K|? < oo for any q > 1, (2) [||u|®|K(u)|du < oo, and (3) in the case |B] > 1,
[utK(u)du =0 for any t = (t1,...,t;) € N' such that 1 < |t| < |B].

One example of S-valid kernels is the product kernel whose ingredients are kernels of
order 8 in 1 dimension:

K(a:) = K1($1)K1(£L‘2) .- Kl(:vl)]I(a: € [—1, 1]1) R

where K;(+) is a 1-dimensional $-valid kernel and is constructed based on Legendre poly-
nomials. Such kernels have been considered in Rigollet and Vert (2009). When a [-valid
kernel is constructed out of Legendre polynomials, it is also Lipschitz and bounded. For
simplicity, we assume that all the -valid kernels considered in the theory discussion are
constructed from Legendre polynomials.

Definition 4 (Margin assumption) A function f(-) satisfies the margin assumption of
the order 7 at the level C, with respect to the probability distribution P of a random vector
X, if there exist positive constants C and 7, such that for all 6 > 0,

P(If(X)-C| <) <Cs.

The above condition for density functions was first introduced in Polonik (1995), and its
counterpart in the classical binary classification was called the margin condition (Mammen
and Tsybakov, 1999), which is a low noise condition. Recall that the set {x : n(x) = 1/2}
is the decision boundary of the classical oracle classifier, and the margin condition in the
classical paradigm is a special case of Definition 4 by taking f(-) = n(-) and C' = 1/2. Unlike
the classical paradigm where the optimal threshold 1/2 on regression function 7(-) is known,

11
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the optimal threshold under the NP paradigm is unknown and needs to be estimated, thus
suggesting the necessity of having sufficient data around the decision boundary to detect it.
This concern motivated Tong (2013) to formulate a detection condition that works as an
opposite force to the margin assumption, and Zhao et al. (2016) improved the condition and
proved the condition’s necessity in bounding the excess type II error of an NP classifier. To
establish ranking consistency properties of s-NPC, a bound on the excess type II error is an
intermediate result, so we also need this detection condition for our current work.

Definition 5 (Detection condition (Zhao et al., 2016)) A function f(-) satisfies the
detection condition of the order v at the level (C, §*) with respect to the probability distribution
P of a random vector X, if there exists a positive constant C, such that for all § € (0,6%),

P(C<f(X)<C+6)>C8.

4.2 A uniform deviation result of the scoring function

For A C {1,...,d} and |A|] = [, recall that we estimate ppa(-) and pj4(-) respectively
from S, and SL by kernel density estimators poa(-) and pia(-) defined (7), where K(-)
is a (-valid kernel in IR!. We are interested in deriving a high probability bound for
[Pra(za)/poa(za) — pra(@a)/poa(za)l -

Condition 1 Suppose that for all A C {1...,d} satisfying |A| =1,

(i) there exist positive constants pimin and pimax Such that pmax > poA(-) = pmin and
Hmax = plA(') 2 Mmin;

(i3) there is a positive constant L such that poa(-), pra(-) € Ps(B, L, [—1,1]}).

Proposition 6 Assume Condition 1 and let the kernel K(-) be B-valid and L'-Lipschitz.

Let AC{1,...,d} and |A| =1. Let poa(-) and p1a(-) be kernel density estimates defined in
1 1

(7). Take the bandwidths hy,, = (1‘”51%) 0 and by, = <1°rgl%) 2% For any &5 € (0,1), if

sample sizes m1 = |SL| and ny = |SL| satisfy

Hmin log (2%1/53)

<1A ,
200 nlhgll

<1, nl/\m122/(53,

where A\ denotes the minimum, Cy = \/48¢c1 + 32¢cg + 2Les + L' + L + Czlg\q\gm %, in
which ¢1 = pmax|| K||?, 2 = | K||oo + pimax + [ |K|[t|Pdt, c3 = [ |K|[t|Pdt and C is such that
C > supi<jq|<|8) SWPaac[-1,1) [1DIPoa(xa)|. Then there exists a positive constant C that
does not depend on A, such that we have with probability at least 1 — d3,

logmy \ /O (logny \ 5
my ny '

Ipra(za)/Poa(®a) — pra(@a)/poa(®a)ll,, < C

12
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4.3 Ranking property of s-CC

To study the ranking agreement between s-CC and p-CC, an essential step is to develop
a concentration result between CC4 and R(¢% ), where % was defined in (3), based on
Proposition 6.

Theorem 7 Let d3,04,05 € (0,1). In addition to the assumptions of Propositions 6, assume
that the density ratio sa(-) = p1a(-)/poa(-) satisfies the margin assumption of order 7 at level
mo/m1 (with constant C) with respect to both Pya and Pya (the distributions of X 4|(Y = 0)
and X 4|(Y = 1)), that my > (log %)2 and ny > (log %)2, and that m/n = my/ny = m/m,
then we have with probability at least 1 — d3 — d4 — I3,

1 zgj-l 1 zgj-z 1 1
ogm ogn 1 _1
< & 1) +( g 1) +m24+n24],
mi ni

for some positive constant 61 that does not depend on A.

|CCa — R(p3)| < G4

Under smoothness, regularity, and sample size conditions, Theorem 7 shows the concen-
tration of CC4 around R (¢ ) with probability at least 1 — (83 + d4 + J5). The user-specified
violation rate d3 accounts for the uncertainty in training the scoring function §4(+) on a finite
sample; d4 represents the uncertainty of using left-out class 1 observations 8110 to estimate
Rl(quS 4); 05 represents the uncertainty of using left-out class 0 observations SI% to estimate
Ro($4) (Recall that R(-) = moRo(-) + m1R1(-)). Like the constant C in Proposition 6, the
generic constant C~’1 in Theorem 7 can be provided more explicitly, but it would be too
cumbersome to do so. More discussion about Theorem 7 can be found after its counterpart
for NPC, i.e., Theorem 12.

Theorem 7 leads to the ranking consistency of s-CC.

Theorem 8 Let (53, (54, (55 S (0,1), Al,...,AJ - {1,...,d}, ‘Aﬂ = ‘A2| == |AJ| = l,
and R(¢%,) < - < R(¢%,), ordered by p-CC. Both J and | are constants that do not
diverge with the sample sizes. In addition to the assumptions in Theorem 7, assume that the

p-CC’s of Aq,..., Ay are separated by some margin g > 0; in other words,
min R(*.)—R *'}> .
ie{l,_,,,J_l}{ PAin (@Al) g

In addition, assume that my, mo,n1,ne satisfy

1 2511 1 2211 1 1
ogm ogn 1 1
< & 1) + ( & 1) + My 44 N9 4
mi ni

Ch

<=, (12)

(NS

where Cy is the generic constant in Theorem 7. Then with probability at least 1—J(034+04+065),
CCyg, <CCy,,, foralli=1,...,J —1. That is, s-CC ranks Ay,..., Ay the same as p-CC
does.

141

Remark 9 If the sample size ratio m/n (= mi/ny) is far from my/m1, we cannot expect a
concentration result on |CCq — R (9% )|, such as Theorem 7, to hold. The rationale is, if we
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replace the trained scoring function pra(-)/Poa(-) in s-CC by the optimal p1a(-)/poa(:) (think
of m and n extremely large), then s-CC' is based on the classifier L(p1a(-)/poa(:) > mi/n1).
In contrast, p-CC is based on the oracle U(p1a(-)/poa(:) > mo/m1). When my/ny is far from
mo/m1, clearly the classification errors of these two classifiers would not be close, so we
would not have |CC4 — R (¢%)| small. As Theorem 7 is a cornerstone to ranking consistency
between s-CC and p-CC, we conclude that the classical criterion is not robust to sampling
bias.

4.4 Ranking property of s-NPC

To establish ranking agreement between s-NPC and p-NPC, an essential step is to develop a
concentration result of NPC,4 around Ry (¢}, 4), where ¢ , is defined in (4). Recall that
daa(x) = T(Sa(xa) > Caa) = W(Poa(xa)/pra(xa) > Cqa), where Cy 4 is determined by
the NP umbrella classification algorithm. We always assume that the cumulative distribution
function of §4(X 4), where X ~ Py, is continuous.

Lemma 10 Let o, 61,02 € (0,1). If mg = ‘ } > then the classifier ban satisfies with

a6 ’
probability at least 1 — 61 — &2,
[Ro(das) — Ro(win)| < €. (13)
where
Aoy 50 m 1 1— [dys; m 1 1
( ,01,m2 m2 + )“ (m2 + [ : ,01,mM2 (m2 + )—|) + da,él,mg + _ (1 _ a),
(mg + 2)(ma + 1)? 9o me + 1

14 261(ma +2)(1 — @) + /1 + 461 (m2 + 2)(1 — o)
2{61(m2+2)+1} ’

da7617m2 -

and [ z] denotes the smallest integer larger than or equal to z. Moreover, if mg > max(éfQ, 552),
we have £ < (5/2)m _1/4

The next proposition is a result of Lemma 10 and a minor modification to the proof of
Proposition 2.4 in Zhao et al. (2016). We can derive an upper bound for | Ry (¢aa) — Ri(¢%4)

the same as that for the excess type II error Ry(daa) — Ri (% 4) in Zhao et al. (2016).

Proposition 11 Let o, 01,62 € (0,1). Assume that the density ratio sa(-) = p1a(-)/poa(-)
satisfies the margin assumptz'on of order 4 at level C% , (with constant C') and detection
condition of order v at level (C 4,0%) (with constant C'), both with respect to the distribution

-4
Poa. If mo > max{a5 07 2 0y 2 (56’5* ) }, the excess type Il error of the classifier <;3a,4
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satisfies with probability at least 1 — §1 — do,

‘Rl(ef;aA) - Rl(SDZA)‘
(1R Rl )1
< 20 {I o(%A); O(SOQA)|}

1+5

+2[|84 — salleo + CialRo(dan) — Ro(#ha)l

2 1\ !
+C:;A <5m2/ >

Propositions 6 and 11 lead to the following result.

_ 1+5
_ 2 /v
2C <m§/40> +2[|84 — salloo

IN

5

Theorem 12 Let «, 41, 02, d3, 04 € (0,1), and | = |A|. In addition to the assumptions
of Propositions 6 and 11, assume ng > (log %) , then we have with probability at least
1—(51+(52+53+(54),

BA+%) BA+%)

~ logmy\ 27H logny\ 23+ —(3na _1
INPCoa — Ry ()] < Cs < fn1> +< ° 1) tmy T gt
1 1

for some positive constant 62 that does not depend on A.

Under smoothness, regularity, and sample size conditions, Theorem 12 shows the con-
centration of NPC,4 around R; (¢} 4) with probability at least 1 — (81 + 2 + 03 + 04).
The user-specified violation rate d; represents the uncertainty that the type I error of an
NP classifier qga 4 exceeds «, leading to the underestimation of Ri(¢% 4); d2 accounts for
the possibility of unnecessarily stringent control on the type I error, which results in the
overestimation of Ry (¢} 4); 03 accounts for the uncertainty in training the scoring function
54(+) on a finite sample; d4 represents the uncertainty of using leave-out class 1 observations
Sﬁ) to estimate Rl(gga A)- Note that while 7 is both an input parameter for the construction
of s-NPC and a constraint on the sample sizes, the other parameters d2, d3, and d4 only have
the latter role. Like the constant Cj in Proposition 6, the generic constant Cs in Theorem
12 can be provided more explicitly, but it would be too cumbersome to do so.

Note that the upper bound in Theorem 12 involves v while that in Theorem 7 does not.

This is expected as the detection condition (that involves v) is a condition for diminishing

excess type Il errors under NP paradigm. Here we make some example simplifications
to digest the bounds in Theorems 7 and 12. If we assume that mj,mg,n1,n2 ~ N (the
total sample size), 8 = 2, | = 1, and 7 = 1, then the high probability upper bound for

—(in2
ICC4 — R(¢%)| is O(N~/4), while that of [NPCos — Ry (9% ,)| is O(N ' 7). Hence,
when v > 8, i.e., when there are not many points around the NP oracle decision boundary

and thus the boundary is difficult to detect, the convergence rate of the upper bound is
slower for NPC.

Although Theorems 7 and 12 both assume bounded supports in their conditions, we
regard this as just a way to streamline the proofs. In Appendix F, we conduct a simulation
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study where features are generated from distributions with unbounded supports, and there
is still clear concentration of CC4 and NPC, 4.

Theorem 13 Let o, §1, 0o, 03, 04 € (0, 1), Ay,...,A; C {1,...,d}, |A1‘ = |A2| ==
|As| =1, and Ri(p}4,) < -+ < Ri(pha,), ordered by p-NPC. Both J and l are constants
that do not diverge with the sample sizes. In addition to the assumptions in Theorem 12,
assume that the p-NPC’s of Aq,..., Ay are separated by some margin g > 0; in other words,

cmin AR (Pha) B (@ia) ) > 0.

In addition, assume that my, mo,n1,ne satisfy
B(+7) B(+7)

~ | /1o Se (o 25+ -G s
Co < gm1> +( gnl) +my b +nyt| <
m1 ny

N

; (14)

where 52 is the generic constant in Theorem 12. Then with probability at least 1 — J (51 + 62+
03+ 64), NPCou, < NPCqyy,,, foralli=1,...,J —1. That is, s-NPC ranks Ay,..., Ay
the same as p-NPC does.

Remark 14 The conclusion in Theorem 13 also holds under sampling bias, i.e., when the
sample sizes n (of class 1) and m (of class 0) do not reflect the population proportions m
and 7.

Here we offer some intuition about the the robustness of s-NPC against sampling bias.
Note that the objective and constraint of the NP paradigm only involve the class-conditional
feature distributions, not the class proportions. Hence, p-NPC does not rely on the class
proportions. Furthermore, in s-NPC, each class-conditional density is estimated separately
within each class, so s-NPC does not depend on the class proportions either. It is also worth
noting that the proof of Theorem 13 (in Appendix) does not use the relation between the
ratio of class sizes in the sample and that in the population.

Moreover, we derive partial consistency results for s-CC and s-NPC in Appendix B,
where we show that if the top J feature subsets and the other feature subsets have p-CC or
p-NPC differ by a margin, then s-CC or s-NPC can distinguish the top J feature subsets.

5. Simulation studies

This section contains six simulation studies to verify the practical performance of s-CC and
s-NPC in ranking features and to compare s-CC and s-NPC against multiple commonly
used criteria for marginal and joint feature ranking. Table 2 summarizes the designs and
purposes of the six studies.

In detail, we verify the performance of s-CC and s-NPC in ranking features under
low-dimensional settings with the class-conditional distributions as Gaussian (studies S1 &
S3) or chi-squared (study S2), as well as under high-dimensional settings (studies S4-S5).
Furthermore, in studies S3 and S5, we compare s-CC and s-NPC with three commonly used
measures of feature importance in a multivariate classifier trained by the RF algorithm—the
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Table 2: Designs and purposes of six simulation studies

Sampling Correlated

Study Distribution N bias foatures Purpose
. 400 .
S1 Gaussian 1000 30 No No Verify s-CC and s-NPC
. 400 .
S2 Chi-squared 1000 30 No No Verify s-CC and s-NPC
No Compare s-CC and s-
NPC with SVM variants
S3 Gaussian 1000 30 Yes Compare s-CC and s-
Yes NPC with multivariate
feature ranking criteria
S4 Gaussian 400 500 No No Verify s-CC and s-NPC
Verify s-CC and s-NPC;
S5  Gaussian 200 10,000  No No compare them with SVM
variants and multivariate
feature ranking criteria
. Compare s-CC and s-
S6 ((-lg/hxtl%re) 400 2 No No NPC with marginal fea-
aussian

ture ranking criteria

N: sample size (number of observations)

d: number of features
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SHAP value (Lundberg and Lee, 2017) and two feature importance measures (the mean
decrease in accuracy and the mean decrease in Gini index). Moreover, we design study
S6 to demonstrate the advantages of s-CC and s-NPC over four commonly used measures
for marginal feature ranking—the Pearson correlation, the distance correlation (Székely
et al., 2009), the two-sample ¢ test, and the two-sample Wilcoxon rank-sum test. Besides,
motivated by (Lin, 2002; Guyon et al., 2002), we implement variants of s-CC and s-NPC
based on classifiers trained by the support vector machine (SVM) algorithm (Appendix C),

and we show in study S3 that these variants are not robust to sampling biases, unlike s-NPC.

In all the simulation studies, we set the number of random splits B = 11 (which we
show in Figure H.6 in Appendix as a reasonable choice) for s-CC and s-NPC, as well as
their SVM variants, so that we can obtain reasonably stable criteria and meanwhile finish
thousands of simulation runs within reasonable time. Regarding the RF algorithm, we use
the randomForest () function in R package randomForest. The number of trees is set to
ntree=500 by default.

5.1 Ranking low-dimensional features at the sample level

We first demonstrate the performance of s-CC and s-NPC in ranking features when d, the
number of features, is much smaller than N (the total sample size). We design simulation
studies S1 and S2 to support our theoretical results in Theorems 8 and 13 in the absence of
sampling bias. Using simulation study S3, we demonstrate that s-NPC is robust to sampling
bias, while s-CC and the SVM variants of s-CC and s-NPC are not; furthermore, we show
that the RF algorithm’s three feature ranking criteria (mean decrease in accuracy, mean
decrease in Gini index, and SHAP value) cannot capture features’ marginal ranking in the
presence of feature correlations.

There is no sampling bias in simulation studies S1 and S2. In study S1, we generate
data from the following two-class Gaussian model with d = 30 features, among which we
set the first s = 10 features to be informative (a feature is informative if and only if it has
different marginal distributions in the two classes).

X|(Y=0~Nu%), X|Y=0)~NwhE), m=PY=1)=.5, (15

where u® = (=1.5,..., =15, g1, ..., pu30) ", = (1,.9,...,.2,.1, pa1, .. ., p3o) ", with pgq, ...
—— S———
1 1
independently and iodentically drawn from N(0, 1) and ‘(u)hen held fixed, and X = 413¢. In
terms of population-level criteria p-CC and p-NPC, a clear gap exists between the first 10
informative features and the rest features, yet the 10 features themselves have increasing
criterion values but no obvious gaps. That is, the first 10 features have true ranks going
down from 1 to 10, and the rest of features have a tied true rank of 20.5, i.e., the average of

11,...,30°.

5. Why the uninformative 20 features should receive a true rank of 20.5 instead of 11 is because a reasonable
ranking criterion, with data randomness, would assign these 20 features with ranks uniformly distributed
between 11 and 30.

18
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We simulate 1000 samples of size N = 400 % or 1000 from the above model. We apply
s-CC (8) and s-NPC with §; = .05 and four « levels .05, .10, .20, and .30 (11), five criteria
in total, to each sample to rank the 30 features. That is, for each feature, we obtain 1000
ranks by each criterion. We summarize the average rank of each feature by each criterion in
Tables H.1 and H.2 in Appendix, and we plot the distribution of ranks of each feature in
Figures 2 and 3. The results show that all criteria clearly distinguish the first 10 informative
features from the rest. For s-NPC, we observe that its ranking is more variable for a smaller
a (e.g., 0.05). This is expected because, when a becomes smaller, the threshold in the NP
classifiers would have an inevitably larger variance and lead to a more variable type II error
estimate, i.e., ss-NPC. As the sample size N increases from 400 (Table H.1 and Figure 2) to
1000 (Table H.2 and Figure 3), all criteria achieve greater agreement with the true ranks.

d =30, N =400
30-

Method

ES scc

. s-NPC (a = .05)
ES s-NPC(a=.10)
- s-NPC (a = .20)
- s-NPC (a = .30)

20-

Rank

10-

o o
o

of|]e
o

o
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3 ol ollle Hegel olles o110
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Figure 2: Rank distributions of the d = 30 features by s-CC or s-NPC (with varying «) with
sample size N = 400 under the Gaussian setting (15)—simulation study S1.

d =30, N =1000
O.

w

Method

ES s-cc

‘ s-NPC (a = .05)
- s-NPC (a = .10)
- s-NPC (a = .20)

el SR me ES s-NPC (a = .30)

N
o

Rank

8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
Feature

Figure 3: Rank distributions of the d = 30 features by s-CC or s-NPC (with varying «) with
sample size N = 1000 under the Gaussian setting (15)—simulation study S1.

6. In the NP umbrella algorithm, msg, i.e., the class 0 sample size reserved for estimating the threshold,
must be at least 59 when o = 61 = .05. We set the overall sample size to N = 400 so that the expected
myo is 100; then the realized ms is larger than 59 with high probability.
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In study S2, we generate data from the following two-class Chi-squared distributions of
d = 30 features, among which we still set the first s = 10 features to be informative.
Xy | (Y =0)~x%,j=1,...,30, P(Y=1)=.25, (16)

X{1}’(Y 1) ~ X11,X{2}|( =1)~ X%oy"',X{lo}HY:l)NX%?
X (Y=1)~ X3, j=11,...,30.

Similar to the previous Gaussian setting, the first 10 features have true ranks going down
from 1 to 10, and the rest of features are tied with a true rank of 20.5. We simulate 1000
samples of size N = 400 or 1000 from this model, and we apply s-CC (8) and s-NPC with
01 = .05 and four « levels .05, .10, .20, and .30 (11), five criteria in total, to each sample to
rank the 30 features. We summarize the average rank of each feature by each criterion in
Tables H.3 and H.4 (in Appendix), and we plot the distribution of ranks of each feature in
Figures H.3 and H.4 (in Appendix). The results and conclusions are consistent with those
under the Gaussian setting.

Next, we design study S3 with sampling bias, i.e., the two classes have proportions in
the sample different from those in the population. We use the following Gaussian setting:

X|(Y=0~Np" %), X|¥Y=1)~N4pu"%),
ﬂ_{)opulation — ]Ppopulation(y _ 1) =5, ﬂ.iample _ ]Psample(Y _ 1) =1, (17)

that is, class 1 has a proportion .5 in the population but is undersampled with probability .1 in
the sample. Same as in our first simulation study, we set u® = (=1.5,..., 1.5, pi11, . . ., i£30) ",
N————

10
p'=(1,.9,...,.2,.1, u11, ..., p30)", with p11, ..., u3o independently and identically drawn
—_———

10
from N(0,1) and then held fixed, and we still set the diagonal entries of ¥ to 4. What is
different here is that we add a scenario with feature correlations: conditional on each class,
features 7 and j have a correlation p;; = 9li—il 1,7 =1,...,30; that is, ¥ is a Toeplitz-type
matrix with the (4,7)-th entry equal to .97 x 4. Here features 1 to 10 still have their
true ranks going down from 1 to 10, while the other features still have a tied true rank of
20.5. We simulate 1000 samples of size N = 1000 from this model, and we apply s-CC (8);
s-NPC with §; = .05 and four « levels .05, .10, .20, and .30 (11); their corresponding SVM
variants (Appendix C); and the RF algorithm’s feature importance measures (mean decrease
in accuracy and mean decrease in Gini index) and SHAP value—13 criteria in total—to each
sample to rank the 30 features. In Appendix, we summarize the average rank of each feature
by each criterion in Table H.5 (for the uncorrelated-feature scenario) and Table H.6 (for the
correlated-feature scenario), and we plot the distribution of ranks of each feature in Figure
H.5 (for the uncorrelated-feature scenario) and Figure 4 (for the correlated-feature scenario).
The results show that, in the presence of sampling bias, only s-NPC can distinguish the
first 10 informative features from the rest, while s-CC and the SVM variants of s-CC and
s-NPC cannot. These results highlight the unique robustness of s-NPC to sampling bias, an
advantage that even its SVM variant does not embrace. The reason is that sampling bias
affects the training of the SVM scoring function. Moreover, s-CC, s-NPC, and their SVM
variants—all marginal feature ranking criteria—are unaffected by feature correlations, as
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expected. In contrast, the RF algorithm’s three feature ranking criteria, which are based
on multivariate classifiers and thus not marginal, cannot accurately capture the features’
marginal ranking in the presence of feature correlations (Figure 4(c)).

5.2 Ranking high-dimensional features at the sample level

We next examine the performance of s-CC and s-NPC when d > N, using simulation studies
S4 and S5. In study S4, we set d = 500 and N = 400. The generative model is the same as

(15), and [LO = (—1.5, ey —1.5,,&11, NN ,,U{,o[))T, [Ll = (1, .9, PN .2, .1, M1ty - - - ,u500)T, with
—_——— ————
10 10
U1, - - -, 500 independently and identically drawn from N(0,1) and then held fixed, and

3 = 4T500. Same as in the low-dimensional settings (Section 5.1), p-CC and p-NPC have a
clear gap between the first 10 informative features and the rest of features. In terms of both
p-CC and p-NPC, the first 10 features have true ranks going down from 1 to 10, and the rest
of features are tied with a true rank of 255.5. We simulate 1000 samples of size N = 400 and
apply s-CC (8) and s-NPC with é; = .05 and four « levels .05, .10, .20, and .30 (11) to each
sample to rank the 500 features. We summarize the average rank of each feature by each
criterion in Table H.7 (in Appendix), and we plot the distribution of ranks of each feature in
Figure 5. The results show that ranking under this high-dimensional setting is more difficult
than under the low-dimensional setting. However, s-CC and s-NPC with o = 0.2 or 0.3 still
clearly distinguish the first 10 informative features from the rest, while s-NPC with o« = 0.05
or 0.1 have worse performance on features 8-10, demonstrating again that ranking becomes
more difficult for s-NPC when « is smaller and requires a larger sample size N.

In the more high-dimensional study S5, we further decrease the N/d ratio by setting
d = 10,000 and N = 200, a scenario that resembles many biomedical datasets. The

generative model is the same as (15), and u® = (=2.5,...,—2.5, 11, ..., 110,000) ", ' =
—_————
10
(1, .9, ceey .2, .1, M1l - - - ,,ulo’()o())—r, with H11y - - -5 110,000 independently and identically drawn
~—_——

1

from N(()O, 1) and then held fixed, and 3 = 4T 9o0. Same as in study 54, the first 10 features
have true ranks going down from 1 to 10, and the rest of features are tied with a true rank
of 5005.5. We simulate 1000 samples of size N = 200, and we apply s-CC (8); s-NPC with
91 = .05 and three « levels .10, .20, and .30 (11); their SVM variants (Appendix C); and
the RF’s two feature importance measures (the mean decrease in accuracy and the mean
decrease in Gini index)—ten criteria in total—to each sample to rank the 10,000 features.
Note that the SHAP value is inapplicable because it requires substantial computational time
in this scenario. We summarize the average rank of each feature by each criterion in Table
H.8 (in Appendix). The results show that s-NPC outperforms its SVM variant at each « in
terms of the ranking accuracy for the top 10 features. Moreover, five criteria, including s-CC,
s-NPC (a = .30), their SVM variants, and RF’s mean decrease in accuracy, can distinguish
the first 10 informative features by assigning them average ranks no greater than 10. The
fact that s-NPC and its SVM variant with o = .10 or .20 have worse performance is because
of the small N/d ratio. This result echos the importance of using a not-too-small « for
s-NPC when N is not too large and N/d is small. Interestingly, RF’s mean decrease in Gini
index performs worse than its mean decrease in accuracy in ranking the 10-th feature.
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Figure 4: Rank distributions of the features under the Gaussian setting with d = 30,
— 1000, sampling bias (xPP"M — 5 and 7P — 1) (17), and a Toeplitz-type
feature covariance matrix: features ¢ and j have a correlatlon pij = Oli=il g5 =1,...,30—

simulation study S3.
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Figure 5: Rank distributions of the first 30 features by s-CC or s-NPC with d = 500 and

N = 400 under the Gaussian setting (15)—simulation study S4. The vertical axis is on the
log,q scale.

5.3 Comparison with other marginal feature ranking criteria

In simulation study S6, we compare s-CC and s-NPC with four criteria that have been
widely used to rank features marginally: the Pearson correlation, the distance correlation
(Székely et al., 2009), the two-sample ¢ test, and the two-sample Wilcoxon rank-sum test.
None of these existing approaches rank features based on a prediction objective; as a result,
the feature ranking they give may not reflect the prediction performance of features under a
particular objective. Here we use an example to demonstrate this phenomenon. We generate
data with d = 2 features from the following model:

X[ (Y =0) ~N(0,1), X;i|(Y
Xo| (Y =0) ~N(0,1), Xo|(Y

= 1)~ N(1,1), P(Y=1)=5,
=1)~ BN(=2,1) + 5N(2,1). (18)

To calculate p-CC and p-NPC with §; = .05 at four « levels .05, .10, .20, and .30 on these
two features, we use a large sample with size 10% for approximation, and the results in
Table 3 show that all the five population-level criteria rank feature 2 as the top feature.

Table 3: Values of p-CC and p-NPC of the two features in (18).

Feature p-CC p-NPC (a =.05) p-NPC (o =.10) p-NPC (o =.20) p-NPC (v = .30)
1 31 .74 .61 44 .32
2 .22 49 .36 .24 A7

Then we simulate 1000 samples of size N = 400 from the above model and apply nine
ranking approaches: s-CC, s-NPC with §; = .05 at four « levels (.05, .10, .20, and .30), the
Pearson correlation, the distance correlation, the two-sample ¢ test, and the two-sample
Wilcoxon rank-sum test, to each sample to rank the two features. From this we obtain 1000
rank lists for each ranking approach, and we calculate the frequency that each approach
correctly finds the true rank order. The frequencies are summarized in Table 4, which shows
that none of the four common criteria identifies feature 2 as the better feature for prediction.
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In other words, if users wish to rank features based on a prediction objective under the
classical or NP paradigm, these criteria are not suitable.

Table 4: The frequency that each ranking approach identifies the true rank order.

s-CC s-NPC (a = .05) s-NPC (a = .10) s-NPC (a = .20) s-NPC (a = .30)

100% 99.9% 99.3% 99.7% 100%
Pearson cor distance cor two-sample ¢  two-sample Wilcoxon
0% 0.5% 0% 0%

6. Real data applications

We apply s-CC and s-NPC to two real datasets to demonstrate their wide application
potential in biomedical research. Here we set the number of random splits B = 1000 for
s-CC and s-NPC, as allowed by our computational resource.

6.1 Application 1: classification of breast cancer and normal tissues based on
genes’ DN A methylation levels

The first dataset contains genome-wide DNA methylation profiles of 285 breast tissues
measured by the Illumina HumanMethylation450 microarray technology. This dataset
includes 46 normal tissues and 239 breast cancer tissues. Methylation levels are measured at
468,424 CpG probes in every tissue (Fleischer et al., 2014). We download the preprocessed
and normalized dataset from the Gene Expression Omnibus (GEO) (Edgar et al., 2002) with
the accession number GSE60185. The preprocessing and normalization steps are described
in detail in Fleischer et al. (2014). To facilitate the interpretation of our analysis results, we
further process the data as follows. First, we discard a CpG probe if it is mapped to no gene
or more than one genes. Second, if a gene contains multiple CpG probes, we calculate its
methylation level as the average methylation level of these probes. This procedure leaves us
with 19,363 genes with distinct methylation levels in every tissue. We consider the tissues as
data points and the genes as features, so we have a sample with size N = 285 and number of
features d = 19,363. Since misclassifying a patient with cancer to be healthy leads to more
severe consequences than the other way around, we code the 239 breast cancer tissues as
the class 0 and the 46 normal tissues as the class 1 to be aligned with the NP paradigm.
After applying s-CC (8) and s-NPC with §; = .05 and four « levels (.05, .10, .20, and .30)
(11) to this sample, we summarize the top 10 genes found by each criterion in Table 5. Most
of these top ranked genes have been reported associated with breast cancer, suggesting
that our proposed criteria can indeed help researchers find meaningful features. Meanwhile,
although other top ranked genes do not yet have experimental validation, they have weak
literature indication and may serve as potentially interesting targets for cancer researchers.
For a detailed list of literature evidence, please see the Supplementary Ezcel File. The
fact that these five criteria find distinct sets of top genes is in line with our rationale that
feature importance depends on prediction objective. By exploring top features found by
each criterion, researchers will obtain a comprehensive collection of features that might be
scientifically interesting.
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Table 5: Top 10 genes' found by each criterion in breast cancer methylation data (Fleischer
et al., 2014). Genes with strong literature evidence to be breast-cancer-associated are marked
in bold; see the Supplementary Excel File.

Rank  sCC  sNPC (a = .05) sNPC (a =.10) sNPC (o = 20) sNPC (a = .30)
1 HMGB2 HMGB2 HMGB2 ABHDI14A ABHD14A
2  MIR195 MICALCL ABHD14A ABL1 ABL1
3 MICALCL NR1H2 ZFPL1 BAT?2 ACTN1
4 AIM2 AGER AGER BATF AKAPS
5  AGER BATF RILPL1 CCLS8 AP4M1
6 KCNJ14 ZFP106 SKIV2L COG8 ARHGAP1
7  HYAL1 CTNNALL TP53 FAMI80B ATG4B
8  SKIV2L MIR195 RELA HMGB2 BAT?2
9 RUSC2 AIM2 MIR195 HSF1 BAT5

10 DYNCIHI ZFPL1 CCLS8 KIAA0913 BATF

T Note that 20 genes have zero s-NPC (a = .20) values, and 119 genes have zero s-NPC (a = .30) values.
Hence, the listed top 10 genes by either of these two criteria are the first 10 in the alphabetical order.

Moreover, we apply the four widely-used but non-prediction-based marginal ranking
criteria—the Pearson correlation, the distance correlation, the two-sample ¢ test, and the
two-sample Wilcoxon rank-sum test, to rank the d = 19,363 genes. For demonstration
purpose, we check the s-CC and s-NPC (a = .10) values of the genes ranked as the 1st,
101st, 201st, 301st, 401st, 501st, 601st, 701st, 801st, and 901st by each criterion. Figure 6
shows the cases where the ranks assigned by other criteria differ tremendously from those
assigned by s-CC or s-NPC (a = .10), including the 301st and 801st genes ranked by the
distance correlation, whose ranks by s-CC and s-NPC («a = .10) are much better, and the
601st and 701st genes ranked by the two-sample ¢ test, whose ranks by s-CC and s-NPC
(a = .10) are much worse.

Figure 7 illustrates the class-conditional distributions of these four genes. Interestingly,
the two genes NXPH1 and T'SC22D/ are ranked top by s-CC (with ranks 18 and 77) and
s-NPC (a = .10) (with ranks 99 and 146), while they are ranked worse by both the Pearson
correlation (with ranks 1061 and 622) and the distance correlation (with ranks 801 and
301). Their class-conditional distributions show distinct, non-overlapping density peaks
between classes 0 and 1, confirming their top ranks assigned by s-CC and s-NPC. Literature
also suggests the two genes’ potential roles in breast cancer: a methylation study found
NXPH1 as a candidate biomarker gene for HER2+ breast cancer (Lindqvist et al., 2014); an
RNA-seq study found T'SC22D/ up-regulated in a BRCA1 mutated cell line (SL) compared
to a BRCA1 wild-type cell line (SB) (Privat et al., 2018); another study identified TSC22D2,
an isoform of T'SC22D/, as a novel cancer-associated gene in a rare multi-cancer family
(Liang et al., 2016).

In Figure 7, another two genes, COL16A1 and CUBN, are ranked much lower by
s-CC (with ranks 3793 and 2687) and s-NPC (o = .10) (with ranks 3924 and 4792)
than by the two-sample ¢ test (with ranks 601 and 701). Inspecting the two genes’ class-
conditional distributions, we find that their class-1 conditional distributions have high-density
domains largely contained in the high-density domains of their respective class-0 conditional
distributions, an observation consistent with the low rankings assigned by s-CC and s-NPC
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Figure 6: Values of s-CC and s-NPC (a = .10) of the top K = 1, 101, 201, 401, 501, 601, 701,
801, or 901 features ranked by each criterion in Application 1. As expected, the ranks by
s-CC are monotone in s-CC values (left), and the ranks by s-NPC (a = .10) are monotone
in s-NPC (a = .10) values (right). We focus on the 301st and 801st genes ranked by the
distance correlation, whose ranks by s-CC and s-NPC (« = .10) are much better, and the
601st and 701st genes ranked by the two-sample ¢ test, whose ranks by s-CC and s-NPC
(v = .10) are much worse.

(v = .10). Both genes do not seem to have direct associations with breast cancer: COL16A1
encodes the alpha chain of type XVI collagen; CUBN encodes a protein called cubilin, which
is involved in the uptake of vitamin B12 from food into the body.

6.2 Application 2: classification of high-risk and low-risk prostate cancer
patients based on microRNA expression levels in urine samples

The second dataset contains microRNA (miRNA) expression levels in urine samples of
prostate cancer patients, downloaded from the GEO with accession number GSE86474
(Jeon et al., 2019). This dataset is composed of 78 high-risk and 61 low-risk patients. To
align with the NP paradigm, we code the high-risk and low-risk patients as class 0 and 1,
respectively, so m/n = 78/61. In our data pre-processing, we retain miRNAs that have
at least 60% non-zero expression levels across the N = 139 patients, resulting in d = 112
features. We use this dataset to demonstrate that s-NPC is robust to sampling bias that
results in disproportional training data; that is, training data have different class proportions
from those of the population. Since in many biomedical datasets, the proportions of diseased
patients do not reflect the true proportions in the population, a desirable feature ranking
criterion should be robust to such sampling bias so that the selected features would maintain
good out-of-sample predictive power.
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Figure 7: Class-conditional distributions of four example genes in Application 1. Out of
d = 19,363 genes, the top genes are ranked much better by the two-sample ¢ test than by
s-CC or s-NPC (a = .10); the bottom genes are ranked top by s-CC and s-NPC (a = .10)
but much worse by Pearson correlation and distance correlation.

We create two sub-datasets by randomly removing one half of the data points in class
0 or 1, so that one sub-dataset has m/n = 39/61 and the other has m/n = 78/31. We
apply s-CC, s-NPC with §; = .05, and the RF algorithm’s feature importance measures (the
mean decrease in accuracy and the mean decrease in Gini index) to the full dataset and
each sub-dataset to rank features. To evaluate each criterion’s robustness to disproportional
data, we compare its rank lists from these three datasets with different m/n ratios. For this
comparison, we use the Kuncheva index (Kuncheva, 2007), which quantifies the overlap of
top k feature sets and accounts for the overlap by chance.

Ap N By| — k?
Kuncheva index(Ag, By) = | k;_k]l2/dk /d, k=1,...,d,

where A and By are the top k features from two rank lists. The Kuncheva index has range
[—1,1], and its value is monotone increasing in |A; N Bg|. If Ay and By overlap by chance,
the Kuncheva index would be close to 0. For more than two rank lists, their Kuncheva index
for the top k features is defined as the average of their pairwise Kuncheva indices for the top
k features. In our case, the larger the Kuncheva indices are for varying k, the more robust a
criterion is to disproportional data. We illustrate the Kuncheva indices of s-CC, s-NPC, and
the two RF feature importance measures in Figure 8, which shows that s-NPC is the most
robust criterion.
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Figure 8: Kuncheva indices of s-CC, s-NPC, and the two RF feature importance measures
in ranking the top k features in Application 2.

7. Conclusion and perspectives

This work introduces model-free objective-based marginal feature ranking criteria—s-CC and
s-NPC—for the purpose of binary decision-making. The explicit use of a prediction objective
to rank features is demonstrated to select more predictive features than existing practices
for marginal or multivariate feature ranking do. The reason is that commonly used marginal
feature ranking criteria are association measures not reflecting the prediction objective or
capturing certain data distributional characteristics, and that popular multivariate feature
ranking criteria rely on multivariate classification algorithms such as SVM and RF, which
are sensitive to sampling bias and feature correlations.

It is worth nothing that s-CC and s-NPC are extendable to multi-class classification.
For s-NPC, as it is based on the Neyman-Pearson paradigm for binary classification, its
extension to multi-class classification will rely on the one-vs-rest approach. Concretely,
we single out the most important class as the class 0 and combine the rest of classes into
the class 1, converting the multi-class problem into a binary classification problem; then
s-NPC can be applied. For s-CC, with K classes, the classical oracle classifier is known to
be ¢*(-) = arg maxyeqy,.. x} TkPk(-), Where m, = IP(Y = k) and py(-) denotes the the class-k
conditional density of feature(s). Then we can define s-CC as the average classification error
of plug-in classifiers of this oracle, similar to equations (7) and (8) in our manuscript. We
have implemented the multiple-class extensions of s-CC and s-NPC in our R package frc.

In addition to the illustrated CC and NP paradigms, the same marginal ranking idea
extends to other prediction objectives such as the cost-sensitive learning and global paradigms.
Another extension direction is to rank feature pairs in the same model-free fashion. In
addition to the biomedical examples we show in this paper, model-free objective-based
marginal feature ranking is also useful for finance applications, among others. For example,
a loan company has successful business in region A and would like to establish new business
in region B. To build a loan-eligibility model for region B, which has a much smaller fraction
of eligible applicants than region A, the company may use the top ranked features by s-NPC
in region A, thanks to the robustness of s-NPC to sampling bias.

Both s-CC and s-NPC involve sample splitting. The default option is a half-half split
for both class 0 and class 1 observations. It remains an open question whether a refined
splitting strategy may lead to a better ranking agreement between the sample-level and
population-level criteria. Intuitively, there is a trade-off between classifier training and
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objective evaluation: using more data for training can result in a classifier closer to the
oracle, while saving more data to evaluate the objective can lead to a less variable criterion.
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Appendix A. A condition where CC and NPC agree.

Lemma A.1 Suppose that two features X (1) and X (o1 have class-conditional densities
X{1}|(Y = 0) ~ N (:U’(l)v (01)2) ) X{l}’(y = 1) NN (N%a (01)2) y
X (Y =0) ~ N (19, (02)%) , X (Y =1) ~ N (5, (02)?)

That is, each feature has the same class-conditional variance under the two classes. For

€ (0,1), let @2{1} or 903{2} be the level-ac NP oracle classifier using only the feature X (13
or X9y respectively, and let w’fl} or <p’€2} be the corresponding classical oracle classifier.
Then we have simultaneously for all c,

sign {R1 (‘PZ{2}) - Ry (@Z{l})} =sign {R <<,0’{‘2}> - R (w’fl})} = sign{ ’F‘%U_l:“(ﬂ - |’u%0_2ug} ,

where sign(-) is the sign function.

Appendix B. Partial consistency results of s-CC and s-NPC

In this section, we present partial consistency results for s-CC (Theorem B.2) and s-NPC
(Theorem B.3). The proofs are skipped due to the similarities to those of Theorem 8 and
Theorem 13.

Theorem B.2 Let 53, (54, (55 S (0, 1) 5 Al,...,AJ,AJ+1,... ,AJ+H - {1,,d} and |A1‘ =
|A2| = ... = |Ajru| =1. We consider J, H and l to be constants that do not diverge with

the sample sizes. In addition to the assumptions in Theorem 7, assume that the p-CC’s

separate the first J feature sets and the last H by some margin g > 0; in other words,

iE{”rlIyl}?JJrH} R (SDAi) B iegl%i]} R (SOAi) >g.

In addition, assume m1,ma,n1,no satisfy that

1 2?11 1 zgj-z 1
ogm ogn =
< & 1) + ( & 1) + my * 4 US)

mi ny

Ch

=

<z, (B.1)

(NS

where 61 is the generic constant in Theorem 7. Then with probability at least 1 — (J +
H)(03 + 04 + 05), maxieqr,...5y CCa; < mingegyyp1. sy CCu4;.

29



L1, CHEN, AND TONG

Theorem B.3 Let «, 01, 02, 03, 04 € (0,1), A1,..., Ay, Ayi1, ..., Ayrr C{1,...,d} and
|A1| = |A2| = ... = |Ajsu| = 1. We consider J, H, | to be constants that do not diverge with
the sample sizes. In addition to the assumptions in Theorem 12, assume that the p-NPC'’s
separate the first J feature sets and the last H by some margin g > 0; in other words,

ey (#0a) = e,y (won) >9-

In addition, assume mqy, ma,ny,no satisfy that
B(1+7) B+7)

~ 1 25 1 2611 V== 1
Cy <ogm1) +(ogn1) + m, v +n,t | <
mi ni

. (B2

|
|
NS

where 6’2 is the generic constant in Theorem 12. Then with probability at least 1 — (J +
H)(03 + 04 + 05), maxjeqy,.. .y NPCos, < mingegyi . j4my NPCasy,.

Appendix C. Variants of s-CC and s-NPC based on SVM classifiers

In parallel to s-CC and s-NPC, which are defined based on plug-in classifiers whose scoring
function is the ratio of kernel density estimates, we implement variants of s-CC and s-
NPC based on SVM classifiers. Specifically, we change the scoring function §E:)(-) from
15@1(')/2582(') to the predicted probability function P(Y = 1|X 4 = -) of SVM, which
we implement using the R function svm() in the e1071 package. With the new scoring
function, we construct the classical classifier gZ)Ef) () =1 <,§S’) (xq) >1/ 2) and define the
s-CC variant, called s-CC-SVM, by following (8). Similarly, we construct the NP classifier
(%S?Ll() =1 (§g’)(') > 6’(@‘) in (9) using the NP umbrella algorithm; then we define the

s-NPC variant, called s-NPC-SVM, by following (11).

Appendix D. Proofs
D.1 Proof of Lemma A.1

First we realize that the following three statements are equivalent:
(1) Feature importance ranking under the NP paradigm is invariant to «;
(2) Feature importance ranking under the classical paradigm is invariant to 7 ;

(3) Feature importance ranking under the NP paradigm for Va € (0,1) is the same as
feature importance ranking under the classical paradigm Vmg € (0, 1).

We explore conditions for statement (1) to hold. We will divide our analysis into four
scenarios (i)-(iv) regarding distribution means.
Scenario (i): suppose p < pl and p9 < pd. Let ¢1, c2 € R be such that

— 9 _,0
l—a:CI><Cl Ml), l—a:®<w>,
01 02
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where ®(-) denotes the cumulative distribution function of A'(0,1). Then the NP oracle
classifier using the feature Xy or X9y can be written as

goz{l}(X) =1 (X{l} > 01) or QDZ{Q}(X) =1 (X{Q} > CQ) .

These oracle classifiers have type II errors

Ry (‘PZ{Q) _ % <C1 ;1/&) R (90:;{2}> _$ <02 ;;“%) .

The chain of equivalence holds

Ry (@Z{Q}) >Ry (902{1})

< o) (2 )
()] 01

1 1
C2 — 3 >Cl—,u1

=
02 a1
0 0 1 0 0 1
cy — — c1 — —
- 2 H2+M2 M22 1 M1+M1 M1
09 09 o1 g1
1 — i 10 —
s '1-a)+ 22> (1 —a)+ 22
02 o1
1_ .0 1_,,0
o By — Ky Ha M220,
01 ()]

Therefore,

sign { 1 (vhizy) = Br (¥aqy) | = sign{#%a—luﬁ) - M%(;MS} '

Scenario (ii): suppose u{ > pi and pd > pl. Let c1, c2 € R be such that

a:q)<01_ﬂ(1)>’ a:q)(@—/fz))’
o1 02

then the NP oracle classifier using the feature X ;3 or X oy can be written as

(p:;{l}(X) =1 (X{l} < Cl) or QOZ{Q}(X) =1 (X{Q} < Cg) .

These oracle classifiers have type II errors

Ry (¢hy) =1-@ (Cl ;1“%) . Ri(ghg)=1-0 (62 ;2’"‘5) .
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The chain of equivalence holds
Ry <¢3{2}> >’ (SOZ{1}>

o o) =5
09 o1

1 1
o=y _ 1= p

=4
02 01
_ 40 0o_ ,1 _,,0 0o_ ,1
o 2 M2+N2 MQSCI M1_|_N1 [ad]
02 02 01 01
0_ 1 0o_ ,1
= @—1(a)+/$2 1) S‘I)_l(a)—l—'ul 1251
09 01
1,0 1_,0
o Hi— H1 Mg N2§O_

o1 02

sign {R1 («PZ{Q}) ~ R (wz{l})} = sign {—M%;M? - M%O;Mg} :

Scenario (iii): suppose p < pi and p§ > ul. Let c1, c2 € R be such that

1_a:q>(ﬁﬂ?> | a:q)<w2)> |

g1 09

then the NP oracle classifier using the feature X ;3 or X9y can be written as
Py (X) =T( Xy >c1) or ¢ (X)=1T(X g <ca) .

These oracle classifiers have type II errors

Ry (‘PZ{H) = <C1 ;1M%> ;R (@2{2}) =1-9 (@;Q;é) :

Because ®(a) + ®(—a) =1 for any a € R and ®~1(1 — a) = —®~!(a) for all @ € (0, 1), we
have the chain of equivalence

Ry (‘PZ@}) > Ry (@Z{u)

_ L 1
o 1—@(02 /@)2@(01 u1>
o9 o1

1 1
I Tl G B U

Hence,

<~
02 g1
o My a—u o
09 09 01 g1
0_ 1 0_ 1
s —oVa) 2T s g1 g 1T
09 01
1_,0 1_,,0
o 251 H1+N2 M220.
01 g9
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Hence,

sign {Rl (goz;{Q}) - Ry (goz;{l}>} = sign{”%a—lﬂg n M%U—Q,Ug} .

Scenario (iv): suppose p§ > ui and pd < pd. Let c1, ca € IR be such that

_ 0 _,,0
a:@<QM>,1_a:¢<@M>7
o1 09
then the NP oracle classifier using the feature X ¢y or X9y can be written as

Cay(X) =T (Xpy <) o @hoy(X) =T (X >ca) -

These oracle classifiers have type II errors

Ry <(pz{1}) =1- (T) , Ry (¢;{2}> — & <C2 U—;é) :

Because ®(a) + ®(—a) =1 for any a € R and ®~1(a) = —@7 (1 — ) for all a € (0,1), we
have the chain of equivalence

Ry (go’;{g}) > Ry (@Z{l})

_ L 1
o ¢(@M>21_¢<QM>
g2 01

1 1
=k, A"

-
09 o1
- cz—u8+u8—ﬂéz_cl—u?_u?—u%
o9 09 01 01
0 1 0_ 1
N @71(1_06)_’_#2 'u?>_qr1(a) H1— My
09 g1
1_,0 1_,0
o By — Ky Ha M2>O
01 ()]

Hence,

sign { 1 (9a2y) — B (whqyy) | = sien {—M%U_l“? - M%;Mg} :

Finally to sum up scenarios (i)-(iv), we conclude that

sign {Rl (502{2}) - (80:;{1})} = Sign{ ’“%a_lﬂ(l” _ ‘M%U;Mg)’} ‘

33



L1, CHEN, AND TONG

D.2 Proof of Proposition 6

1
let hupn, = (M) o By Lemma 1 in Tong (2013), there exists some constant Cy that

mi

does not depend on m; and 03, such that with probability at least 1 — d3/2,

lPoa(xa) —poa(xa)ly < co,

mlhﬁnl

where g9 = Co, ["B2M%) where Cy = \/A8er + 322 +2Les + I + L+ C Yy <ig< 51
in which ¢1 = pimax|| K%, c2 = | Koo + tmax + [ |K|[t|?dt, c3 = [ |K|[t|’dt and C is such
that €' > Sup;<jgi< ) WP e -1 17 [P6H (@a)]:

1
Similarly let h,, = 105%) 23“, there exists some constant C that does not depend on

ny and 03, such that with probability at least 1 — d3/2,

1P1a(xa) — pra(®a)l < e,

where 1 = C} % . Then, we have with probability at least 1 — d3,
ny
Pra(®a)  pira(za) ‘
Poa(xa) poa(Ta)l
< |[Pra(@a) _ pra(za) ‘ n ‘ pra(@a)  pra(za) '
~ ||Poa(xa)  Poa(xa)l|lee  |lPoalTa) poalTa)lo
1 . D1A DoA
< |t Mot puateat + |24 22—
PoA(xA) || oo P0A || || Poa o
1 . P1A PoA — PoA
< |l D1A(TA) —p1a(TA +‘ ’A
Poa(Ta) 00 | (@a) ( )HOO PoA || 0o PoA o
< €1+ EONmax/Nmin —. bml,nl .
Hmin — €0
When ny Amy > 2/d3,
1 B/(2B+1) 1 B/(26+1)
EOS\@Co(Ogml) ; €1§\/501<0gn1> .
my ni
These combined with , /128271/%3) ~ fmin o]y that
mihb,, 2Co ply
T owmi N 10\ BB+
by, < C ( & 1) +< & 1> : (D.3)
my ny

for some positive constant C that does not depend on the subset A.
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PREDICTION-BASED MARGINAL FEATURE RANKING

D.3 Proof of Theorem 7
We can bound |[CCy4 — R (¢7})| as:

CCa = R(¢)| < [CCx =R (2)] +|R (64) - R(21)| (D.4)
The second part of the right hand side of (D.4) can be bounded as
R (64) = R ()| < 70 |[Ro (84) = Ro ()| +m1 [Ry (94) = Ru ()] -
Recall that ¢a(z) = W(5a(za) > m1/ns) = T(pra(®a)/Poa(wa) > mi/n1) and (@) =

I(sa(xa) > mo/m1) = W(p1a(Ta)/Poa(xa) > 7o/m1). Define an event £ by

PIETHD t (log na /mn)

)

&= {||]31A($A)/ﬁ0A(CCA) —pra(@a)/poa(xa)ll,, < C [(bgml/ml) B/(25+l)]}

where C is a universal constant as in Proposition 6. Proposition 6 guarantees that IP(£) >
1 — d3. Denote f(mq,n1) =C [(log ml/ml)ﬂ/(%H) + (lognl/nl)ﬂ/(%ﬂ)}. When m;y /ny =

mo /71, on the event £, we have

Ro (64) = Bo () = Poa (241X4) ”O) Py <pm<XA> m)

EﬁOA(XA) ™ poa(Xa) =

o _ p1a(Xa) _ mo >
—>———">—— f(m,n
1 poa(Xa)  m flma,m)

< C(f(mi,m))7,

where the last inequality follows from the margin assumption around my/my. Similarly,

w0 _ pia(Xa) _ mo >
<Pl =2 <2222 <04 fimy,n
=04 <7T1 poa(Xa) ~ m flm,m)

< C(f(m1,m))7 .

Therefore, it can be concluded that
‘Ro (éA) — Ro (¥7)
Similarly, also on the event &£, we have ’Rl (gg A) — Ry (¢%)

R (da) = R(o%)| < (m0+m)C (f(ma,m))7 = C (f(ma,n))"
The first part of the right hand side of (D.4) can be bounded as

‘CCA _R(QZ;A>‘ = mzinz {f‘iﬁ‘? [1 — ¢a (le)} + mim A (X?/)} — R($a)

< C(flmi,m))7

<C (f(ml,nl)):y. Therefore,

=n1+1 '=mi+1
1 n1+n2 mi1+m2
Sml— 3 [1=da(XD)| - Rida)| +m0|— D a(XY) — Ro(da)| -
2 t=n1+1 z’—m1+1
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Let D > 0, then conditioning on §4(-), by Hoeffding’s inequality, we have

“|

2

1 ni+nz

~ T N T
—~ Yo <3A(X}A) < °> - [11 <5A(X}4) < 0)]
2 a1 ™ ol

>D

§A(‘)>

This implies the following unconditional result,

P lnimﬂ sA(XL) <D0 _ B |1 (sa(xy) < 0
A\AGA 7T1 AlA A ™

n2
Let 2¢~2m2D* — §, and then D = ,/ﬁ log %. So we have with probability at least 1 — d4,

< D) > ] — 2 2m2D?
i=ni+1

1 ni+ng K X ) : S
Mi:%;l [1—¢A (Xz):| — Ri(¢a)| < 5 08 5

~ 1
When nz > (log 2)2, |5 3072, 1= b4 (X1)] = Ru(da)| < Jgma

n2

Similarly, we have with probability 1 — ds,

1 mi+ma R R 1 2
— > a(XD) = Ro(da)| <4/ 5—log —.
ma —1 2mo 05

~ ~ _1
When my > (log 2)2, ‘ Ly mitme g (X0) - R0(¢A)‘ < Ly,

mo =mq+1 3

Therefore, with probability at least 1 — d3 — d4 — 5,

_ _ 1 _1 1 _1
CCA— R <C(f(my,n)) +mp- —=my * +m - —=ny L.
CCa ~ R(p3)] < € (Flmam)) 7 —my * m - o
Then we have
lom 2211 lon 2211 1 1
|CCa — R(ph)| < Ch < & 1) +( & 1) +m2_4+n2_4 ,
mi ni

for some positive constant C; that does not depend on A.

D.4 Proof of Theorem 8

Theorem 7 and the sample size condition imply that for each i € {1,...,J}, we have with
probability at least 1 — (03 + d4 + 05),

CCa, = R3] < 5 -
Also considering the separation conditions that

je{lr,I.l..i,Ill]—l} {R ((’O*AJH) -k (SDT“J')} =9

we have the conclusion with probability at least 1 — J(d3 + 64 + J5).
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D.5 Proof of Lemma 10

Given any feature set A, let {Tj4 := §4(XY,), XV € S} be the scores by applying the
scoring function §4(+) = poa(-)/p1a() to S2. Sort {T;4} in an increasing order such that
Tya <, Timgya - Let Cl = T ()4 be a score threshold using k’-th order statistic, where
k' = [(ma + 1)da.5,,m, |, in which

J ~ 14261(ma +2)(1 — ) + /1 + 461 (m2 + 2)(1 — @)
ob1ma = 2{61(m2 +2) + 1} ’
and [z]| denotes the smallest integer larger than or equal to z. Denote the corresponding
NP classifier as

Da(X) = T (54(X4) > Cls) -
Because we use kernel density estimates and the kernels are S-valid, the scoring function
54(+) is continuous. Therefore, by Proposition 1 in Tong et al. (2018), we have

P (R (d0) > a) = 3 (") - apare,

= N
P (R (d0a) =) = 3 (") - apar.
=k

Note that by the definition of k*,

m2
. m2 . _
k* = min kZ( ‘ )(1—04)%/”2 T <6
=k N7
Proposition 2.2 in Zhao et al. (2016) implies IP (RO ((ZE’QA> > a) < 41. So we also have
Z;njk/ (”;2)(1 —a)la™2=J < §;. This together with the definition of k&* implies that k' > k*,
and therefore Ro(¢aa) > Ro(d), 4)-
By Lemma 2.1 in Zhao et al. (2016), for any d5 € (0,1), if mg > 0%1’

P (‘RO (%A) - RO(WZA)’ > 5) < 02,
where ¢ is defined by

_ (da,él,mz (m2 +1)] (m2 +1 — [da,éhmz (ma +1)1) 1
f - + da 51 mo +
(mag + 2)(ma + 1)2 52 91, ma + 1

—(1—-a).

Let & = {Ro (qgaA) < a} and & = {‘RO (gﬁfm) — Ro((,DZA)‘ < 5}. On the event
&1 N &, which has probability at least 1 — d; — d2, we have

a = Ro(¢}4) > Ro(dan) > Ro(&a) > Ro(eha) — &,
which implies
[Ro(das) = Rolwin)| <&

If mo > max(él_z, (52_2), we have £ < (5/2)m;1/4, also by Lemma 2.1 of Zhao et al. (2016).
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D.6 Proof of Theorem 12
We can bound |[NPCna — R1 (¢} 4)| as follows:

INPCaa — Ri (ppa)| < [NPCoa — Ry (qgaA)‘ + ’31 (anA) — Ry (SOZA)’ :

First we derive a bound for [NPCoa — Iy (¢an)|. Let D > 0, then conditioning on §4(-) and
Caa, by Hoeffding’s inequality, we have

‘|

2
§26_2n2D .

ni+n
1 1 2

- Yo (§A(X}A) < éaA) _E [I[ (§A(Xi1) < @Aﬂ
i=ni1+1

>D’§A(-),(LA>

This implies the following unconditional result,

ni+n
1 1 2

o

LS w(sa0xt <o) 3 (X8 <o)

I —.

< D) > 1 — 2¢2m2D?

Let 2¢72720% = §, and then D = ,/ﬁ log %. So we have with probability at least 1 — dy4,
INPCop = By (an)| < /5~ log =

. _1
When ny > (log 22, )NPCQA R (%A)‘ < Ln,
Propositions 6 and 11 imply that, it holds with probability at least 1 — d; — d9 — I3,

‘Rl (&aA) - Ry (SOZA)‘

-1/x _[n B8+ 1y B/28+]7 "7
<2C 1/40 L C 0g my n 0og N o 1/4
5 mq niy 5
B(1+7) B(1+7) .
<0 <logm1> 2T N (logm) 2e +m2_(i/\1%ﬂ{)
mi ni

for some generic constant C. The thresholds C* > 4’s are bounded from above by a single
constant that does not depend on A; indeed, we can just take the upper bound to be
fmax/Pmin- Therefore, we have with probability at least 1 — 01 — dy — d3 — Iy,

147) B+7) 145

B(
~ ~ 1 2B8+1 1 28+l —(ini3) 1
NPCas — Bi ($an)| < O (Ogml) +<°g”1> R

m1 ny

for some generic constant C, that does not depend on A.
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D.7 Proof of Theorem 13

Theorem 12 and the sample size condition imply that for each i € {1,...,J}, we have with
probability at least 1 — (01 + d2 + 03 + d4),

‘NPCaAi - Rl (90;;Ai)

<

N

Also considering the separation conditions that

je{gl..i,r}_n {Rl (SOC“AJ'“) — I (@ZAJ')} =9

we have the conclusion with probability at least 1 — J(d1 + d2 + 03 + d4)-

Appendix E. Time complexity of s-CC and s-NPC

The time complexity discussion is for one feature and B = 1.

For s-CC, its time complexity depends on the univariate kernel density estimation
(KDE) and evaluation. In s-CC, we apply KDE to the m; observations in class 0 and
the nq observations in class 1 to obtain the density estimates of the two class-conditional
distributions; then we evaluate the two density estimates on the mo observations in class
0 and the no observations in class 1 to obtain msg 4 ne density ratio estimates, which,
together with the threshold mq/nq, gives the s-CC (Equation (8) in manuscript). Without
approximation, the time complexity of s-CC is O ((m1 + n1) - (ma + n2)), which is what we
have for the numerical examples in our manuscript. For datasets with large sample sizes, we
may use approximate methods for KDE, such as Raykar et al. (2010), which can reduce the
time complexity to O(m + n). (Note that m = mj + mg and n = ny + ns.)

For s-NPC, in addition to the time complexity of KDE and evaluation, additional
complexity arises from the threshold searching step in the NP umbrella algorithm (Tong
et al., 2018), which involves sorting the my density ratio estimates of the left-out class 0
observations and has time complexity O(mglogms).

In conclusion, when the training sample size is large, we can use approximate KDE
methods to reduce the time complexity of s-CC to O(N), where N = m + n is the total

sample size. For s-NPC, we can set an upper bound on mo so that the time complexity is
also O(N).

Appendix F. Relationships between numerical high-probability error
bounds and sample sizes

In practice, we cannot realize the theoretical high-probability bounds on the differences
between s-CC (or s-NPC) and p-CC (or p-NPC) due to unspecified constants (Theorem 7
and Theorem 12). To provide guidance for practitioners, here we investigate the relation-
ships between the numerical, realized high-probability error bounds and sample sizes. We
consider the following four features X (1), X (21, X3y, X (4} € IR,” whose class-conditional

7. Usually, we denote the two scalar-valued features by X; and X2, but here we use X{l} and X{g} to be
consistent with the notation X 4.
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distributions are the following Gaussians:

Xy |[(Y =0) ~N(0,1), Xy (Y =1) ~N(25,1), (F.5)
Xy | (Y =0) ~N(0,1), Xy |[(Y=1)~N(2,1),

Xz | (Y =0) ~N(0,1), X | (Y =1) ~N(15,1),

Xy | (Y =0) ~N(0,1), Xy | (Y =1)~N(1,1),

and the class priors are equal, i.e., mg = m; = .5. It can be calculated that the four features
have the following p-CC and p-NPC values.

Feature 1 2 3 4

p-CC 0.106 0.159 0.227 0.309

p-NPC (a=.10) 0.112 0.236 0.414 0.611
p-NPC (ae=.20) 0.049 0.123 0.255 0.437
p-NPC (a=.30) 0.024 0.070 0.165 0.317

We design a simulation study with five sample sizes N = 400, 600, 800, 1000, and 1200,
i.e., the total number of observations from both classes. For each sample size, we simulate
5000 independent training datasets, and we calculate s-CC and s-NPC with « = .10, .20,
and .30 for each feature on each dataset. Figure H.7 shows the trends of 80% percentiles
(i.e., 80%-probability upper bounds) of absolute differences between sample-level criteria
and their population counterparts for each feature and each N. As expected, all the upper
bounds decrease as N increases. Moreover, to reach the same high-probability error bound,
s-CC requires a smaller sample size than s-NPC does, and s-NPC with a larger o requires
a smaller sample size than s-NPC with a smaller o does. This observation is consistent
with our numerical results in Section 5. In addition, we observe that the bounds are overall
better for the stronger features, a desirable phenomenon as the stronger features are usually
of more interests.

Appendix G. Neyman-Pearson Lemma

Lemma G.4 (Neyman-Pearson Lemma (Neyman and Pearson, 1933)) Let Py and

Py be probability distributions possessing densities pg and p1 respectively. Let P be the prob-

ability distribution of a random feature vector X € X C R*. The null and alternative

hypotheses are Hy : P = Py and Hy : P = Py. Let s*(-) = p1(-)/po(-) . For a given level
€ (0,1), let C € R be such that

Py(s"(X)>C)) <a and Py(s"(X)>Cl)>a.
When Py (s*(X) = C%) = 0, the most powerful test of level « is

palx) =T (s"(2) > C3) -

Appendix H. Additional tables and figures
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Rank by p-CC Rank by p-NPC (a = .05)
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Figure H.1: An illustration of marginal feature ranking by p-CC (left) and p-NPC (right). In this
example, myp = m; = .5. The purple areas indicate p-CC values, the green areas indicate p-NPC
values, and the yellow areas indicate a (the type I error upper bound in the NP paradigm). For both
p-CC and p-NPC, a smaller value gives a better ranking.
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training data
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Figure H.2: An illustration of the calculation of s-CC and s-NPC.

42



PREDICTION-BASED MARGINAL FEATURE RANKING

Table H.1: Average ranks of the d = 30 features by s-CC or s-NPC (with varying «) with
sample size N = 400 under the Gaussian setting (15)—simulation study S1.

1 2 3 4 5 6 7 8 9 10
s-CC 219 203 345 494 560 628 580 7.05 884 882
s-NPC (a = .05 217 373 404 643 537 511 621 935 897 854
s-NPC (a = .10 191 443 434 326 599 693 639 717 689 7.85

(a = .05)
(a = 10)

s-NPC (a = .20) 2.39 3.67 3.50 3.51 6.35 4.70 5.91 7.82 8.84 8.32

(a ) 1.96 2.54 3.86 4.40 5.65 5.21 6.53 7.14 8.67 9.04

11 12 13 14 15 16 17 18 19 20

s-CC 19.80 21.75 21.36 16.34 18.79 21.53 22.60 18.89 17.26 23.31

(a ) 15.38 21.58 22.65 21.47 17.09 21.30 20.79 21.65 20.96 18.15

(a ) 20.66 23.62 18.73 23.01 21.69 19.03 23.05 18.83 20.77 20.33

s-NPC (a = .20) 20.81 17.65 21.73 21.67 17.50 21.30 20.30 22.75 18.18 23.84

(a ) 16.72 22.23 19.93 19.27 19.80 21.97 19.29 19.92 18.95 19.75

21 22 23 24 25 26 27 28 29 30

s-CC 19.34 19.63 22.10 17.26 22.18 25.03 22.69 18.33 20.51 21.31

s-NPC (e =.05) 2147 16.29 21.36 20.56 19.39 20.32 19.84 21.70 23.34 19.79
s-NPC («=.10) 19.62 18.80 19.10 21.55 19.98 22.81 18.93 18.44 19.91 20.95
s-NPC (o =.20) 21.59 15.89 20.22 20.88 21.44 1887 21.03 21.77 20.49 22.06
s-NPC («=.30) 20.50 21.82 22.03 1852 20.88 21.26 21.26 21.13 23.13 21.65

Table H.2: Average ranks of the d = 30 features by s-CC or s-NPC (with varying «) with
sample size N = 1000 under the Gaussian setting (15)—simulation study S1.

1 2 3 4 ) 6 7 8 9 10
s-CC 221 228 273 409 464 614 693 793 871 934
ssNPC (« = .05) 255 2,60 421 444 428 643 648 699 822 8.80
s-NPC (« = .10) 197 276 272 449 426 6.63 6.74 7.67 872 9.04
s-NPC (a = .20) 1.36 235 323 419 467 593 7.02 824 875 9.24
s-NPC (a = .30) 1.85 273 271 358 518 611 680 804 9.01 899

11 12 13 14 15 16 17 18 19 20
s-CC 18.65 18.19 20.78 19.92 2399 18.60 19.87 22.16 21.70 21.61

s-NPC (o = .05) 22.07 20.25 21.63 18.63 17.00 22.16 19.80 23.05 19.68 20.84
s-NPC (« = .10) 20.37 19.67 22.67 20.15 19.31 19.58 21.61 18.53 20.51 22.49
sNPC (« =.20) 19.10 20.26 18.08 20.69 22.15 22.65 18.19 21.55 23.79 20.48
sNPC (« =.30) 18.19 19.32 20.80 16.88 22.97 21.70 19.81 23.49 19.24 20.95

21 22 23 24 25 26 27 28 29 30
s-CC 20.73 21.62 20.33 19.17v 22.00 19.08 20.81 20.00 21.02 19.76

s-NPC (e =.05) 20.55 17.53 20.00 18.30 22.76 22.20 18.84 22.09 20.14 2247
s-NPC (o« =.10) 19.15 20.34 20.38 20.82 21.23 21.27 21.80 21.03 18.29 20.81
s-NPC («=.20) 20.59 18.04 21.27 19.80 21.80 20.29 19.80 23.33 19.71 1845
s-NPC («=.30) 20.39 20.00 21.47 20.23 21.91 21.71 18.88 22.39 19.32 20.35
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Table H.3: Average ranks of the d = 30 features by s-CC or s-NPC (with varying «) with
sample size N = 400 under the Chi-squared setting (16)—simulation study S2.

1 2 3 4 5 6 7 8 9 10
s-CC 1.10 214 285 397 498 599 699 798 9.00 10.01
sNPC (a=.05) 140 275 379 373 3.8 583 738 743 932 10.78
s-NPC (a=.10) 1.15 227 276 401 496 591 698 798 9.00 10.39
s-NPC (a«=.20) 1.15 2.01 293 397 499 598 700 799 899 10.10
sNPC (¢ =.30) 1.08 208 299 400 490 598 699 798 9.00 10.01

11 12 13 14 15 16 17 18 19 20
s-CC 20.56 19.80 22.54 21.97 20.63 20.80 1833 18.26 20.41 21.65

s-NPC (e =.05) 21.00 17.83 19.21 21.03 19.86 19.81 22.79 21.50 22.56 23.24
s-NPC (= .10) 17.67 24.46 1836 16.72 22.22 20.05 23.21 19.76 21.00 20.20
s-NPC («=.20) 19.10 25.31 21.22 19.55 20.19 20.17 2045 19.95 21.28 1941
s-NPC (e =.30) 1991 2246 20.62 21.77 20.49 1879 19.72 19.77 22.06 1842

21 22 23 24 25 26 27 28 29 30
s-CC 21.27 20.02 19.08 21.68 21.05 19.50 19.14 22.41 21.63 19.27

sNPC (o =.05) 18.84 20.55 20.00 21.93 19.52 19.11 1881 21.81 20.97 18.44

s-NPC (e =.10) 21.05 20.11 23.74 2093 16.57 20.58 22.53 19.00 23.53 17.88

s-NPC (e =.20) 20.98 19.77 18.05 1858 20.08 23.26 19.18 20.78 23.61 18.98

s-NPC (o =.30) 18.93 22.03 23.31 19.47 20.75 22.04 20.49 19.23 20.35 19.37
d =30, N =400
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Figure H.3: Rank distributions of the d = 30 features by s-CC or s-NPC (with varying «)
with sample size N = 400 under the Chi-squared setting (16)—simulation study S2.
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Table H.4: Average ranks of the d = 30 features by s-CC or s-NPC (with varying «) with
sample size N = 1000 under the Chi-squared setting (16)—simulation study S2.

1 2 3 4 5 6 7 8 9 10

s-CC 1.05 268 230 399 499 599 700 800 9.00 10.00
(« ) 144 238 228 399 495 599 722 777 899 10.12

( ) .05 270 228 399 499 599 701 799 9.00 10.01

s-NPC (a = .20) 1.07 247 3.06 341 500 6.00 700 800 9.00 10.00
( ) 1.06 220 317 3.63 497 598 700 800 9.00 10.00

11 12 13 14 15 16 17 18 19 20
s-CC 19.87 20.05 24.51 2230 23.43 23.26 18.01 1822 23.86 19.85

s-NPC (e =.05) 23.85 21.45 18.73 1845 1849 17.36 20.65 21.48 20.10 18.70
s-NPC (a=.10) 24.12 17.48 20.12 19.22 21.02 22,58 21.03 17.97 1797 20.29
s-NPC («=.20) 20.19 2491 20.15 2255 21.36 18.35 19.82 20.66 20.76 19.32
s-NPC (a=.30) 2250 22.12 23.15 2331 20.11 2251 19.61 18.88 19.52 19.91

21 22 23 24 25 26 27 28 29 30
s-CC 19.54 1813 19.57 2090 20.24 19.89 19.30 18.04 18.10 22.94

s-NPC (o =.05) 19.05 20.94 18.09 21.05 19.02 18.04 23.57 22.26 23.89 24.69
s-NPC (e =.10) 19.99 1839 17.08 20.04 20.31 18.84 22.61 22.38 23.93 24.63
s-NPC («=.20) 20.29 17.02 20.71 19.12 17.70 18.30 20.29 22.33 24.30 21.90
s-NPC («=.30) 20.54 19.42 16.57 18.70 20.48 20.09 22.57 17.09 19.93 22.98

d =30, N=1000
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Figure H.4: Rank distributions of the d = 30 features by s-CC or s-NPC (with varying «)
with sample size N = 1000 under the Chi-squared setting (16)—simulation study S2.
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Table H.5: Average ranks of the d = 30 features by s-CC, s-NPC (with varying «), or their

SVM variants with N = 1000 under the Gaussian setting with sampling bias (wi’omlation =5
and ﬂiample =.1) (17) and without feature correlations—simulation study S3. Undesirable

average ranks—i.e., the average ranks of the informative (first 10) features greater than
10 and the average ranks of the uninformative (latter 20) features smaller than 10—are
underlined.

1 2 3 4 ) 6 7 8 9 10

s-CC 210 4.05 6.06 508 675 789 838 15.85 13.04 14.30

s-NPC (a¢=.05) 330 320 353 369 554 6.22 720 804 6.87 7.67
(e=.10) 2,50 208 430 479 487 593 779 708 774 7.98

s-NPC (e =.20) 217 3.04 282 475 541 6.52 655 642 832 8.99
s-NPC (a = .30) 191 229 3.7 475 528 589 740 811 830 7.30
s-CC-SVM 238 243 412 526 7.00 873 10.04 11.40 12.44 13.45

s-NPC-SVM (a = .05) 2.02 252 386 459 592 526 6.15 850 9.12 12.08
s-NPC-SVM (a = .10) 1.84 358 279 479 5.01 5.86 713 898 13.22 13.35
s-NPC-SVM (a = .20) 2.01 341 292 506 509 940 588 884 14.66 15.12
s-NPC-SVM (a = .30) 2.02 326 3.78 536 841 6.66 7.28 11.48 14.17 19.34
11 12 13 14 15 16 17 18 19 20

s-CC 16.13 18.25 20.37 2220 23.07 20.88 17.31 18.61 18.83 20.15

s-NPC (e =.05) 21.19 21.63 17.19 21.28 19.35 17.98 18.37 20.21 19.73 21.66
s-NPC (o =.10) 22.31 21.38 19.78 22.60 18.04 17.45 16.55 19.62 17.76 21.27
s-NPC (o =.20) 2322 20.31 1875 1842 18.15 1871 21.65 19.06 16.69 21.55
s-NPC (o =.30) 23.23 19.66 19.66 18.36 19.32 20.16 15.93 15.84 2274 21.39
s-CC-SVM  14.45 15.46 16.47 1748 1850 19.50 20.53 21.54 22.55 23.57
s-NPC-SVM (a =.05) 17.78 20.17 20.39 18.28 19.14 20.46 18.75 20.50 21.01 19.25
s-NPC-SVM (o =.10) 18.17 14.39 19.19 17.82 19.96 2291 21.36 16.34 20.66 19.80
s-NPC-SVM (o =.20) 16.62 17.10 19.87 20.25 22.43 17.03 1644 21.85 20.60 20.53
s-NPC-SVM (o =.30) 21.64 12.28 19.18 2397 1891 1776 1741 17.58 20.06 22.68
21 22 23 24 25 26 27 28 29 30

s-CC 17.60 17.09 21.92 18.29 17.58 20.84 22.87 14.73 1852 16.28

s-NPC (e =.05) 24.11 1894 21.15 1850 19.86 23.07 18.39 22.99 21.25 22.86
s-NPC (a=.10) 24.67 20.20 20.06 21.97 2292 21.94 1697 23.18 18.36 22.93
s-NPC (o =.20) 17.93 22.79 21.60 24.64 21.47 21.45 22.99 19.35 21.39 19.88
s-NPC (o =.30) 23.30 24.46 22.10 2147 21.08 2245 17.56 22.86 19.85 18.58
s-CC-SVM 2457 2556 26.52 27.16 26.87 2230 19.29 13.19 6.00 6.24
s-NPC-SVM (o =.05) 19.82 21.72 21.85 20.42 19.86 23.08 19.36 20.20 21.09 21.84
s-NPC-SVM (a =.10) 20.73 19.62 22.84 22.10 19.65 1814 21.00 19.09 21.36 23.34
s-NPC-SVM (a =.20) 20.11 21.57 16.15 20.37 20.96 19.04 2047 18.85 21.67 20.69
s-NPC-SVM (o =.30) 1797 18.64 18.00 19.46 19.88 20.83 19.39 17.25 20.64 19.71
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Figure H.5: Rank distributions of the features under the Gaussian setting with d = 30,
N = 1000, and sampling bias (TrIfOpulamon = .5 and ﬂia‘mple =.1) (17), and without feature

correlations—simulation study S3.
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Table H.6: Average ranks of the d = 30 features by s-CC, s-NPC (with varying «), their
SVM variants, or the RF algorithm’s feature importance measures and SHAP value, with

sample size N = 1000 under the Gaussian setting with sampling bias (7} opulation 5

and Sample = .1) (17) and a Toeplitz-type feature covariance matrix: features i and j
have a correlatlon pij = 9li=il 4 5 =1,...,30—simulation study S3. Undesirable average
ranks—i.e., the average ranks of the 1nformative (first 10) features greater than 10 and the

average ranks of the uninformative (latter 20) features smaller than 10—are underlined.

1 2 3 4 5 6 7 8 9 10

s-CC 313 412 568 732 880 1042 12.32 14.34 16.20 17.54

s-NPC (a = .05) 213 277 355 427 510 594 6.75 751 841 924
s-NPC (a = .10) 1.85 260 331 424 516 6.01 677 7.64 838 9.18
s-NPC (a = .20) 1.80 248 329 413 509 596 688 7.6 848 9.25
s-NPC (a = .30) 1.80 2,57 327 411 505 6.01 6.79 7.70 852 9.20
s-CC-SVM 283 3.75 484 6.24 752 885 10.27 11.52 12.74 13.80
s-NPC-SVM (« = .05) 2.03 277 350 437 526 631 752 879 10.15 12.61
s-NPC-SVM («a = .10) 1.85 263 350 436 535 651 781 9.06 10.89 13.59
s-NPC-SVM (a = .20) 1.96 272 3.60 4.57 5381 7.05 868 10.29 11.85 14.76
s-NPC-SVM (« = .30) 209 3.05 38 516 6.25 805 935 11.24 13.61 15.26
RF-MeanDecreaseAccuracy — 7.61 6.73 6.12 6.00 594  6.05 6.56  6.82 7.06 743
RF-MeanDecreaseGini  1.82 3.80 566 646 6.76 729 746 7.87 820 8.42
RF-SHAP 247 6.12 6.74 704 719 792 864 9.36 10.69 10.80

11 12 13 14 15 16 17 18 19 20

s-CC 18.95 19.98 20.40 2048 20.72 20.87 20.66 20.28 19.94 19.28

ssNPC (a=.05) 19.96 19.87 20.18 20.34 20.29 20.52 20.16 20.32 20.43 20.39
s-NPC («=.10) 20.34 20.13 20.28 20.73 20.09 20.53 20.38 20.47 20.74 20.09
s-NPC (« =.20) 20.45 20.37 20.62 20.70 20.45 20.01 20.52 20.38 20.53 20.58
sNPC («=.30) 20.41 20.46 20.46 20.46 20.56 20.74 20.39 20.35 20.60 20.66
s-CC-SVM  14.86 15.86 16.88 17.89 1891 19.93 20.92 21.96 22.96 23.93
ssNPC-SVM (« =.05) 18.19 19.27 19.53 19.71 19.39 19.98 19.79 20.07 20.28 20.28
s-NPC-SVM (o =.10) 18.50 19.23 19.21 19.30 19.64 19.69 19.88 19.78 20.05 20.09
s-NPC-SVM (« =.20) 18.02 18.87 18.82 19.14 19.88 19.77 19.23 19.96 19.68 19.63
sNPC-SVM (« =.30) 17.66 17.92 1876 18.79 18.63 19.46 19.45 19.52 19.66 19.32
RF-MeanDecreaseAccuracy 8.06 9.28 11.83 14.35 16.78 18.10 19.02 19.92 20.53 21.24
RF-MeanDecreaseGini ~ 8.77  9.78 12.88 15.79 17.88 19.81 20.30 20.93 21.81 21.74
RF-SHAP 12.20 14.53 16.04 16.66 16.04 15.20 15.12 14.88 15.68 16.48

21 22 23 24 25 26 27 28 29 30

s-CC 19.11 1856 1873 17.88 17.96 16.66 15.66 14.71 12.79 11.49

s-NPC («=.05) 20.61 20.16 20.36 20.73 20.96 20.70 20.38 20.75 21.09 21.10
sNPC («=.10) 20.34 20.21 20.62 20.78 20.53 20.38 20.66 20.77 21.03 20.78
sNPC (. =.20) 20.39 20.52 20.62 20.63 20.35 20.48 2040 20.79 20.32 20.88
ssNPC (. =.30) 20.34 20.19 20.84 2044 20.41 20.48 2044 20.62 20.51 20.63
s-CC-SVM  24.73 25.37 25.34 24.59 2294 20.03 16.53 12.82 9.18 7.00
s-NPC-SVM (« =.05) 20.04 20.59 20.14 20.43 20.70 20.57 20.63 20.34 20.63 21.14
s-NPC-SVM (« =.10) 20.32 20.18 20.09 20.18 20.09 20.23 20.43 20.67 20.89 20.99
sNPC-SVM (o =.20) 19.77 19.97 19.82 19.73 20.37 20.18 20.02 20.29 20.12 2043
s-NPC-SVM (o =.30) 19.56 19.87 19.67 20.00 19.98 19.72 19.88 19.95 20.00 19.27
RF-MeanDecreaseAccuracy 21.71 2235 22.54 23.00 23.33 23.97 24.37 25.15 25.81 27.34
RF-MeanDecreaseGini  22.21 22.29 22.89 23.20 23.20 23.37 23.39 23.48 23.70 23.87
RF-SHAP 17.66 19.02 20.30 21.58 22.87 24.18 25.48 26.75 28.02 29.37
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Table H.7: Average ranks of the first 30 features by s-CC or s-NPC (with varying «) with
d =500 and N = 400 under the Gaussian setting (15)—simulation study S4.

1 2 3 4 5 6 7 8 9 10

s-CC 1.51 3.39 3.25 4.82 4.43 6.47 6.59 6.80 8.53 9.86
s-NPC (a = .05) 2.48 3.14 3.81 4.57 4.88 33.75 87.81 177.79 136.12 183.96
s-NPC (a = .10) 2.21 2.34 3.84 4.08 5.56 6.70 6.61 19.97  116.98 51.27
s-NPC (a = .20) 1.87 2.55 3.60 3.76 5.41 6.35 6.67 7.51 8.61 46.10
s-NPC (a = .30) 1.43 3.29 3.44 4.54 5.52 6.25 6.86 5.91 8.34 11.48
11 12 13 14 15 16 17 18 19 20

s-CC 234.07 244.32 213.54 213.01 183.60 249.73 292.85 269.15 328.63 240.94
s-NPC (a = .05) 270.19 25246 174.22 211.67 125.66 241.64 317.62 340.59 231.31 205.63
s-NPC (o = .10) 254.37 300.12 317.98 213.02 263.69 223.81 296.64 279.72 288.77 234.69
s-NPC (o = .20) 223.00 253.27 287.14 205.65 249.97 187.17 312.73 224.19 265.96 238.16
s-NPC (o =.30) 209.82 192.70 206.62 271.58 236.41 263.22 189.90 299.44 238.57 269.64
21 22 23 24 25 26 27 28 29 30

s-CC 237.12 273.42 276.32 305.19 207.06 267.22 219.78 287.79 315.43 288.44
s-NPC (a = .05 272.94 259.56  231.43 253.27 209.29 238.76 339.55 301.08 214.29 286.21

(a )

(a ) 292.65 184.08 305.28 17542 199.44 269.48 238.83 146.56 298.10  263.97
s-NPC (a =.20) 224.42 243.56 290.61 203.90 300.27 243.51 208.30 241.41 288.29 277.29

(a ) 276.51 224.59 223.39 270.17 208.61 248.46 236.14 253.09 295.42 198.65
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Figure H.6: Distributions of s-CC or s-NPC (with varying «) values of one feature, whose
class-conditional distributions are X|(Y = 0) ~ N (—1.5,22) and X|(Y = 1) ~ N(1,2?)
and whose class prior is IP(Y = 1) = .5, with varying B (number of random splits) and N
(sample size) across 1000 independent simulations. Based on these distributions, B = 11 is a
reasonable choice.

49



L1, CHEN, AND TONG

Table H.8: Average ranks of the first 20 features by s-CC, s-NPC (with varying «), their
SVM variants, or the RF algorithm’s feature importance measures (the mean decrease in
accuracy and the mean decrease in Gini index) with d = 10,000 and N = 200 under the
Gaussian setting (15)—simulation study S5. The average ranks of the top 10 features, if
exceeding 10 (i.e., undesirable), are underlined.

1 2 3 1 5
s-CC 1.99 1.75 123 193 6.24

s-NPC (a = .10) 1.36 5.38 3.30 3.74 457
s-NPC (a = .20) 1.86 2.03 5.22 5.02 5.70
s-NPC (a = .30) 2.22 1.42 5.80 7.22 6.55
S-CC-SVM 1.88 1.74 4.39 5.31 6.12
sNPC-SVM (o = .10) 283  64.98 23379 43520 1231.04
s NPC-SVM (o = .20) 2.15 1.69 5.23 5.80 7.43

s-NPC-SVM (« = .30) 2.22 1.47 5.77 7.37 6.69
RF _MeanDecreaseAccuracy 1.97 2.48 4.73 5.37 5.92

RF_MeanDecreaseGini 1.94 3.02 4.60 5.50 5.75
6 7 8 9 10

s-CC 6.62 6.81 7.29 7.15 7.99

s-NPC (a = .10) 66.50 964.71 2715.94 2978.16 3759.18
s-NPC (a = .20) 5.27 7.20 7.00 6.68 601.75

s-NPC (a = .30) 5.91 6.34 6.10 6.86 6.58
S-CC-SVM 7.07 6.70 6.79 7.05 7.95
s-NPC-SVM (a =.10) 1416.56 1621.85 1660.69 2508.79 3242.82

s-NPC-SVM (« = .20) 7.07 6.51 6.95 109.10 754.96
s-NPC-SVM (« = .30) 6.79 6.65 6.19 6.26 15.98

RF _MeanDecreaseAccuracy 6.08 6.57 6.66 7.40 7.82
RF _MeanDecreaseGini 5.60 6.75 6.91 7.22 37.34

11 12 13 14 15

ssCC 5458.50 3926.18 4217.73 4814.75 3882.88

s-NPC (o =.10) 3852.06 4512.05 4101.91 4421.95 4479.34
s-NPC (o =.20) 4155.99 4768.53 4547.92 3807.99 4684.78
s-NPC (o =.30) 4710.67 4276.04 4762.01 4787.34 4649.83

S-CC-SVM  4706.49 3694.43 4528.69 4490.41 4949.34

s-NPC-SVM (a =.10) 3136.52 3635.93 3730.52 4193.05 3933.72
s-NPC-SVM (a = .20) 4153.33 4368.59 5165.12 4748.92 5557.16
s-NPC-SVM (a =.30) 6235.73 5586.78 6055.84 6029.32 5565.73

RF _MeanDecreaseAccuracy 4764.65 5284.11 5571.87 5327.75 4956.21
RF _MeanDecreaseGini  4944.51 5281.69 5204.39 5292.28 5313.57

16 17 18 19 20

s-CC  4783.62 4933.65 4910.66 4917.21 4713.67

(e =.10) 4265.04 3983.15 4408.34 4238.35 4422.13

s-NPC (o =.20) 427542 4867.43 4489.88 4537.64 4582.16
a =.30) 5304.28 4825.68 4861.39 5025.82 4908.58
S-CC-SVM  5152.39 4960.78 5054.89 5181.85 4810.33

s-NPC-SVM (« = .10) 4481.82 5014.15 479449 4096.55 4571.58
s-NPC-SVM (a =.20) 5165.05 5517.70 5070.07 5115.56 4998.20
s-NPC-SVM (a =.30) 573740 5872.29 5109.93 5444.06 4901.91
RF_MeanDecreaseAccuracy 5382.33 4612.39 4546.59 4555.47 4549.88
RF _MeanDecreaseGini  6218.43 5119.48 5264.91 4459.50 5310.33
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Figure H.7: 80% percentile (from 5000 independent simulations) of absolute differences
between sample-level criteria and their population counterparts for four features (F.5) with
varying sample size N. The decay rate is close to O(N~1/2).
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