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SUMMARY
In single-cell RNA sequencing (scRNA-seq), doublets formwhen two cells are encapsulated into one reaction
volume. The existence of doublets, which appear to be—but are not—real cells, is a key confounder in
scRNA-seq data analysis. Computational methods have been developed to detect doublets in scRNA-seq
data; however, the scRNA-seq field lacks a comprehensive benchmarking of these methods, making it diffi-
cult for researchers to choose an appropriate method for specific analyses. We conducted a systematic
benchmark study of nine cutting-edge computational doublet-detection methods. Our study included 16
real datasets, which contained experimentally annotated doublets, and 112 realistic synthetic datasets.
We compared doublet-detection methods regarding detection accuracy under various experimental set-
tings, impacts on downstream analyses, and computational efficiencies. Our results show that existing
methods exhibited diverse performance and distinct advantages in different aspects. Overall, the Doublet-
Finder method has the best detection accuracy, and the cxds method has the highest computational effi-
ciency. A record of this paper’s transparent peer review process is included in the Supplemental Information.
INTRODUCTION

Single-cell RNA sequencing (scRNA-seq) is a family of emerging

sequencing technologies that have revolutionized biomedical

sciences by revealing genome-wide gene expression levels

within each of thousands to millions of individual cells (Saliba

et al., 2014; Kolodziejczyk et al., 2015; Vallejos et al., 2015).

Since its invention, scRNA-seq has become an essential exper-

imental approach to investigate cell-to-cell heterogeneity, distin-

guish cell types and subtypes, identify cell-type-specific genes,

and reveal cellular dynamic processes (Liu and Trapnell, 2016;

Luecken and Theis, 2019). Among various scRNA-seq experi-

mental protocols, two major types—droplet microfluidics and

well-based protocols—have gained popularity because of their

high throughput, low cost per cell, and ability to detect unique

mRNA transcripts via uniquemolecular identifiers (UMIs) (Hwang

et al., 2018; Chen et al., 2019). Both types of protocols distribute

a cell suspension into reaction volumes (droplets or wells) to

hopefully encapsulate one cell per volume (i.e., a singlet), and

then mRNA molecules in each volume are labeled by a unique

droplet barcode. For simplicity, we will refer to a reaction volume

as a droplet in the following text.

During the distribution step of an scRNA-seq experiment,

however, one droplet may encapsulate more than one cell,

creating a so-called doublet that is disguised as a single cell

(Luecken and Theis, 2019). The doublet rate (i.e., the proportion
of doublets) in a scRNA-seq experiment depends on the

throughput and protocol, and doublets may constitute as many

as 40% of droplets (Bernstein et al., 2020). There are two major

classes of doublets: homotypic doublets, which are formed by

transcriptionally similar cells; and heterotypic doublets, which

are formed by cells of distinct types, lineages, or states (McGin-

nis et al., 2019a, 2019b; Wolock et al., 2019). Compared with ho-

motypic doublets, heterotypic doublets are generally easier to

detect due to their distinct gene expression profiles unlike those

of singlets (McGinnis et al., 2019a, 2019b).

The existence of doublets, especially heterotypic doublets, in

scRNA-seq datasets may confound downstream analysis; for

example, doublets can form spurious cell clusters, interfere

with differentially expressed (DE) gene analysis, and obscure

the inference of cell developmental trajectories (Luecken and

Theis, 2019; Wolock et al., 2019). Several experimental tech-

niques have been developed to detect doublets in scRNA-seq

using droplet barcodes. Example techniques include cell hash-

ing (doublets are the droplets whose barcodes are associated

with more than one oligo-tagged antibody) (Stoeckius et al.,

2018), species mixture (doublets are the droplets whose barco-

des are associated with more than one species) (Wolock et al.,

2019), demuxlet (doublets are the droplets whose barcodes

are associated with mutually exclusive sets of SNPs) (Kang

et al., 2018), and MULTI-seq (doublets are the droplets whose

barcodes are associated with more than one lipid-tagged index)
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(McGinnis et al., 2019a, 2019b). However, these techniques

require special experimental preparation, extra costs, and

time, and they are not guaranteed to remove all doublets, e.g.,

demuxlet cannot detect the doublets formed by cells from the

same individual. Moreover, they cannot remove doublets from

existing scRNA-seq data.

Realizing the limitations of experimental strategies, re-

searchers have attempted to tackle this doublet challenge from

an alternative perspective: developing computational methods

to detect doublets from already-generated scRNA-seq data

(Luecken and Theis, 2019). So far, nine doublet-detection

methods have been developed (with software packages and

full-text manuscripts) based on distinct algorithm designs (Lun

et al., 2016; Gayoso and Shor, 2018; Bais and Kostka, 2020; De-

Pasquale et al., 2019; McGinnis et al., 2019a, 2019b; Wolock

et al., 2019; Bernstein et al., 2020) (Table 1). Here is a brief sum-

mary of these methods except hybrid, which is a combination of

two methods: bcds and cxds. Seven out of the eight methods

(with cxds as the only exception) first generate artificial doublets

by combining gene expression profiles of two randomly selected

droplets. Except DoubletDecon, the other six methods subse-

quently define a doublet score for each original droplet as the

level of similarity the droplet has to those artificial doublets;

next, with a pre-defined or user-specified threshold, they detect

doublets as the original droplets whose doublet scores exceed

the threshold. The key difference of the seven artificial-

doublet-based methods is how they distinguish original droplets

from artificial doublets: Five of them use classification algorithms

(Scrublet, doubletCells, and DoubletFinder use k-nearest neigh-

bors [kNN]; bcds uses gradient boosting; Solo uses neural net-

works), DoubletDetection uses the hypergeometric test, and

DoubletDecon decides whether an original droplet resembles

an artificial doublets based on its deconvolution algorithm (unlike

other methods, DoubletDecon identifies doublets without

providing doublet scores). As the only method that does not

generate artificial doublets, cxds defines doublet scores based

on gene co-expression, and similar to the other six doublet-

score-based methods, it subsequently thresholds doublet

scores to identify doublets.

While each computational doublet-detection method was

shown to perform well under certain metrics by its developers,

currently there is no systematic, third-party benchmarking of

these methods’ doublet-detection accuracy, effects on down-

stream analysis, or computation efficiency. As a result, users

lack guidelines to choose an appropriate doublet-detection

method for their analysis task. Hence, a detailed assessment

of existing doublet-detection methods is in great demand. In

addition to assisting users, it will provide useful guidance for

computationalists to improve existing methods or develop new

methods.

Here, we conducted a comprehensive benchmark study of

computational methods for doublet detection. We evaluated

nine cutting-edge methods—doubletCells (Lun et al., 2016),

Scrublet (Wolock et al., 2019), cxds (Bais and Kostka, 2020),

bcds (Bais and Kostka, 2020), hybrid (Bais and Kostka, 2020),

Solo (Bernstein et al., 2020), DoubletDetection (Gayoso and

Shor, 2018), DoubletFinder (McGinnis et al., 2019a, 2019b),

and DoubletDecon (DePasquale et al., 2019)—in three aspects.

First, we compared their overall doublet-detection accuracy us-
2 Cell Systems 12, 1–19, February 17, 2021
ing two criteria: the area under the precision-recall curve

(AUPRC) and the area under the receiver operating character-

istic curve (AUROC), on a collection of 16 real scRNA-seq data-

sets containing experimentally annotated doublets. To further

evaluate the performance of these methods under various

experimental settings, we simulated 80 realistic scRNA-seq da-

tasets and evaluated the AUPRC and AUROC of each method

under a wide range of doublet rates, sequencing depths,

numbers of cell types, and cell-type heterogeneity levels. Sec-

ond, considering that the ultimate goal of doublet detection is

to improve the accuracy of downstream scRNA-seq data ana-

lyses, we compared these nine doublet-detection methods in

terms of their impacts on four downstream analyses: DE gene

analysis, highly variable gene identification, cell clustering, and

cell trajectory inference. We simulated seven doublet-containing

scRNA-seq datasets with pre-defined cell types, DE genes, and

cell trajectories. Then, we evaluated the accuracy of the four

downstream analyses by their state-of-the-art computational

methods before and after doublets were removed by each

doublet-detection method. The rationale is that a good

doublet-detection method should improve the accuracy of

downstream analyses after its use. Third, we compared the

computational efficiency of doublet-detection methods in as-

pects, including distributed computing, speed, scalability, stabil-

ity, and usability.

In summary, the nine doublet-detection methods exhibited a

large variation in their performance under each evaluation crite-

rion. First, the benchmarking result of detection accuracy shows

that there is still room for improvement: The best method Dou-

bletFinder achieved amean AUPRC value of 0.537 on 16 real da-

tasets. On simulated datasets, most methods performed better

on datasets with higher doublet rates, larger sequencing depths,

more cell types, or greater heterogeneity between cell types.

Second, we observed that doublet removal by most methods

indeed improved the identification of DE genes and highly vari-

able genes, the elimination of spurious cell clusters, and the

inference of cell trajectories; yet, the degree of improvement var-

ied from method to method. Third, most methods except cxds

had deteriorated performance under distributed computing,

because global data information was lost in each distributed

data batch. The cxds method also performed the best in terms

of speed and scalability. Overall, DoubletFinder is highlighted

as the best computational doublet-detectionmethod for its high-

est detection accuracy and largest improvement on downstream

analyses, while cxds is found as the most computationally effi-

cient method in our benchmark.

RESULTS

Doublet-Detection Accuracy on Real scRNA-Seq
Datasets
To evaluate the overall doublet-detection accuracy of the nine

methods, we collected 16 public scRNA-seq datasets with dou-

blets annotated by experimental techniques (Kang et al., 2018;

Stoeckius et al., 2018; McGinnis et al., 2019a, 2019b; Wolock

et al., 2019) (STAR Methods). Our collection covers a variety of

cell types, droplet and gene numbers, doublet rates, and

sequencing depths, thus representing varying levels of difficulty

in detecting doublets from scRNA-seq data (Table S1). To the



Table 1. An Overview of Nine Computational Doublet-Detection Methods Evaluated in this Study

Method

Programming

Language Version

Artificial

Doublets Dimension Reduction

Guidance on

Threshold Selection Algorithm Description

Scrublet

(Wolock et al., 2019)

Python 0.2.1 yes principal component

analysis (PCA)

yes It generates artificial doublets by adding

two randomly selected droplets’ gene

expression profiles. The doublet score of

each droplet is defined as the proportion of

artificial doublets among its k-nearest

neighboring droplets in the principal

component (PC) space, whose number of

dimensions is specified by users.

doubletCells

(Lun et al., 2016)

R 1.16.0 yes PCA no It generates artificial doublets by adding

two randomly selected droplets’ gene

expression profiles. For each droplet, it

calculates the proportion of artificial

doublets, pA, in a neighborhood in the PC

space, whose number of dimensions is

specified by users. The radius of the

neighborhood is set to be the median

distance from the droplet to its 50th nearest

neighbor. The doublet score of each droplet

is defined as pA=ð1� pAÞ2.
cxds (Bais and

Kostka, 2020)

R 1.2.0 no highly variable genes no It calculates a p value for each pair of genes

under the null hypothesis that the number of

droplets where exactly one of the two genes

is expressed follows a binomial distribution.

The doublet score of each droplet is defined

as the sum of negative (natural) log p values

of co-expressed gene pairs, where two

genes in each pair both have non-zero

expression levels in this droplet.

bcds (Bais and

Kostka, 2020)

R 1.2.0 yes highly variable genes no It generates artificial doublets by adding

two randomly selected droplets’ gene

expression profiles and pools these artificial

doublets with the original droplets. Then it

trains a gradient boosting classifier to

classify the pooled droplets into original

droplets and artificial doublets. The doublet

score of each droplet is defined as the

predicted probability of being an artificial

doublet.

Hybrid (Bais and

Kostka, 2020)

R 1.2.0 – – no It normalizes the doublet scores of cxds and

bcds to values between 0 and 1. The

doublet score of each droplet is defined as

the sum of the two normalized doublet

scores.

(Continued on next page)
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Table 1. Continued

Method

Programming

Language Version

Artificial

Doublets Dimension Reduction

Guidance on

Threshold Selection Algorithm Description

DoubletDetection

(Gayoso and Shor, 2018)

Python 2.5.2 yes PCA no It generates artificial doublets by adding two

randomlyselecteddroplets’ geneexpression

profiles and pools these artificial doublets

with the original droplets. Then it conducts

Louvain clustering on the pooled droplets.

For each droplet cluster, it performs a

hypergeometric test and computes p value =

1 - hypergeom.cdf(N, K, n, k), where N is the

number of droplets, K is the number of

artificial doublets, n is the number of droplets

in this cluster, and k is the number of artificial

doublets in this cluster. All droplets in this

cluster will have the same p value. It repeats

the above steps (starting from artificial

doublet generation) for a user-specified

number of runs. The doublet score of each

droplet is defined as its average p value

across all runs.

DoubletFinder

(McGinnis et al.,

2019a, 2019b)

R 2.0.3 yes PCA yes It generates artificial doublets by averaging

two randomly selected droplets’ gene

expression profiles. The doublet score of

each droplet is defined as the proportion of

artificial doublets among its k-nearest

neighboring droplets in the PC space, whose

number of dimensions is specified by users.

The number of neighbors, k, is selected by

maximizing the mean-variance normalized

bimodality coefficient (Pfister et al., 2013) of

the distribution of doublet scores.

Solo (Bernstein et al., 2020) Linux command 0.5 yes variational

autoencoder

0.5 by default For a randomly selected droplet pair, it

estimates a multinomial distribution whose

number of trials equals the sum of total

counts in these two droplets and whose

event probabilities equal the gene

proportions calculated from the mean gene

expression profile of these two droplets.

Then it generates artificial doublets by

randomly sampling a gene expression

profile from this multinomial distribution.

That is, the number of artificial doublets

equals the number of randomly selected

droplet pairs. These artificial doublets are

pooled with the original droplets. Then it

trains a neural network to classify the

pooled droplets into original droplets and

artificial doublets. The doublet score of

each droplet is defined as the predicted

probability of being an artificial doublet.

(Continued on next page)
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best of our knowledge, our collection is by far the most compre-

hensive set of scRNA-seq data that contains experimentally vali-

dated doublets, and it can serve as a benchmark standard for

future method development.

To benchmark the nine methods, we included two baseline

methods, which simply use the library size (lsize) and the number

of expressed genes (ngene) of each droplet as their respective

doublet-detection criterion (Luecken and Theis, 2019; Wolock

et al., 2019). Except for DoubletDecon, all the methods output

a doublet score for each droplet (Table 1; The two baseline

methods have lsize and ngene as their doublet scores; a droplet

with a larger score is more likely a doublet), and we defined their

detection accuracy as their AUPRC and AUROC values (STAR

Methods). We found that all the methods successfully output

their identified doublets from all the 16 datasets except

DoubletDetection, which could not run on the pdx-MULTI data-

set. Across the 16 datasets, each method exhibited a large vari-

ance in its detection accuracy, and no method consistently

achieved the top performance (Figures 1A and 1B; Tables S2

and S3). Compared with the two baseline methods, doubletCells

was the only method that did not outperform them on a majority

of datasets, while Solo and hybrid were the only two methods

that consistently outperformed them on all datasets (Table S4).

Overall, DoubletFinder and Solo achieved the highest mean

AUPRC and AUROC values across datasets, respectively (Ta-

bles S2 and S3). DoubletFinder was also the top-performing

method on the most datasets in terms of both AUPRC and

AUROC (Table S4). We note that all the methods had AUPRC

values much lower than their AUROC values on every dataset,

an expected phenomenon given the imbalance between the

number of singlets and doublets. Since AUROC is an overly opti-

mistic measure of accuracy under such imbalanced scenarios

(Branco et al., 2016), we will focus on AUPRC in the following

discussion.

The highest AUPRC value on each dataset ranged from 0.239

to 1.000, with a mean of 0.570 across the 16 datasets (Table S2).

This large discrepancy between datasets is further exemplified

by the fact that several methods achieved almost perfect

AUPRC values on two datasets: hm-12k and hm-6k, while all

the methods performed poorly on another two datasets:

pbmc-1B-dm and J293t-dm (with AUPRC values under 0.335).

A likely reason for this discrepancy is the annotation of doublets

in these real datasets. In hm-12k and hm-6k, doublets were an-

notated as the droplets that contain cells of two species, so all

annotated doublets were heterotypic and easy to identify (Bais

and Kostka, 2020; McGinnis et al., 2019a, 2019b; Wolock

et al., 2019; Bernstein et al., 2020). In contrast, doublets anno-

tated in the other datasets might have included homotypic dou-

blets that are difficult to identify, posing a challenge to doublet-

detectionmethods; or theymight havemissed certain heterotyp-

ic doublets (e.g., if doublets are defined as the droplets that

contain cells from two individuals, then heterotypic doublets

formed by cells of different types within an individual would be

missed), creating a downward bias in the calculation of detection

accuracy (see further discussion in the STAR Methods). In addi-

tion, varied data quality and cell heterogeneity pose different

levels of difficulty to doublet detection. The highest mean

AUPRC value, which was achieved by DoubletFinder, was only

0.537. These results demonstrate the general difficulty in
Cell Systems 12, 1–19, February 17, 2021 5
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Figure 1. Evaluation of the Eight Doublet Detection Methods (Except DoubletDecon) Using 16 Benchmark scRNA-seq Datasets

(A and B) Performance (AUPRC and AUROC values) of eachmethod applied to benchmark datasets, with (A) showing the distributions and (B) showing the values

per dataset (white squares indicating failed runs); two baseline methods (lsize and ngene) are included in the comparison.

(C) Precision, recall, and TNRs of each method under the 10%, 20%, or 40% identification rate, which is the percentage of droplets that received the highest

doublet scores and were identified as doublets.
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detecting doublets from scRNA-seq data and suggest possible

room for improvement by future method development.

Motivated by the fact that doublets are identified based on a

single threshold in practice, we further examined the detection
6 Cell Systems 12, 1–19, February 17, 2021
accuracy of doublet-detection methods under a specific identi-

fication rate, i.e., the percentage of droplets identified as dou-

blets. For each method, the top 10%, 20%, and 40% droplets

with the highest doublet scores were identified as doublets,
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and the corresponding precision, recall, and true negative rates

(TNRs) were calculated (Figure 1C; Table S5). As expected,

higher identification rates led to higher recall and lower TNR

values. Interestingly, the precision decreased as the identifica-

tion rate increased, a phenomenon suggesting that all doublet-

detectionmethods tend to assign higher doublet scores to anno-

tated doublets and are thus desirable (Figure 1C). The compari-

son of doublet-detection methods gave a result consistent with

that based on the overall detection accuracy measures, AUPRC

and AUROC. DoubletFinder and Solo were still the top two

methods in terms of the mean precision, recall, and TNR, where

the mean was calculated across the 16 datasets (Table S5).

Since DoubletDecon cannot output doublet scores, we could

not calculate its AUPRC or AUROC on a dataset, and thus,

excluded it from the previous comparison. To fairly compare

DoubletDecon with other methods, we ran DoubletDecon on

every dataset and recorded its number of identified doublets if

successful; then, we thresholded the doublet scores of other

methods so that they identified the same number of doublets

as DoubletDecon did. Based on the resulting doublets identified

by eachmethod from every dataset, we calculated the precision,

recall, and TNR (STARMethods). By these three criteria, Double-

tDecon and doubletCells did not outperform the baseline

methods lsize and ngene. Among the other seven methods,

Solo and DoubletFinder achieved the highest precision and

TNRs, while Solo and hybrid obtained the highest recall rates

(Figure S1A; Tables S6–S8). Moreover, we observed that Dou-

bletDecon failed to run on four datasets (hm-12k, pbmc-2ctrl-

dm, J293t-dm, and nuc-MULTI) and tended to overestimate

the number of doublets (Table S9). Our results suggest that Dou-

bletDecon needs improvement in its accuracy and robustness.

Adding the functionality that outputs doublet scores will also

enhance the usability of DoubletDecon, because users can

then have the flexibility to decide the number of doublets to be

detected and removed based on their preference and knowl-

edge (Bloom, 2018).
Doublet-Detection Accuracy on Synthetic scRNA-Seq
Data under Various Experimental Settings and
Biological Conditions
To thoroughly evaluate the performance of doublet-detection

methods under a wide range of experimental settings and biolog-

ical conditions, we utilized scDesign (Li and Li, 2019), a statistical

simulator that generates realistic scRNA-seq datasets well

mimicking real data generated by a variety of scRNA-seq experi-

mental protocols. It is advantageous to use synthetic data to

benchmark doublet-detection methods, because we would

have the access to ground-truth doublets and the flexibility to

vary experimental settings and biological conditions in a compre-

hensive way. Specifically, we generated 80 scRNA-seq datasets

with varying doublet rates (i.e., percentages of doublets),

sequencing depths, cell types, and between-cell-type heteroge-

neity levels (STAR Methods). Except for DoubletDecon, we

applied every doublet-detection method to all these synthetic da-

tasets and calculated its AUPRC values to measure its accuracy.

Figure 2A shows how the performance of every method changed

as we varied the doublet rate, the sequencing depth, the number

of cell types, or the between-cell-type heterogeneity level.
First, all the eight methods had improved accuracy as the

doublet rate increased. This result is not surprising, as these

methods all formulated the doublet-detection problem, explic-

itly or implicitly, as a binary classification problem where the

two classes are singlets and doublets. The more balanced

the two classes are in size, the easier the binary classification

is, in general. Given the fact that under both droplet microflui-

dics and well-based scRNA-seq protocols, doublets are more

likely to form as the number of cells increases (Zheng et al.,

2017; Luecken and Theis, 2019; Wolock et al., 2019), our

result suggests that doublet-detection methods would work

more effectively on scRNA-seq datasets with more cells (or

droplets). This finding agrees with our previous result that all

the methods performed the worst on the J293t-dm dataset,

which contains only 500 droplets, the fewest among all the

16 datasets.

Second, we found that the performance of these methods

consistently benefited from a larger sequencing depth. This is

in line with the expectation that deeper sequencing creates a

higher data resolution, making doublet-detection methods

more capable of differentiating doublets from singlets.

Third, we evaluated the impact of the number of cell types on

the accuracy of doublet-detection methods. It is expected that a

cell mixture with more cell types would result in more heterotypic

doublets, which are formed by cells of different types. Thanks to

their distinct gene expression profiles that do not resemble those

of any cell types, heterotypic doublets are, in general, easier to

detect than homotypic doublets, which are formed by cells of

the same type (Wolock et al., 2019). As expected, most methods

exhibited improved accuracy as the number of cell types

increased, with cxds, bcds, and hybrid (a combination of cxds

and bcds) as the only three exceptions.

Fourth,we investigated how the between-cell-type heterogene-

ity level—the extent to which gene expression profiles differ be-

tween cell types—would affect the accuracy of doublet detection.

In theory, the greater the heterogeneity, the more distinct hetero-

typic doublets are from singlets. Again, all themethods fit this the-

ory except cxds, bcds, and hybrid. Hence, we saw consistent re-

sults about the effects of the number of cell types and the

between-cell-type heterogeneity level on doublet detection.

We also compared the AUROC values of the eight doublet-

detection methods on the same synthetic scRNA-seq datasets

as above (Figure S1B). Consistent with our AUPRC results,

most methods performed better on the datasets with a higher

doublet rate, a larger sequencing depth, more cell types, or a

greater level of between-cell-type heterogeneity, though the

improvement in AUROC was less significant than in AUPRC.

This is expected as AUPRC is a better accuracy measure than

AUROC for imbalanced binary classification (Saito and Re-

hmsmeier, 2015). Combining our AUPRC and AUROC results,

we found DoubletFinder as the top-performing method across

all the experimental settings and biological conditions we stud-

ied. DoubletDetection and Scrublet also demonstrated strong

performance compared with the rest of methods. We excluded

DoubletDecon from this comparison and the following DE gene

identification, highly variable gene identification, cell clustering,

and cell trajectory inference analyses, because it failed to run

on most of our synthetic datasets, likely due to its software im-

plementation issue (Github, 2020).
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Figure 2. Evaluation of the Eight Doublet-Detection Methods (Except DoubletDecon) Using Four Simulation Studies, and the Effects of

Doublet Detection on DE Analysis, HVGs Identification, and Cell Clustering

(A) Performance (AUPRC values) of each method in four simulation settings: varying doublet rates (from 2% to 40% with a step size of 2%), varying sequencing

depths (from 500 to 10,000 UMI counts per cell, with a step size of 500 counts), varying numbers of cell types (from 2 to 20 with a step size of 1), and 20 het-

erogeneity levels, which specify the extent to which genes are differentiated between two cell types (STAR Methods).

(B) Precision, recall, and TNR by each of three differential expression (DE) methods: DESeq2, MAST, and the Wilcoxon rank-sum test (Wilcox), after each of the

eight doublet-detectionmethods was applied to a simulated dataset; for negative and positive controls, we included the DE accuracies on the contaminated data

with 40% doublets and the clean data without doublets.

(C) We re-illustrate the results in (B) by showing the improved DE accuracy in each metric (precision, recall, and TNR) after removing detected doublets from the

contaminated data; the results on the clean data without doublets are shown as a positive control.

(D) Left panel: the Jaccard index between the post-doublet-detection HVGs of each doublet-detection method and the clean HVGs under the 10%, 20%, or 40%

doublet rate. The Jaccard index between the contaminated HVGs and the clean HVGswas used as negative control for each doublet rate. Right panel: illustration

of the left panel; the improved Jaccard indices upon the negative controls (i.e., Jaccard index differences) after the detected doublets by each method were

removed from the contaminated data.

(E) Cell clustering result by the Louvain algorithm after each of the eight doublet-detection method was applied to remove a varying percentage of droplets as the

identified doublets (y axis, from 0% to 25% with step size of 1%); the true numbers of cell clusters are four, six, and eight under three simulation settings, each

containing 20% true doublets; the yellow color indicates that the correct number of clusters was identified, while the red color indicates otherwise. The true

percentage of doublets, 20%, is highlighted in blue. For each method, its average correctness (i.e., the percent of yellow colors across all the removal per-

centages) is also highlighted in blue.

(F) Under the same three simulation settings as in (A), the distributions of the singlet proportions are shown after doublet removal by eachmethod, if the remaining

droplets led to the correct number of cell clusters in (A); doubletCells is not shown for the four-cluster setting, because it did not lead to the correct number of cell

clusters in (A).
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Effects of Doublet Detection on DE Gene Analysis
The existence of doublets in scRNA-seq datasets is expected to

confound the downstream DE gene analysis by violating the

necessary ‘‘identical distribution’’ assumption (i.e., cells of the

same type follow the same distribution of gene expression levels)
8 Cell Systems 12, 1–19, February 17, 2021
in statistical tests (Luecken and Theis, 2019). As a result, if a

doublet-detection method is effective, its doublet removal

should improve the accuracy of DE gene analysis. To evaluate

the eight doublet-detection methods from this perspective, we

used scDesign to generate a synthetic scRNA-seq dataset
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with two cell types and 1,126 between-cell-type DE genes (6%of

a total of 18,760 genes; STAR Methods). We referred to this da-

taset as the ‘‘clean data.’’ We then mixed each cell type with

randomly forming doublets by targeting a 40% doublet rate,

and the resulting dataset was referred to as the ‘‘contaminated

data.’’ Next, we applied each doublet-detection method to the

dataset and removed 40% droplets (with the highest doublet

scores assigned by each method) from the contaminated data.

Finally, we conducted DE gene analysis using three methods—

DESeq2 (Love et al., 2014), MAST (Finak et al., 2015), and Wil-

coxon rank-sum test (Fay and Proschan, 2010)—on the clean

data, the contaminated data, and the dataset after each

doublet-detection method was applied. The DE gene analysis

result was summarized in three accuracy measures: precision,

recall, and TNR, all of which were calculated under the Bonfer-

roni-corrected p value threshold of 0.05, the default threshold

used by DESeq2 and MAST (Wang et al., 2019).

We benchmarked the accuracy resulted from each doublet-

detection method against the negative control (the accuracy

based on the contaminated data) and the positive control (the

accuracy based on the clean data). Figure 2B shows that all

the three DE methods achieved extremely high precision (>

98%) and TNRs (> 97%) even on the contaminated data, an ex-

pected result because these DE methods all utilize statistical

tests and are inherently conservative in their identification of

DE genes. Such conservativeness makes these DE methods

only identify the genes that are highly likely DE, leading to high

precision (the percentage of true DE genes among the identified

genes) and TNR (the percentage of non-identified genes among

the true non-DE genes). Although the TNR result seems counter-

intuitive as the TNR values after doublet detection and removal

even exceeded the TNR values of the clean data by around

0.005, this difference was merely due to the statistical uncer-

tainty of these TNR values and thus is not conclusive. On the

other hand, recall (the percentage of identified genes among

the true DE genes) is an informative measure that reflects the

negative influence of doublets: For all the three DE methods,

their recall dropped from ~70% on the clean data to ~63% on

the contaminated data. Pleasantly, all the eight doublet-detec-

tion methods were effective in improving the recall (Figure 2C).

In particular, DoubletFinder, doubletCells, bcds, and hybrid

consistently had top performance, regardless of the choice of

DE methods. This result confirms that removing doublets is

indeed beneficial for DE gene analysis.

Effects of Doublet Detection on Highly Variable Gene
Identification
The identification of highly variable genes (HVGs) is an essential

step that precedes cell dimension reduction, cell clustering, and

cell trajectory inference in scRNA-seq data analysis (Yip et al.,

2019). The goal of this step is to identify HVGs, i.e., the informative

genes that exhibit strongcell-to-cell variations and thus can distin-

guish cells, so that the dimensions of each cell can be reduced

from tens of thousands of genes to thousands, or even hundreds

of genes, to facilitate those downstream analyses. Considering

the importance of HVG identification, we evaluated the extent to

which the identification would be negatively affected by doublets

(Amezquita et al., 2020) and how much the eight doublet-detec-

tion methods could alleviate such negative impacts.
For this purpose, we simulated a clean scRNA-seq dataset

without doublets by scDesign, and then we added randomly

formed doublets to generate three contaminated datasets

with 10%, 20%, and 40% doublet rates. For each contami-

nated dataset, we applied the eight doublet-detection methods

to remove a percentage of droplets that received the highest

doublet scores, and the percentage was set as the dataset’s

doublet rate. As a result, each contaminated dataset corre-

sponds to eight post-doublet-detection datasets. Then, we

used Seurat (Butler et al., 2018; Stuart et al., 2019) to identify

HVGs from the clean dataset, the three contaminated datasets,

and the 24 post-doublet-detection datasets. We refer to the

identification results as a set of clean HVGs, three sets of

contaminated HVGs, and 24 sets of post-doublet-detection

HVGs. An effective doublet-detection method is expected to

result in post-doublet-detection HVGs that agree better with

the clean HVGs than the corresponding contaminated HVGs

do. To measure the agreement between two sets of HVGs,

we used the Jaccard index, which is the ratio of the size of

the intersection to the size of the union of the two sets. The

larger the Jaccard index, the better agreement the two sets

have. In our evaluation, for each doublet rate, the Jaccard in-

dex between the contaminated HVGs and the clean HVGs

served as the negative control.

Figure 2D shows that the negative control Jaccard index

decreased from 0.772 to 0.447 as the doublet rate increased

from 10% to 40%, matching our expectation. Among the eight

doublet-detection methods, DoubletFinder and Scrublet were

the only two methods whose post-doublet-detection HVGs

consistently led to better Jaccard indices than the negative con-

trols under all three doublet rates. Notably, the benefit of doublet

detection on HVG identification was most obvious at the 40%

doublet rate, under which all the doublet-detection methods out-

performed the negative control.

Effects of Doublet Detection on Cell Clustering
Anothermajormotivation to removedoublets fromscRNA-seqdata

is toavoid themisinterpretationof spuriouscell clusters (i.e., droplet

clusters) formed by heterotypic doublets as novel cell types

(Luecken and Theis, 2019;Wolock et al., 2019). To evaluate the ca-

pacity of doublet-detection methods for removing spurious cell

clusters, we used scDesign to simulate realistic scRNA-seq data-

sets composed of four, six, or eight cell types and mixed with

20% randomly forming doublets (i.e., the true doublet rate is

20%).We performed cell clustering on each of these datasets after

applying every doublet-detection method and removing a certain

percent of droplets that received the highest doublet scores from

that method (STAR Methods). Considering that the true doublet

rate is unknown and difficult to estimate in practice, we varied this

removal percentage from 0% to 25%, with a step size of 1%. For

thesubsequentcell clustering,we followed themostpopularSeurat

method to apply the Louvain clustering algorithm (Blondel et al.,

2008), which automatically determines the number of cell clusters

in a data-driven way. Then for each dataset, every doublet-detec-

tionmethod,andeach removalpercentage,wecompared thenum-

ber of cell clusters with the number of cell types.

Figure 2E shows that, under the ideal scenario that the

removal percentage was set to the true doublet rate 20%,

four methods (Scrublet, Solo, DoubletDetection, and
Cell Systems 12, 1–19, February 17, 2021 9
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Figure 3. Effects of Doublet Detection on Cell Trajectory Inference

(A) Trajectories constructed by Slingshot after each of the eight doublet-detection methods were applied to remove the identified doublets, whose percentage

among all the droplets was set to 20%, the percentage of true doublets in the simulated dataset. The true cell topology is bifurcating. For negative and positive

controls, we included the trajectories constructed on the original dataset with 20% doublets and its cleaned version without doublets.

(B) Trajectories constructed byMST after each of the eight doublet-detection methods were applied to remove the identified doublets, whose percentage among

all the droplets was set to 20%, the percentage of true doublets in the simulated dataset. The true cell topology is a conjunction of three trajectories. For negative

and positive controls, we included the trajectories constructed on the original dataset with 20% doublets and its cleaned version without doublets.

(C) Precision, recall, and TNR of temporally DE genes identified by the GAM applied to trajectories constructed by Slingshot and TSCAN, after each of the eight

doublet-detection method was applied to remove the identified doublets, whose percentage among all the droplets was set to 20%, the percentage of true

(legend continued on next page)
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DoubletFinder) consistently removed spurious cell clusters

and led to the correct numbers of cell types. Among the eight

methods, DoubletDetection and DoubletFinder exhibited the

most robust performance, as they successfully led to the cor-

rect numbers of cell types under the widest range of removal

percentages. Scrublet and Solo also exhibited good perfor-

mance in removing spurious cell clusters. In contrast, dou-

bletCells, cxds, bcds, and hybrid all had unstable perfor-

mance, and they did not always remove spurious cell

clusters even under the ideal scenario (when the removal per-

centage was set to 20%). Overall, this result supports the use

of DoubletDetection and DoubletFinder to remove doublets

before the application of cell clustering to identify novel

cell types.

Unlike heterotypic doublets, homotypic doublets do not form

spurious clusters because of their similar gene expression pro-

files to those of singlets of the same cell type (Wolock et al.,

2019). In other words, homotypic doublets tend to cluster

together with singlets. Even though the existence of homotypic

doublets does not much affect cell clustering, it may potentially

bias the identification of cell-type-specific genes by DE gene

analysis because homotypic doublets are not real cells. To eval-

uate the capacity of doublet-detection methods in eliminating

homotypic doublets, we calculated the proportion of singlets in

each identified cell cluster when the number of cell clusters

matched the number of cell types in Figure 2E (STAR Methods).

Figure 2F shows that Scrublet led to cell clusters with the highest

proportions of singlets. DoubletDetection and DoubletFinder

also had excellent performance, and these three methods all

clearly outperformed the rest of the methods. Combining the re-

sults in Figures 2E and 2F, we conclude that Scrublet, Double-

tDetection, and DoubletFinder demonstrated the best capacity

in removing heterotypic and homotypic doublets.

To examine how robust the above results are to the choice

of clustering algorithms, we repeated the above analyses us-

ing a second clustering algorithm: the density-based spatial

clustering of applications with noise (DBSCAN) (Ester et al.,

1996). Compared with the Louvain clustering algorithm, the

DBSCAN algorithm led to the correct numbers of cell clusters

under fewer and more sporadic removal percentages for all

the doublet-detection methods (Figure S2A). This result sug-

gests that the DBSCAN algorithm works less effectively than

the Louvain algorithm for clustering cells in scRNA-seq data

(Duò et al., 2018; Feng et al., 2020). Nevertheless, with the

DBSCAN algorithm, Scrublet, DoubletDetection, and Doublet-

Finder still achieved the top performance in removing spurious

cell clusters and homotypic doublets (Figures S2A and S2B).

In summary, based on the results of two clustering algorithms,

we would recommend DoubletDetection and DoubletFinder

as the top two choices for removing spurious cell clusters in

cell clustering analysis, and we identified Scrublet and Dou-

bletFinder as the best-performing algorithms for removing ho-

motypic doublets before the identification of cell-type-spe-

cific genes.
doublets in the simulated dataset. The true cell topology is a single lineage. For ne

identified from the contaminated data with 20% doublets and the clean data wit

(D) We re-illustrate the results in (C) by showing the improved accuracy in each

contaminated data; the results on the clean data without doublets are shown as
Effects of Doublet Detection on Cell Trajectory
Inference
Another important scRNA-seq data analysis is to infer a cell tra-

jectory, which corresponds to a cellular process, such as cell dif-

ferentiation, immune responses, and carcinogenesis, based on

the similarity of cells in terms of gene expression profiles (Sae-

lens et al., 2019). An inferred cell trajectory is called pseudotime,

an ordering of cells in a path or a tree (Trapnell et al., 2014). The

accuracy of cell trajectory inference depends on both the infer-

ence methods and the scRNA-seq data quality. Similar to cell

clustering, cell trajectory inference is also biased by the exis-

tence of doublets (Tian et al., 2019). In particular, heterotypic

doublets may result in spurious branches in an inferred trajec-

tory. We expect that doublet-detection methods, if effective,

should increase the accuracy of cell trajectory inference.

To evaluate the eight doublet-detection methods from this

perspective, we used Splatter (Zappia et al., 2017) to generate

two scRNA-seq datasets: one including a bifurcating trajectory

and the other containing a conjunction of three sequential tra-

jectories (STAR Methods). We referred to them as ‘‘clean

data.’’ We then mixed the two datasets with randomly forming

doublets by targeting a 20% doublet rate, and the resulting da-

tasets were referred to as the ‘‘contaminated data.’’ Similar to

our DE gene analysis, we used each doublet-detection method

to remove 20% droplets (with the highest doublet scores as-

signed by that method) from each contaminated dataset. As

a result, we obtained two suites of datasets corresponding to

a bifurcating trajectory and a conjunction of three sequential

trajectories, with each suite containing the clean data, the

contaminated data, and the data cleaned by each doublet-

detection method. For cell trajectory inference, we applied

Slingshot (Street et al., 2018) to the first suite of datasets (Fig-

ure 3A) and minimum spanning tree (MST) (Herring et al., 2018)

to the second suite of datasets (Figure 3B). We chose Slingshot

and MST because they were the top-performing methods in

previous benchmark studies (Saelens et al., 2019; Tian et al.,

2019). We considered the cell trajectories inferred from the

clean data and the contaminated data as the positive and

negative controls, respectively.

Figures 3A and 3B show that the doublets in the contaminated

data indeed led to spurious branches that did not exist in the in-

ferred trajectories from the clean data. Except for doubletCells,

all the doublet-detection methods effectively removed doublets

such that spurious branches no longer existed in the inferred cell

trajectories. In particular, in the second task of inferring a

conjunction of three sequential trajectories (Figure 3B), Scrublet,

DoubletDetection, and DoubletFinder led to inferred trajectories

that most resembled the trajectory inferred from the clean data.

Figures 3A and 3B also show that DoubletDetection and Dou-

bletFinder are the best two methods for removing the ‘‘outlier’’

doublets whose gene expression profiles do not resemble those

of any singlets.

Following cell trajectory inference, a typical next step is to

explore gene expression dynamics along the inferred trajectory
gative and positive controls, we included the accuracy of temporally DE genes

hout doublets.

metric (precision, recall, and TNR) after removing detected doublets from the

a positive control.
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and to identify temporally DE genes (Luecken and Theis, 2019;

Saelens et al., 2019). Hence, the accuracy of cell trajectory infer-

ence largely determines the accuracy of temporally DE gene iden-

tification. Beyond checking the inferred cell trajectories after

doublet removal, as shown in Figures 3A and 3B, we evaluated

the effects of doublet removal on the identification of temporally

DE genes. We used Splatter to simulate a scRNA-seq dataset

with a single lineage and 250 temporally DE genes out of a total

of 750 genes (STAR Methods). We referred to this dataset as

the ‘‘clean data.’’ We then mixed the data with randomly forming

doublets by targeting a 20% doublet rate, and the resulting data-

set was referred to as the ‘‘contaminated data.’’ Next, we used

eight doublet-detection methods to remove 20% droplets (with

the highest doublet scores assigned by each method) from the

contaminateddata. Finally,weemployeda general additivemodel

(GAM) (Hastie and Tibshirani, 1990) to regress each gene’s

expression levels on the corresponding cell/droplet pseudotime

inferred by Slingshot or TSCAN (Ji and Ji, 2016) on the clean

data, the contaminated data, and the dataset after each

doublet-detection method was applied. Note that we replaced

MSTbyTSCANbecauseMSTdoes not output pseudotime values

for droplets and TSCAN is built upon the MST algorithm.

The temporally DE gene analysis result was summarized in

three accuracymeasures: precision, recall, and TNR, all of which

were calculated under the Bonferroni-corrected p value

threshold of 0.05. Again, we used the accuracy obtained from

the clean data and the contaminated data as the positive and

negative controls, respectively. Doublet removal made a more

significant improvement on the identification of temporally DE

genes when Slingshot was used for trajectory inference (Figures

3C and 3D). With Slingshot, all the eight doublet-detection

methods except doubletCells successfully restored the preci-

sion, recall, and TNR from low values on the contaminated

data to values as high as those on the clean data. With TSCAN,

however, the restoration effects were only obvious in precision

and TNR by Solo and cxds. In summary, doublet removal is

beneficial for cell trajectory inference and the subsequent identi-

fication of temporally DE genes, and we observed strong bene-

ficial effects when Slingshot was used for trajectory inference.

Performance of Doublet-Detection Methods under
Distributed Computing
A grand challenge in single-cell data sciences is the skyrocketing

demand for computational and storage resources due to the

rapidly increasing data sizes (L€ahnemann et al., 2020). For

example, a scRNA-seq dataset may contain up to millions of

droplets, each of which has expression levels of tens of thou-

sands of genes (Regev et al., 2017). Analyzing such huge datasets

is often beyond the capacity of a single computer but requires

distributed computing, which analyzes data subsets in parallel.

Specific to the doublet-detection task, distributed computing

means that droplets are divided into batches, one batch per com-

puter node; then a doublet-detection method would be applied in

parallel to all batches, and it would assign doublet scores to drop-

lets in each batch. After this parallelization step, doublet scores

would be pooled from multiple batches, and a threshold would

be set on the pooled doublet scores to detect doublets.

Compared with the centralized computing that uses all the drop-

lets together, distributed computing may have deteriorated
12 Cell Systems 12, 1–19, February 17, 2021
doublet-detection accuracy due to the limited data information

within each droplet batch. Hence, how a doublet-detection

method performs under distributed computing is an important

evaluation criterion for the scalability and flexibility of the method.

To investigate the performance of doublet-detection methods

under distributed computing, we randomly divided two large real

scRNA-seq datasets—pbmc-ch and pbmc-2ctrl-dm—into a

varying number of batches with equal numbers of droplets,

and we evaluated how the doublet-detection accuracy of each

method changed with the number of batches. It is expected

that the more the batches, the worse the accuracy, and our re-

sults confirmed this. Figures 4A and 4B show the AUPRC and

AUROC values of each method under each number of batches,

which varied from one to ten. The AUPRC and AUROC values

were calculated based on the pooled doublet scores as

described above.We excluded DoubletDecon from this compar-

ison, because it failed to run for most numbers of batches, again

suggesting its software implementation issue (Github, 2020).

With only one batch, distributed computing is reduced to

centralized computing, and the corresponding accuracy is sup-

posedly the performance ceiling of every method. As expected,

most doublet-detection methods had decreasing accuracy,

which is clearer in AUPRC (Figure 4A) than AUROC (Figure 4B),

as the number of batches increased. Among the eight methods,

doubletCells was an underperforming outlier with the lowest

overall accuracy. DoubletDetection and Solo were among the

top-performing methods under centralized computing; however,

they exhibited the largest accuracy decrease under distributed

computing. In contrast, DoubletFinder was consistently a top

performer, demonstrating its superior accuracy again and its

robustness under distributed computing.

Computational Efficiency, Scalability, Stability, and
Software Implementation of Doublet-Detection
Methods
In addition to the above evaluation that focused on the effects of

doublet removal on various scRNA-seq data analyses, we

also compared doublet-detection methods in four computa-

tional aspects: efficiency, scalability, stability, and software

implementation.

First, we summarized the running time of the nine doublet-

detection methods (including their required data preprocessing

steps; STAR Methods) on the 16 real scRNA-seq datasets in Ta-

ble S1. Figure 4C shows that cxds is the fastest method, while

Solo, DoubletDecon, DoubletDetection, and DoubletFinder are

significantly slower than the other methods. Figure 4D shows

that there was no straightforward relationship between the

mean AUPRC and themean running time of eight doublet-detec-

tion methods (with the mean calculated across the 16 real data-

sets). Nevertheless, the three most computationally intensive

methods—Solo, DoubletDetection, and DoubletFinder—had

better accuracy than the other methods except hybrid did. Inter-

estingly, the hybrid method, an ensemble of cxds and bcds,

largely improved on both base methods without much running

time increase. Among all methods, DoubletFinder achieved the

highest mean AUPRC, while not being the most computationally

intensive method. Normalizing the mean running time by the

mean AUPRC value for every method, we found cxds as the

most resource-efficient method (Table S10).
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Figure 4. Comparison of Doublet-Detection Methods in Terms of Distributed Computing, Running Time, Scalability, and Stability

(A and B) Distributed computing performance of eachmethod on two real datasets pbmc-ch and pmc-2ctrl-dm.We first divided the original datasets into varying

numbers of batches with equal sizes; then we applied each method to individual batches separately to identify and remove doublets; finally, we pooled batches

together to assess the detection accuracy (AUPRC and AUROC values) of each method. The legend on the right applies to both panels (A) and (B).

(C) Distribution of running time in (natural log) seconds of each method across 16 real datasets.

(D) Mean AUPRC versus mean running time (across 16 real datasets) of eight doublet-detection methods.

(E) Scalability of each method. We calculated the relationship between running time and droplet number for each method on simulated datasets with varying

droplet numbers.

(F) Stability of eachmethod.We generated 20 datasets by randomly subsampling 90% droplets and 90% genes from the real datasets pbmc-ch and pbmc-2ctrl-

dm, and we applied each method to all the subsampled datasets. For each real dataset, the distribution of AUPRC values of each method across subsampling is

shown, with 25% quantiles connected. We use the variance of the distribution to measure the stability of each method.
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Second, we examined the scalability of doublet-detection

methods by how fast their running time increases as the number

of droplets grows. We used scDesign to generate 25 synthetic

scRNA-seq datasets with the number of droplets ranging from
400 to 10,000 (STAR Methods). Then we applied each doublet-

detection method to these datasets and recorded its running

time (DoubletDecon was excluded, because it failed to run on

most synthetic data.) As shown in Figure 4E, all methods except
Cell Systems 12, 1–19, February 17, 2021 13
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Solo had running time scaled linearly with the number of drop-

lets. The reason that Solo exhibited an erratic relationship be-

tween its running time and the number of droplets is probably

due to its neural-network design. Among the other seven

methods, cxds and DoubletDetection demonstrated the best

and worst scalability, respectively.

Third, we evaluated doublet-detection methods in terms of the

statistical stability, i.e., how much their AUPRC and AUROC

values varied across subsets of droplets and genes. The smaller

the variation, the larger the statistical stability.We randomlydown-

sampled two large real scRNA-seq datasets—pbmc-ch and

pbmc-2ctrl-dm—into 20 data subsets with 90% droplets and

90% genes. Then we applied each doublet-detection method to

these data subsets and recorded the resulting AUPRC and

AUROC values (DoubletDecon was excluded, because we were

unable to calculate its AUPRC and AUROC values, as explained

before.) Figures 4F and S2C show the distributions of AUPRC

and AUROC values of each method when applied to the subsets

generated fromeachoriginal dataset. Interestingly,we observed a

roughly inverse relationshipbetween the overall doublet-detection

accuracy and the statistical stability. For example, DoubletFinder

had the best overall accuracy in terms of both AUPRC and

AUROC, yet, its variation across data subsets was much greater

than that of Scrublet, which had a much lower overall accuracy.

Despite its suboptimal stability, we still found DoubletFinder as

a top performer if we compare the lower-quartile accuracy (i.e.,

the 25th percentile of AUPRC and AUROC values) of these

methods. To summarize, even though statistical stability is an

important criterion, in practice, it is often overruled by the overall

accuracy reflected by the mean, median, or lower-quartile accu-

racy value. In terms of the overall accuracy, we found Doublet-

Finder, Solo, and hybrid as the top three methods.

Fourth, we evaluated the software implementation of doublet-

detection methods, because user-friendliness, software quality,

and active maintenance are crucial to the success of bioinfor-

matics tools (Mangul et al., 2019). We scored each method in

four aspects: software quality, execution convenience, publica-

tion, and documentation and support (STAR Methods). Table 2

lists our score reasoning and the overall usability score of each

method. In particular, DoubletDetection and DoubletDecon did

not successfully run on one or more datasets. Regarding user

support, Solo, DoubletDetection, DoubletFinder, and Double-

tDecon have active Q&As on their software webpages for col-

lecting users’ feedback and answering users’ questions. Among

the nine methods, DoubletFinder achieved the highest usability

score thanks to its excellent implementation.

DISCUSSION

With the rapid development of scRNA-seq technologies, a sky-

rocketing number of computational methods have been devel-

oped for various scRNA-seq data analyses (Zappia et al.,

2018). For example, since 2018, more than 45 imputation

methods have already been developed to recover missing

gene expression (commonly referred to as ‘‘dropouts’’) in

scRNA-seq data (Li and Li, 2018; Lopez et al., 2018; Risso

et al., 2018; van Dijk et al., 2018; L€ahnemann et al., 2020).

Such richness of computational methods is a double-sided

blade. On the one hand, scRNA-seq researchers have more
14 Cell Systems 12, 1–19, February 17, 2021
blocks to build analysis pipelines that accommodate their scien-

tific investigation needs; on the other hand, it becomes increas-

ingly difficult for researchers to choose the method, from dozens

of methods developed for the same purpose, that best fits each

step of their pipeline. Unlike in experimental sciences where new

technologies often replace old ones, there are usually no clear-

cut or universal choices of computational methods. An appro-

priate choice of computational method is case by case, depend-

ing on data characteristics and scientific questions at hand.

Inappropriate method choices would, to varying extents, bias

data analysis (such as by introducing artificial, non-biological

signals) and ultimately lead to false discoveries (Andrews and

Hemberg, 2018; Weber et al., 2019). To avoid this issue, the

scRNA-seq field and the broad biomedical science community

yearn for comprehensive benchmark studies that independently

and fairly evaluate computational methods (L€ahnemann et al.,

2020). A well-designed benchmark study should offer users

objective, accurate, and informative guidance on selecting the

appropriate method(s) for a specific analysis task.

To provide the first, comprehensive benchmark of computa-

tional doublet-detection methods, in this study, we evaluated

nine existing methods using 16 real and 112 synthetic scRNA-

seq datasets from three perspectives: overall detection accu-

racy, impacts on downstream analyses, and computational effi-

ciency. We further categorized our benchmark results in nine as-

pects, including four related to doublet-detection accuracy and

five associated with software implementation (Figure 5, which

does not include DoubletDecon because it failed to run in most

evaluations). In summary, DoubletFinder was the best method

in terms of accuracy, yet, its computational efficiency and stabil-

ity were not among the best. The cxdsmethod was the opposite:

It had the best computational efficiency, excellent stability, but

medium accuracy. Our summary is consistent with the afore-

mentioned principle of computational methods that no method

is universally the best, so a fair comparison of computational

methods should be multifaceted.

Although our benchmark study has collected all the available

scRNA-seq datasets to date that contain doublet annotations,

we note that none of the annotations is utterly accurate due

to experimental limitations. For example, the two species-

mixture datasets, hm-12k and hm-6k, only labeled the hetero-

typic doublets formed by a human cell and a mouse cell; the six

demuxlet datasets only labeled the doublets formed by cells of

two individuals; many homotypic doublets were unlabeled in all

these datasets. As a result, the incompleteness of doublet an-

notations would have inflated the false negative rates and

reduced the precision of computational doublet-detection

methods in our benchmark. To overcome this limitation, we de-

signed extensive simulations to benchmark computational

doublet-detection methods in a fair and comprehensive

manner. Yet, how to generate accurate doublet annotations

by experimental techniques remains an open question to

experimental scientists.

Regarding the future development and benchmark of compu-

tational doublet-detection methods, here we list five open ques-

tions we deem important for computational scientists:

(1) How to estimate the unknown doublet rate in a scRNA-

seq dataset? Some methods provide heuristic guidance



Table 2. Usability of the Nine Doublet-Detection Methods

Software Quality Execution Convenience Publication

Documentation &

Support

Usability

Score

doubletCells excellent (success

on all datasets)

excellent (R package) good (published as

a part of a research

paper in a peer-reviewed journal)

good (documentation,

custom webpage,

but no Q&A)

6

Scrublet excellent (Python module) excellent (published as

an independent research

paper in a peer-reviewed journal)

good (documentation,

GitHub webpage, but

no Q&A)

7

cxds excellent (R package) 7

bcds 7

Hybrid 7

Solo good (Linux command-

line with a stringent

requirement on input

data format: loom/hd5)

excellent (published

as an independent

research paper in a

peer-reviewed journal)

excellent (documentation,

GitHub webpage, and

active Q&A)

7

DoubletDetection good

(failure on one

real dataset)

excellent (Python module) fair (GitHub webpage,

manuscript with

algorithm description)

5

DoubletFinder excellent (success

on all datasets)

excellent (R package) excellent (published as

an independent research

paper in a peer-reviewed

journal)

8

DoubletDecon fair (failure on four

real datasets and the

majority of synthetic

datasets)

excellent (R package) excellent (published as

an independent

research paper in a

peer-reviewed journal)

excellent (documentation,

GitHub webpage, and

active Q&A)

6

We measured the usability of each method in four aspects: software quality, execution convenience, publication, and documentation and support.

Each aspect has three levels: excellent, good, and fair, which correspond to scores 2, 1, and 0, respectively. The usability score of a method is the

sum of its four scores under the four aspects.
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to estimate the doublet rates or select the threshold on

doublet scores. For example, DoubletFinder suggests

using the rates of heterotypic doublets and Poisson

doublet formation as the respective lower and upper

bounds of the expected doublet rate (Bloom, 2018;

McGinnis et al., 2019a, 2019b); Scrublet recommends

setting the doublet-score threshold in the middle of the

two modes, which it expects to appear, in the doublet-

score distribution (Wolock et al., 2019); Solo sets the

doublet-score threshold to 0.5 by default (Bernstein

et al., 2020). However, there lacks consensus or direct

estimation of the doublet rate from scRNA-seq data. To

address this issue, we suggest estimating the null distri-

bution of doublet scores (of singlets) as a preceding

step; with a reliable null distribution estimate, estimating

the doublet rate would then become feasible (Efron and

Hastie, 2016).

(2) How to distinguish homotypic doublets from singlets?

Existing computational doublet-detection methods

cannot well identify the homotypic doublets that have

similar transcriptome profiles to those of singlets, likely

due to the ways they generate artificial doublets (Lun

et al., 2016; Gayoso and Shor, 2018; Bais and Kostka,

2020; DePasquale et al., 2019; McGinnis et al., 2019a,

2019b; Wolock et al., 2019; Bernstein et al., 2020). A

possible direction is to extract and incorporate features

that can distinguish homotypic doublets from singlets,

such as the droplet library size.
(3) How to distinguish doublets fromdroplets contaminated by

ambient mRNA? Ambient mRNA molecules are released

from lysed cells into the cell suspension; they may enter

droplets and contaminate themeasured transcriptomepro-

files of those droplets. Similar to doublets, contaminated

droplets by ambient mRNA also confound scRNA-seq

data analysis (Luecken andTheis, 2019). Existing computa-

tional doublet-detection methods do not distinguish these

two types of non-singlet droplets; instead, computational

methods have been developed separately to detect

contaminated droplets (Yang et al., 2020; Young and

Behjati, 2020). Ideally, the single-cell field desires a compu-

tational method that can simultaneously remove all non-

singlet droplets, including doublets, contaminated

droplets, and empty droplets, from scRNA-seq data.

(4) How to improve doublet-detection algorithms regarding

the use of artificial doublets? The majority of existing

computational methods tackle the doublet-detection

task as a binary classification problem (Table 1). To

train a classification algorithm, they use original drop-

lets in data and artificial doublets they simulate to

represent ‘‘singlets’’ and ‘‘doublets,’’ respectively.

However, not all original droplets are singlets, because

otherwise we would not need doublet detection. By

neglecting differences between original droplets and

singlets, existing methods do not supply their classifi-

cation algorithms with quality training data, and a likely

consequence is that their post-training classifiers would
Cell Systems 12, 1–19, February 17, 2021 15



Figure 5. A Graphical Summary of Benchmark Results

The four aspects related to doublet-detection accuracy are marked in blue, while the other five aspects related to software implementation are marked in black.
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be biased (Nettleton et al., 2010), and thus, miss a sub-

stantial number of doublets among original droplets. A

possible remedy for this drawback is to filter out the

likely doublets from the original droplets, e.g., by

applying outlier detection methods (Domingues et al.,

2018), before simulating artificial doublets and subse-

quently training a classification algorithm. An alternative

remedy is to keep the training data but train a classifi-

cation algorithm under the ‘‘learning with noise labels’’

machine-learning framework (Nettleton et al., 2010; Na-

tarajan et al., 2013). Moreover, there are possible im-

provements to be made in the generation of artificial

doublets. Instead of simply adding or averaging the

gene expression profiles of two random droplets as

done in existing methods, finer adjustments can be

made to the mixing of two droplets so as to generate

more realistic artificial doublets.

(5) How to ensemble doublet-detectionmethods? As amulti-

faceted problem, doublet detection can hardly be solved

by one single computational method. This is due to the di-

versity of scRNA-seq datasets. The success of the

method hybrid, an ensemble of two methods bcds and

cxds, motivated us to think that ensembling reasonable

and complementary methods, a technique widely used

in machine learning (Dietterich, 2000; Hastie et al.,

2009), may boost the accuracy of doublet detection. Ta-

bles S12 and S13 show the pairwise similarities of

doublet-detection methods in terms of their doublet

scores and identified doublets in the 16 real datasets.

Seeing that the top-performingmethods exhibited notice-

able differences, we expect that there is room for using

the ensemble technique to develop a more accurate

doublet-detection method (see further discussion in the

STAR Methods).
Cell Systems 12, 1–19, February 17, 2021
By dissecting existing doublet-detection methods, we found

method performance highly dependent on the values of hyper-

parameters (also known as tuning parameters), if any. For

example, DoubletFinder, Scrublet, and doubletCells all use

the kNN algorithm to distinguish doublets from singlets; howev-

er, surprisingly, DoubletFinder outperformed the other two

methods in most of our comparisons. A probable reason is

that DoubletFinder optimizes several key hyperparameters of

the kNN algorithm in a reasonable and data-driven way. For

example, DoubletFinder selects the number of nearest neigh-

bors k by maximizing the bimodality of the doublet score distri-

bution. This advantage makes DoubletFinder adaptable to

scRNA-seq datasets with distinct characteristics (Lun et al.,

2016; McGinnis et al., 2019a, 2019b; Wolock et al., 2019). In

contrast, Scrublet and doubletCells each assign a fixed default

value to k, restricting their flexibility and generalizability (Lun

et al., 2016; McGinnis et al., 2019a, 2019b; Wolock et al.,

2019) (see further discussion in the STARMethods). The choice

of hyperparameter values is especially important for methods

built upon complex algorithms. For example, bcds uses the

gradient boosting algorithm (Bais and Kostka, 2020), a leading

classification algorithm that has more hyperparameters than

the simple kNN algorithm does (Chen and Guestrin, 2016);

however, the additional complexity did not make bcds

outperform DoubletFinder, probably due to the lack of hyper-

parameter optimization. This phenomenon emphasizes the

importance for bioinformatics tools to optimize hyperparameter

values in a scientific, data-driven way (Feurer and Hutter, 2019;

Waring et al., 2020).

Ideally, doublet removal requires both experimental tech-

niques and computational methods. If permitted, researchers

may use an experimental technique and a computational

method sequentially. That is, they first use an experimental tech-

nique, such as multiplexing, to filter out obvious doublets (e.g.,
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the doublets formed by cells of different samples) and then apply

a computational method to further screening for the remaining

droplets that are likely doublets. Or they may combine the

doublet scores assigned to each droplet by an experimental

technique and a computational method, as proposed by the

method Solo. This second approach requires the experimental

technique to have a doublet scoring system (Bernstein

et al., 2020).

In summary, computational doublet detection is critical for the

quality control of scRNA-seq data analysis (Luecken and Theis,

2019). Our study is a comprehensive benchmark of currently

available doublet-detection methods under a wide variety of bio-

logical and technical settings. Our study provides much-needed

guidance to researchers in choosing appropriate doublet-detec-

tionmethods for scRNA-seq data analysis. Our results also point

out directions for further methodological development and

improvement in computational doublet detection, an active

area of bioinformatics research (Pierre-Luc, 2020).
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KEY RESOURCES TABLES
REAGENT or RESOURCE SOURCE IDENTIFIER

Software and Algorithms

scDesign (Li and Li, 2019) https://github.com/Vivianstats/scDesign

Seurat (Butler et al., 2018;

Stuart et al., 2019)

https://satijalab.org/seurat/

Splatter (Zappia et al., 2017) https://github.com/Oshlack/splatter

biomaRt (Durinck et al., 2009) https://github.com/grimbough/biomaRt

reticulate (Allaire, 2018) https://github.com/rstudio/reticulate

PRROC (Grau et al., 2015) https://cran.r-project.org/web/packages/PRROC/index.html

proxy https://cran.r-project.org/

web/packages/proxy/proxy.pdf

https://cran.r-project.org/web/packages/proxy/index.html

dbscan (Ester et al., 1996) https://github.com/mhahsler/dbscan

Slingshot (Street et al., 2018) https://github.com/kstreet13/slingshot

Computational doublet-

detection methods

Table 1 https://github.com/xnnba1984/Doublet-Detection-Benchmark

Benchmark of computational

doublet-detection methods

This paper https://github.com/xnnba1984/Doublet-Detection-Benchmark

Deposited Data

Real datasets Table S1 https://zenodo.org/record/4062232#.X6GordD0laQ

Simulation datasets This paper https://zenodo.org/record/4062232#.X6GordD0laQ
RESOURCE AVAILABILITY

Lead Contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Jingyi

Jessica Li (jli@stat.ucla.edu).

Materials Availability
This study did not generate new materials.

Data and Code Availability
C The real and synthetic scRNA-seq datasets used in this study have been deposited at Zenodo repository and are publicly

available at https://zenodo.org/record/4062232#.X3YR9Hn0kuU%E3%80%82.

C The source code used in this study is publicly available at https://github.com/xnnba1984/Doublet-Detection-Benchmark.

C The scripts used to generate the figures reported in this paper are available at https://github.com/xnnba1984/Doublet-

Detection-Benchmark.

C Any additional information required to reproduce this work is available from the Lead Contact.
METHOD DETAILS

Real Data Preprocessing
Whenever preprocessed datasets were available, they were directly used in this study. Otherwise, datasets were preprocessed in the

same way as in the original studies in which they were generated. In every dataset, genes and droplets were removed if they had no

reads in any droplets and any genes, respectively. Below is the preprocessing detail for every dataset.

pbmc-ch (Stoeckius et al., 2018): human peripheral blood mononuclear cells (PBMCs) from eight donors. Doublets were anno-

tated by cell hashing with CD45 as the hashing antibody. This dataset is available at https://www.dropbox.com/sh/

ntc33ium7cg1za1/AAD_8XIDmu4F7lJ-5sp-rGFYa?dl=0 in files pbmc_hto_mtx.rds and pbmc_umi_mtx.rds. Its preprocessing pipe-

line is available at

https://satijalab.org/seurat/v3.1/hashing_vignette.html, including an instruction about how to extract the doublet annotation.
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cline-ch (Stoeckius et al., 2018): four human cell lines HEK, K562, KG1, and THP1. Doublets were annotated by cell hashing with

CD29 and CD45 as the hashing antibodies. The access URL and preprocessing pipeline of this dataset are the same as those of the

pbmc-ch dataset. The dataset is in files hto12_hto_mtx.rds and hto12_umi_mtx.rds.

Mkidney-ch (Bernstein et al., 2020): dissociated mouse kidney cells. Doublets were annotated by cell hashing with cholesterol

modified oligos (CMOs) as the hashing antibodies. The raw count matrix and doublet annotations were downloaded from the

Gene Expression Omnibus (GEO) (Edgar et al., 2002) with the accession GSE140262.

hm-12k and hm-6k (Zheng et al., 2017): two mixtures of human HEK293T and mouse NIH3T3 cells with 12,000 and 6000 droplets

respectively. The raw count matrices were downloaded from

https://support.10xgenomics.com/single-cell-gene-expression/datasets/2.1.0/hgmm_12k and https://support.10xgenomics.

com/single-cell-gene-expression/datasets/2.1.0/hgmm_6k

A droplet was annotated as a doublet if its barcode was associated with both human and mouse. Mouse genes were mapped into

their human orthologs using R package biomaRt (Durinck et al., 2009) (v 2.44.1). Then each pair of human and mouse count matrices

was concatenated into each of the two datasets.

pbmc-1A-dm, pbmc-1B-dm, and pbmc-1C-dm (Kang et al., 2018): three samples of PBMCs from systemic lupus erythematosus

(SLE) patients. Droplets were sequenced immediately after thawing. Doublets were annotated by demuxlet (Kang et al., 2018). The

raw count matrix and doublet annotations were downloaded from the GEO with the accession GSE96583.

pbmc-2ctrl-dm and pbmc-2stiml-dm (Kang et al., 2018): two samples of PBMCs from SLE patients. Droplets were sequenced

after being cultured for six hours following thawing, with (pbmc-2stiml-dm) or without (pbmc-2ctrl-dm) IFN-beta stimulation. Dou-

blets were annotated by demuxlet. The raw countmatrix and doublet annotationswere downloaded from theGEOwith the accession

GSE96583.

J293t-dm (Kang et al., 2018): a mixture of human Jurkat and HEK293T cell lines. Doublets were annotated by demuxlet. The raw

count matrix was downloaded from

https://ucsf.app.box.com/s/vg1bycvsjgyg63gkqsputprq5rxzjl6k/file/220975201845.

Doublet annotations were obtained from

https://ucsf.app.box.com/s/vg1bycvsjgyg63gkqsputprq5rxzjl6k/file/220974993609

pdx-MULTI (McGinnis et al., 2019a, 2019b): a mixture of human breast cancer cells and mouse immune cells from a patient-

derived xenograft (PDX) mouse model. Doublets were annotated by MULTI-seq (McGinnis et al., 2019a, 2019b). The dataset was

downloaded from the GEO with the accession GSE129578. Doublet were annotated by following the data processing pipeline avail-

able at https://github.com/chris-mcginnis-ucsf/MULTI-seq.

HMEC-orig-MULTI and HMEC-rep-MULTI (McGinnis et al., 2019a, 2019b): human primary mammary epithelial cells (HMECs)

with HMEC-orig-MULTI as the original sample and HMEC-rep-MULTI as a technical replica. The GEO accession and preprocessing

pipeline of this dataset are the same as those of the pdx-MULTI dataset.

HEK-HMEC-MULTI (McGinnis et al., 2019a, 2019b): a mixture of human HEK293Ts and HMECs. The GEO accession and prepro-

cessing pipeline of this dataset are the same as those of the pdx-MULTI dataset.

nuc-MULTI (McGinnis et al., 2019a, 2019b): a mixture of purified nuclei from human HEK293Ts, Jurkats, and mouse embryonic

fibroblasts (MEFs). The GEO accession and preprocessing pipeline of this dataset are the same as those of the pdx-MULTI dataset.

Mouse genes were mapped into their human orthologs using R package biomaRt (v 2.44.1).

Benchmark Environment and Parameter Settings
All doublet-detection methods were executed on a server with two Intel(R) Xeon(R) E5-2687W v4 CPUs, 256GB memory, and

Ubuntu 18.04 system. An Nvidia(R) Geforce(R) RTX 2080 Ti GPU was used to accelerate the execution of the Solo method as

suggested (Bernstein et al., 2020). The parameters of doublet-detection methods were set to their recommended values or default

values if no recommendation was available. The latest version of each method (by September 2020; Table 1) was used. Random

seeds were fixed and saved in our code to ensure reproducibility. The detailed configuration for each method is summa-

rized below.

doubletCells: The method was executed by following the instruction at

https://bioconductor.statistik.tu-dortmund.de/packages/3.8/workflows/vignettes/simpleSingleCell/inst/doc/work-6-

doublet.html.

Doublet scores were obtained from the dblCells function in R package scran (v 1.16.0) with parameters set to default.

Scrublet: R package reticulate (v 1.16) was used to execute the python module scrublet (v 0.2.1). The parameters were set by

following the instruction at

https://github.com/AllonKleinLab/scrublet/blob/master/examples/scrublet_basics.ipynb.

Doublet scores were obtained from the function Scrublet.scrub_doublets. cxds, bcds and hybrid: These three methods were

executed by following the instructions at https://github.com/kostkalab/scds.

Doublet scoreswere obtained from the functions cxds, bcds and cxds_bcds_hybrid in R package scds (v 1.2.0) with parameters set

to default.

DoubletDetection: R package reticulate (v 1.16) was used to execute the python module doubletdetection. The parameters were

set by following the instruction at

https://nbviewer.jupyter.org/github/JonathanShor/DoubletDetection/blob/master/tests/notebooks/PBMC_8k_vignette.ipynb.
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The parameter n_iters was set to 5, as larger values were found to increase the running time significantly, but with little improve-

ment in performance. Doublet scores were obtained from the function doubletdetection.BoostClassifier.fit.

DoubletFinder: The method was executed by following the instruction at https://github.com/chris-mcginnis-ucsf/DoubletFinder.

Doublet scores were obtained from the function doubletFinder_v3 in R package DoubletFinder (v 2.0.3) with parameters set to

default.

DoubletDecon: The method was executed by following the instruction at https://github.com/EDePasquale/DoubletDecon.

Doublet predictions were obtained from the function Main_Doublet_Decon in R package DoubletDecon (v 1.1.5) with parameters

set to default.

Solo: The method was executed by following the instruction at the GitHub repositoryhttps://github.com/calico/Solo

Every scRNA-seq count matrix was transformed into the loom format as required by the method. The parameters were set the

same as those in the file Solo_params_example.json, which was downloaded from the GitHub repository. Doublet scores were ob-

tained from the file softmax_scores.npy.

Measures of Doublet-Detection Accuracy
Methodologically, computational doublet-detection methods employ binary classification algorithms to distinguish between two

classes: singlets and doublets. AUPRC and AUROC, two measures of the overall accuracy of a binary classification algorithm,

were used to evaluate the overall doublet-detection accuracy of each method. These two measures were calculated using the func-

tions pr.curve and roc.curve in R package PRROC (v 1.3.1). Both functions input two vectors: the predicted doublet scores of true

singlets and those of true doublets, and they output AUPRC and AUROC, one value each.

Simulation of scRNA-seq Datasets Containing Doublets
All synthetic scRNA-seq datasets used in this study were generated in two steps. In Step 1, singlets in each dataset were generated

by scDesign (Li and Li, 2019), which estimated a generative model of gene expression profiles from a real scRNA-seq dataset (cell

type: HEK293t; protocol: 10x Genomics; gene number: 18760). The detailed experimental settings are described in the next subsec-

tion. In Step 2, given the number of singlets and a pre-specified doublet rate (i.e., the proportion of doublets among all droplets), the

corresponding number of doublets were generated by random pairing of singlets. In detail, two randomly sampled singlets had their

gene expression profiles (in UMI counts) averaged by gene, and that averaged profile is called a prototype doublet. For each of the 16

real scRNA-seq datasets, a doublet-to-singlet size ratio, defined as (average doublet library size)/(average singlet library size), was

calculated. Then the library size of each prototype doublet was multiplied by a factor sampled from a normal distribution, whose

mean and standard division were set to the mean and standard deviation of the 16 doublet-to-singlet size ratios. This scaling

step turned prototype doublets into doublets, so that the doublet-to-singlet size ratios in the synthetic data were similar to those

in the real data. Finally, the singlets used to generate doublets were removed. In mathematical terms, if X singlets were generated

in Step 1 and the doublet rate was Y (a value between 0 and 1), then after Step 2 the numbers of doublets and singlets would be

XY/(1+Y) and X(1-Y)/(1+Y), respectively, both rounded to the nearest integers. For example, if 1000 singlets were generated in

Step 1 and the doublet rate was 20%, the numbers of doublets and singlets in the final dataset would be 167 and 667, respectively,

making a total number of 834 droplets.

Experimental Settings Used in Benchmarking Simulations
80 scRNA-seq datasets were generated by scDesign to benchmark doublet-detection methods in four aspects: varying doublet

rates, sequencing depths (i.e., per-cell library sizes), cell types, and between-cell-type heterogeneity levels.

C 20 synthetic datasets were generated with doublet rates increasing from 2% to 40% by a step size of 2%. The per-cell library

size was set to 2000 UMI counts. All datasets contained two cell types. Based on the data generation scheme described in the

last subsection, 500 singlets were generated for each cell type in Step 1. In Step 2, doublets were introduced based on each

doublet rate, and the singlets used to generate doublets were removed.

C 20 synthetic datasets were generated with per-cell library sizes increasing from 500 to 10,000 UMI counts by a step size of 500

counts. All datasets contained two cell types. Based on the data generation scheme described in the last subsection, 500 sin-

glets were generated for each cell type in Step 1. In Step 2, doublets were introduced based on a 20% doublet rate, and the

singlets used to generate doublets were removed.

C 19 synthetic datasets were generated with numbers of cell types increasing from 2 to 20 by a step size of 1. The per-cell library

size was set to 2000 UMI counts. Based on the data generation scheme described in the last subsection, 500 singlets were

generated for each cell type in Step 1. In Step 2, doublets were introduced based on a 20%doublet rate, and the singlets used

to generate doublets were removed.

C 21 synthetic datasets were generated with varying heterogeneity levels between two cell types. The heterogeneity level was

controlled by four parameters (pUp, pDown, fU, and fL) in scDesign. Specifically, pUp and pDown denote the proportions of

up- and down-regulated genes, and fU and fL define the upper and lower bounds of fold changes in the expression levels of DE

genes. The following parameter combinations were used to generate 21 heterogeneity levels:
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Level 2: pUp = 0.012, pDown = 0.012, fU = 1.2, and fL = 0.6;

.
Level 21: pUp = 0.050, pDown = 0.050, fU = 5.0, and fL = 2.5.
At all heterogeneity levels, the per-cell library size was set to 2000 UMI counts. Based on the data generation scheme described in

the last subsection, 500 singlets were generated for each cell type in Step 1. In Step 2, doublets were introduced based on a 20%

doublet rate, and the singlets used to generate doublets were removed.

DE Gene Analysis
One synthetic scRNA-seq dataset was generated by scDesign to have two cell types. The per-cell library size was 10,000 UMI

counts. The pUp and pDown parameters in scDesign were both set to 0.03, suggesting that a total of 6% of genes were DE be-

tween the two cell types (3% up-expressed and 3% down-expressed). The fU and fL parameters in scDesign (i.e., the upper and

lower bound of fold changes for DE genes) were set to 3 and 1.5, respectively. Based on the data generation scheme described in

the Subsection ‘‘Simulation of scRNA-seq datasets containing doublets,’’ 500 singlets were generated for each cell type in Step 1.

In Step 2, doublets were introduced based on the 40% doublet rate, and the singlets used to generate doublets were removed.

Three DE methods—DESeq2 (Love et al., 2014), MAST (Finak et al., 2015), and the Wilcoxon rank-sum test (Fay and Proschan,

2010) implemented in the R package Seurat (v 3.1.5) (Butler et al., 2018; Stuart et al., 2019)—were applied to this dataset

(‘‘contaminated dataset’’ containing both singlets and doublets), its clean version without doublets (‘‘clean dataset’’ only contain-

ing singlets), and its post-doublet-detection version after each doublet-detection method was applied (the top 40% droplets that

received the highest doublet scores were removed). After each DEmethod was applied to every dataset, genes whose Bonferroni-

corrected p-values did not exceed 0.05 were identified as DE. Three accuracymeasures—precision, recall, and TNR—were calcu-

lated for every set of identified DE genes. For each DE method, its accuracy on the contaminated dataset and the clean dataset

were used as the negative and positive controls, respectively, for benchmarking its accuracy on the post-doublet-detection data-

sets (Figures 2B and 2C).

Identification of Highly Variable Genes
Three synthetic datasets were generated with 10%, 20%, and 40% doublet rates, respectively. The per-cell library size was set to

2000 UMI counts. All datasets contained two cell types. Based on the data generation scheme described in the Subsection ‘‘Simu-

lation of scRNA-seq datasets containing doublets,’’ 500 singlets were generated for each cell type in Step 1. In Step 2, doublets were

introduced based on each doublet rate, and the singlets used to generate doublets were removed. To identify the highly variable

genes (HVGs), we applied the function FindVariableFeatures in R package Seurat (v 3.1.5) with default parameters to the three data-

sets (‘‘contaminated datasets’’ containing both singlets and doublets; one dataset per doublet rate), their clean versions without dou-

blets (‘‘clean datasets’’ only containing singlets), and their post-doublet-detection version after each doublet-detection method was

applied (the top 10%, 20%, or 40% droplets that received the highest doublet scores were removed, and the removal percentage

was set to the doublet rate). We refer to the identified HVGs as contaminated HVGs, clean HVGs, and post-doublet-detection HVGs,

respectively. The Jaccard index between two sets of HVGs was calculated by the function simi in R package proxy (v 0.4-24)

(Figure 2D).

Cell Clustering Analysis
Three synthetic scRNA-seq datasets were generated by scDesign to have four, six, and eight cell types. The per-cell library size was

2000 UMI counts. Based on the data generation scheme described in the Subsection ‘‘Simulation of scRNA-seq datasets containing

doublets,’’ 500 singlets were generated for each cell type in Step 1. In Step 2, doublets were introduced based on a 20%doublet rate,

and the singlets used to generate doublets were removed. The heterogeneity between cell types was determined by the default pUp,

pDown, fU, and fL parameters in scDesign. After each doublet-detectionmethodwas applied to each dataset, the top x%of droplets,

which received the highest doublet scores (with the removal percentage x% ranging from 0% to 25% by a step size of 1%), were

removed; then two clustering algorithms—Louvain clustering implemented in R package Seurat (v 3.1.5) and DBSCAN (Ester

et al., 1996) implemented in R package dbscan (v 1.1–5)—were used to identify cell clusters. Finally, the numbers of cell clusters

were compared with the numbers of cell types to evaluate the effectiveness of doublet removal (Figures 2E and S2A). Whenever

the number of cell clusters matched the number of cell types, the proportion of singlets among the remaining droplets was used

to measure each doublet-detection method’s capacity for removing homotypic doublets (Figures 2F and S2B). In the example of

four cell types, if a doublet-detection method (given a clustering algorithm) correctly led to four cell clusters under six removal per-

centages, then a proportion of singlets was calculated for each of the 24 clusters (four clusters times six removal percentages), re-

sulting in 24 proportions.

Cell Trajectory Inference
Two scRNA-seq datasets were generated by Splatter (Zappia et al., 2017) to have cell trajectories. Both datasets contained 1000

genes. In Step 1 of the data generation scheme described in the Subsection ‘‘Simulation of scRNA-seq datasets containing dou-

blets,’’ the first dataset had 500 singlets following a bifurcating trajectory, whose two branches had 250 singlets each, and the second

dataset had 1000 singlets from a conjunction of three sequential trajectories, two of which had 333 singlets and the other had 334

singlets. In Step 2 for both datasets, doublets were introduced based on a 20% doublet rate, and the singlets used to generate dou-
Cell Systems 12, 1–19.e1–e6, February 17, 2021 e4
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blets were removed. Parameters in Splatter were set to default except for de.prob and de.facLoc, which were set to 0.5 and 0.2,

respectively. Each dataset was expanded into a suite, including its original version (‘‘contaminated dataset’’), clean version without

doublets (‘‘clean dataset’’), and its post-doublet-detection version after each doublet-detection method was applied (the top 20%

droplets that received the highest doublet scores were removed). For the first suite of datasets, cell trajectories were constructed

by Slingshot (Street et al., 2018) based on the pipeline available at https://github.com/kstreet13/slingshot/blob/master/vignettes/

vignette.Rmd.

For the second suite of datasets, the minimum spanning tree (MST) algorithm implemented in R package slingshot (v 1.6.1) was

used to construct cell trajectories. The trajectories constructed from the contaminated dataset and the clean dataset were used

as the negative and positive controls, respectively, for benchmarking the trajectories inferred from the post-doublet-detection data-

sets (Figures 3A and 3B).

In the temporally DE genes analysis, a scRNA-seq dataset with a single trajectory was generated by following the Slingshot pipeline

available at https://github.com/kstreet13/slingshot/blob/master/vignettes/vignette.Rmd.

This dataset contained 750 genes, whose temporal expression dynamics were categorized into four types: 500 stable genes

with unchanged mean expression levels, 100 activated genes with increasing mean expression levels, 100 deactivated genes

with decreasing mean expression levels, and 50 transient genes with mean expression levels first increasing and then

decreasing, along the trajectory. The genes of the latter three types were defined as temporally DE genes. The mean expression

levels of all 750 genes were specified by following the Slingshot pipeline. The per-cell library sizes were sampled from a nega-

tive binomial distribution with mean 1875 and dispersion 4. In the generation of a singlet, the 750 gene expression levels were

sampled from a multinomial distribution with the number of trials as the (randomly sampled) per-cell library size and the prob-

ability of success as the 750 genes’ normalized mean expression levels (summing up to 1). Following this, 300 singlets were

generated in Step 1 of the data generation scheme described in the Subsection ‘‘Simulation of scRNA-seq datasets containing

doublets.’’ In Step 2, doublets were introduced based on a 20% doublet rate, and the singlets used to generate doublets were

removed.

After data generation, the pseudotime of each droplet was inferred by Slingshot and TSCAN on this dataset (‘‘contaminated data’’),

its clean version without doublets (‘‘clean data’’), and its post-doublet-detection version after each doublet-detection method was

applied (the top 20% droplets that received the highest doublet scores were removed). Then for each dataset, we regressed

each gene’s expression levels in all droplets on the inferred pseudotime of the same droplets by the general additive model

(GAM), which was implemented in the R function gam, and obtained a p-value. As a result, the genes with Bonferroni-corrected

p-values under 0.05were identified as temporally DE genes. Three accuracymeasures—precision, recall, and TNR—were calculated

for every set of identified temporally DE genes. The accuracy on the contaminated data and the clean data were used as the negative

and positive controls, respectively, for benchmarking the accuracy on the post-doublet-detection data obtained by each doublet-

detection method (Figures 3C and 3D).

Distributed Computing
We used two real scRNA-seq datasets pbmc-ch and pbmc-2ctrl-dm to compare the performance of doublet-detection methods un-

der distributed computing. These two datasets are relatively large in our real data collection, containing 15,272 and 13,913 droplets

(Table 1). For each doublet-detectionmethod, its accuracy (AUPRC and AUROC) on the original datasets were used as the baselines.

Next, the original dataset was randomly split into two, four, six, eight, and ten equally-sized batches for distributed computing. For

every number of batches, each doublet-detection methodwas executed on each batch separately, the resulting doublet scores were

concatenated across batches, and AUPRC andAUROCwere calculated for the concatenated doublet scores and comparedwith the

baselines (Figures 4A and 4B).

Scalability, Stability, and Usability
25 synthetic scRNA-seq datasets with varying numbers of droplets were generated by scDesign to examine the scalability of

doublet-detection methods. Specifically, the number of genes was fixed to 5000, and the number of droplets increased from 400

to 10,000, with a step size of 400. Each doublet-detection method was executed on the 25 datasets, and the relationship between

its running time and the number of droplets was plotted in Figure 4E.

Two real datasets, pbmc-ch and pbmc-2ctrl-dm, were used to evaluate the stability of doublet-detection methods. From each da-

taset, 20 subsets were generated by randomly subsampling 90%of droplets and 90%of genes. Each doublet-detectionmethodwas

executed on all these subsets, and its stability was shown by the distributions of the resulting AUPRC and AUROC across subsets

(Figure 4F).

Four criteria were defined for doublet-detection methods’ usability: software quality, execution convenience, publication, and

documentation & support. The software quality criterion indicates whether a doublet-detection method can be executed on all

real and synthetic datasets used in this study. The execution convenience criterion is related to the popularity of the computational

platform required to run a method. Methods written in R and Python packages are preferred because of the popularity of these two

languages. The publication criterion is regarding whether a doublet-detection method has been published in a peer-reviewed journal.

The documentation & support criterion evaluates a method’s user-support resources, such as open-source code, tutorials, and

active Q&As. Each criterion has three levels: excellent, good, and fair, corresponding to a score of 2, 1, and 0, respectively. The final

usability score of a method was defined as the sum of the method’s scores in these four criteria.
e5 Cell Systems 12, 1–19.e1–e6, February 17, 2021

https://github.com/kstreet13/slingshot/blob/master/vignettes/vignette.Rmd
https://github.com/kstreet13/slingshot/blob/master/vignettes/vignette.Rmd
https://github.com/kstreet13/slingshot/blob/master/vignettes/vignette.Rmd


ll
Article

Please cite this article in press as: Xi and Li, Benchmarking Computational Doublet-Detection Methods for Single-Cell RNA Sequencing Data, Cell
Systems (2020), https://doi.org/10.1016/j.cels.2020.11.008
Accuracy of Computational Doublet Detection in Relation to Experimental Techniques for Doublet Labeling
Four experimental techniques were used to label doublets in the 16 real datasets used in this study: cell hashing (Stoeckius et al.,

2018), species mixture (Wolock et al., 2019), demuxlet (Kang et al., 2018), and MULTI-seq (McGinnis et al., 2019a, 2019b). To

examine the relationship between the accuracy of computational doublet-detectionmethods and the use of experimental techniques

for doublet labeling, we calculated the mean AUPRC of each computational method across the datasets labeled by each experi-

mental technique (Figure S2D; Table S11). Overall, all computational doublet-detection methods achieved the highest accuracy

on the species-mixture datasets, followed by the cell-hashing, MULTI-seq, and demuxlet datasets. This is an expected result since

doublet-detectionmethods aremore capable of identifying heterotypic doublets than homotypic doublets by design (Lun et al., 2016;

Gayoso and Shor, 2018; Bais and Kostka, 2020; DePasquale et al., 2019; McGinnis et al., 2019a, 2019b; Wolock et al., 2019; Bern-

stein et al., 2020), and all the labeled doublets in the species-mixture datasets are heterotypic (i.e., formed by cells of two species);

meanwhile, the cell-hashing, MULTI-seq, and demuxlet datasets contain labeled doublets that are both heterotypic and homotypic

(e.g., formed by cells of the same type from two samples or individuals), and they miss certain heterotypic doublets (e.g., formed by

cells of different types from the same sample or individual). Among the eight doublet-detection methods (excluding DoubletDecon

which cannot generate doublet scores), DoubletFinder, cxds, and Solo achieved the highest detection accuracy on the species-

mixture datasets, demonstrating their strength of identifying heterotypic doublets. DoubletFinder was also the top performer on

the MULTI-seq and demuxlet datasets in terms of mean AUPRC, while Solo excelled on the cell-hashing datasets. Interestingly,

cxds exhibited the largest performance discrepancy between the species-mixture datasets and the other three types of datasets,

highlighting its stronger priority towards identifying heterotypic doublets than other methods’.

Pairwise Similarities of Computational Doublet-Detection Methods
First, we calculated the Pearson correlation coefficient between every two doublet-detection methods (except hybrid, which is an

ensemble of bcds and cxds, and DoubletDecon, which cannot generate doublet scores) in terms of their doublet scores in each

of the 16 benchmark datasets; for every pair of methods, we averaged their 16 Pearson correlation coefficients (Table S12). Among

the 21 pairs of methods, DoubletFinder-DoubletDetection, Solo-bcds, and DoubletFinder-bcds have the largest mean correlations.

Second, we calculated the Jaccard index between every two doublet-detection methods (except hybrid and DoubletDecon) in terms

of their identified doublets, whose numbers are set equal to the number of labeled doublets, in each of the 16 benchmark datasets; for

every pair of methods, we averaged their 16 Jaccard indices (Table S13). Among the 21 pairs of methods, DoubletFinder-Double-

tDetection, DoubletDetection-Solo, and DoubletFinder-Solo have the largest mean Jaccard indices, which reflect the large overlaps

of their identified doublets. These two similarity analyses indicate the possibility of developing an ensemble method to combine the

top-performing methods that are not too similar (Hastie et al., 2009). Given the high accuracy of DoubletFinder and the distinctive

algorithm design of cxds (the only method without artificial doublets), these two methods may serve as good candidates to be com-

bined into an ensemble method.

Comparison of Hyperparameter Selection in kNN-Base Methods
The algorithm designs of Scrublet and DoubletFinder are similar because they both define each droplet’s doublet score as the pro-

portion of artificial doublets among the k-nearest neighbors of this droplet in the principalcomponent (PC) space. The major differ-

ence between Scrublet and DoubletFinder is how they select hyperparameters, including the number of artificial doublets to

generate, the number of genes used to perform the principal component analysis, the number of PCs to define nearest neighbors,

and the number of nearest neighbors k. Table S14 summarizes the default hyperparameter settings of Scrublet and DoubletFinder. In

particular, DoubletFinder automatically selects k by maximizing the mean-variance normalized bimodality coefficient (Pfister et al.,

2013) of the distribution of doublet scores. To examine the effect of hyperparameter selection on the method performance, we

selected four real datasets on which DoubletFinder outperformed Scrublet, and replaced the hyperparameters of Scrublet by those

of DoubletFinder, including the ks selected by DoubletFinder for those datasets. Figure S2E summarizes the AUPRC values of three

methods—DoubletFinder, Scrublet with default hyperparameters, and Scrublet with the same hyperparameters as DoubletFinder—

on each of the four datasets. With the hyperparameters of DoubletFinder, Scrublet improved its detection accuracy on two datasets,

nuc-MULTI and pbmc-1C-dm, but it still underperformed DoubletFinder. On the other two datasets, cline-ch and pbmc-1A-dim,

Scrublet performed similarly or evenworse, respectively, with the hyperparameters of DoubletFinder. This result suggests that hyper-

parameter selection is an important but not the only factor that determines the performance of doublet-detection methods. Other

aspects of algorithm design, including the generation of artificial doublets and algorithm implementation, also play critical rules.
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