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Abstract: Constructing confidence intervals for the coefficients of high-dimensional

sparse linear models remains a challenge, mainly because of the complicated limit-

ing distributions of the widely used estimators, such as the lasso. Several methods

have been developed for constructing such intervals. Bootstrap lasso+ols is notable

for its technical simplicity, good interpretability, and performance that is compa-

rable with that of other more complicated methods. However, bootstrap lasso+ols

depends on the beta-min assumption, a theoretic criterion that is often violated in

practice. Thus, we introduce a new method, called bootstrap lasso+partial ridge, to

relax this assumption. Lasso+partial ridge is a two-stage estimator. First, the lasso

is used to select features. Then, the partial ridge is used to refit the coefficients.

Simulation results show that bootstrap lasso+partial ridge outperforms bootstrap

lasso+ols when there exist small, but nonzero coefficients, a common situation that

violates the beta-min assumption. For such coefficients, the confidence intervals

constructed using bootstrap lasso+partial ridge have, on average, 50% larger cov-

erage probabilities than those of bootstrap lasso+ols. Bootstrap lasso+partial ridge

also has, on average, 35% shorter confidence interval lengths than those of the de-

sparsified lasso methods, regardless of whether the linear models are misspecified.

Additionally, we provide theoretical guarantees for bootstrap lasso+partial ridge

under appropriate conditions, and implement it in the R package “HDCI”.

Key words and phrases: Bootstrap, confidence interval, high-dimensional inference,

Lasso+partial ridge, model selection consistency.

1. Introduction

The proliferation of high-dimensional data in fields such as information tech-

nology, astronomy, neuroscience, and bioinformatics has necessitated new anal-

ysis methods. Data are high dimensional if the number of predictors p is com-

parable to, or much larger than, the sample size n. Over the past two decades,

statistical and machine learning theory, methodologies, and algorithms have been

developed to tackle high-dimensional data problems under certain sparsity con-
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straints, such as the number of nonzero linear model coefficients s being much

smaller than the sample size n. Regularization is required to perform sparse

estimation under this regime. For example, the lasso (Tibshirani (1996)) uses l1
regularization to perform model selection and parameter estimation simultane-

ously in a high-dimensional sparse linear regression. Previous works have focused

on recovering a sparse parameter vector (denoted by β0 ∈ Rp), based on criteria

such as (i) model selection consistency, (ii) the lq estimation error ||β̂ − β0||q,
where β̂ is an estimate of β0 and q is typically equal to one or two, and (iii)

the prediction error ||Xβ̂ − Xβ0||2, with X as the design matrix. The book

(Bühlmann and van de Geer (2011)) and the review paper (Fan and Lv (2010))

give a thorough summary of the recent advances in high-dimensional statistics.

An important research question in high-dimensional statistics is how to per-

form statistical inference, that is, constructing confidence intervals and hypothe-

sis tests for individual coefficients in linear models. Inference is crucial when the

purpose of statistical modeling is to understand scientific principles beyond those

of prediction. However, inference is difficult for high-dimensional model param-

eters, because the limiting distributions of the widely used estimators, such as

the lasso, are complicated and difficult to compute in high dimensions. To ad-

dress this challenge, we develop a novel and practical inference procedure called

bootstrap lasso+partial ridge (LPR), which is based on three canonical methods:

the bootstrap, lasso, and ridge. Before presenting our method, we briefly review

several existing high-dimensional inference methods.

There is a growing body of statistical literature on high-dimensional infer-

ence problems. Existing methods are divided into several categories, includ-

ing the sample-splitting-based methods, bootstrap-based methods, de-sparsified

lasso methods, post-selection inference methods, and knockoff filter. In partic-

ular, Wasserman and Roeder proposed a sample-splitting method (Wasserman

and Roeder (2009)) that splits n data points into two halves. The first half is

used for model selection (say, by the lasso), and the second half is used to con-

struct confidence intervals or p-values for the parameters in the selected model.

For a fixed dimension p, Minnier et al. developed a perturbation resampling-

based method to approximate the distribution of penalized regression estimates

under a general class of loss functions (Minnier, Tian and Cai (2009)). Chatter-

jee and Lahiri proposed a modified residual bootstrap lasso method (Chatterjee

and Lahiri (2011)), which is consistent in estimating the limiting distribution of

a modified lasso estimator. For scenarios in which p goes to infinity at a polyno-

mial rate of n, Chatterjee and Lahiri showed that a residual bootstrap adaptive
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lasso estimator can consistently estimate the limiting distribution of the adaptive

lasso estimator under several intricate conditions (Chatterjee and Lahiri (2013)).

Two of these conditions are similar to the irrepresentible condition and the beta-

min condition (the beta-min condition means that the minimum absolute value

of the nonzero regression coefficients is much larger than n−1/2), which together

guarantee the model selection consistency of the lasso. Liu and Yu proposed

another residual bootstrap method based on a two-stage estimator (lasso+ols),

showing its consistency under the irrepresentible condition, beta-min condition,

and other regularity conditions (Liu and Yu (2013)). Here, lasso+ols denotes us-

ing the lasso method to select a model, and then using the ordinary least squares

(OLS) method to refit the coefficients in the selected model. However, a common

issue with these methods is that they all require the rather restrictive beta-min

condition, which should be relaxed in high-dimensional inference, if possible.

The de-sparsified lasso, proposed by Zhang and Zhang (2014), and later in-

vestigated by van de Geer et al. (2014), Javanmard and Montanari (2014), is

another type of method. This method aims to remove the biases of the lasso

estimates and produce an asymptotically normal estimate for each parameter.

Specifically, we refer to the popular de-sparsified lasso methods developed by

Zhang and Zhang (2014) and Javanmard and Montanari (2014) as LDPE and

JM, respectively. These methods do not rely on the beta-min condition, but do

require that we estimate the precision matrix of predictors using the graphical

lasso method (Zhang and Zhang (2014); van de Geer et al. (2014)), or some other

convex optimization procedure (Javanmard and Montanari (2014)). There are

two main issues with these methods. First, they rely heavily on the sparse lin-

ear model assumption and, thus, may exhibit poor performance for misspecified

models. Second, the computational costs of these methods are quite high. For

example, constructing confidence intervals for all entries of β0 requires solving

(p+ 1) separate quadratic optimization problems. Despite these drawbacks, the

methods can serve as a theoretically proven benchmark for high-dimensional in-

ference. Other new tools include the post-selection inference methods (Berk et al.

(2013); Lee et al. (2016)), knockoff filter (Barber and Candès (2015)), covariance

test (Lockhart et al. (2014)), group-bound confidence intervals (Meinshausen

(2015)), bootstrapping ridge regression (Lopes (2014)), and ridge projection and

bias correction (Bühlmann (2013)), among others; see Dezeure et al. (2014) for

a comprehensive review of high-dimensional inference methods.

According to the results of simulation studies in an independent assessment

(Dezeure et al. (2014)), the bootstrap lasso+ols method produces confidence in-
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tervals with coverage probabilities and lengths that are comparable with those of

other existing methods when the beta-min condition holds. Bootstrap lasso+ols

is built on three canonical statistical techniques (i.e., the bootstrap, lasso, and

OLS), all of which are well known to a broad audience and, hence, easily acces-

sible to data scientists. However, as mentioned, the main drawback of bootstrap

lasso+ols is the rather restrictive beta-min condition, which results in poor cov-

erage probabilities for the confidence intervals of small, but nonzero coefficients

(e.g., 95% confidence intervals with coverage probabilities lower than 50%). This

is because these small coefficients are seldom selected by the lasso and, hence, are

not refitted by the OLS, resulting in coefficient estimates of zero in most boot-

strap runs. Therefore, the confidence intervals produced by bootstrap lasso+ols

have lengths and coverage probabilities that are close to zero. Intuitively, it seems

advantageous to adopt a different second-step procedure after the lasso to replace

the OLS. Ideally, this procedure should not place a penalty on the coefficients se-

lected by the lasso, in order to reduce the bias. However, it should place a small,

but nonzero l2 penalty on the unselected coefficients in order to recover them.

We call this the LPR estimator. An independent work by Gao et al. (2017) pro-

posed a post-selection ridge estimator similar to our LPR estimator. However,

their aim was to improve the prediction performance, and they achieved it by

adding a thresholding step. Chernozhukov, Hansen and Liao (2017) proposed a

penalization-based estimation strategy called Lava to deal with “sparse + dense”

coefficients. However, they also focused on improving the prediction performance

rather than the quality of the inference.

In this paper, we propose a new inference procedure called bootstrap LPR

as an improvement over the bootstrap lasso+ols method. The problem setting

is to construct confidence intervals for individual regression coefficients β0j , for

j = 1, . . . , p, in a high-dimensional linear regression model, where β0 is weakly

sparse (Negahban et al. (2009)). That is, its elements can be divided into two

groups: “large” coefficients, with absolute values � n−1/2, and “small” coef-

ficients, with absolute values � n−1/2. We define this type of sparsity as the

cliff-weak-sparsity, which means that if we order the absolute coefficients from

the largest to the smallest, there exits a cliff-like drop that divides the coefficients

into two groups. Obviously, cliff-weak-sparsity is a weaker assumption than hard

(or exact) sparsity (β0 has at most s (s� n) nonzero elements) and the beta-min

condition.

Inference for small coefficients has been investigated by Shi and Qu (2017),

who proposed a two-step inference procedure to identify weak signals (small
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coefficients). Their method is designed for an orthogonal design matrix, and is

based on a combination of the asymptotic normality of a bias-corrected adaptive

lasso estimator (for large coefficients) and the least squares estimator (for small

coefficients) instead of the bootstrap. However, their method performs well only

when p � n, whereas our method, based on the bootstrap, can be used when

p� n.

Dezeure et al. (2017) and Zhang and Cheng (2017) combined the bootstrap

and de-sparsified lasso methods to deal with non-Gaussian and heteroscedastic

errors. We refer to this method as the bootstrap version of LDPE (BLDPE), and

we include it in the method comparison in our simulation and real-data studies.

Our contributions to the literature are summarized as follows.

First, our proposed bootstrap LPR method relaxes the beta-min condition

required by the bootstrap lasso+ols method. We provide conditions under which

the bootstrap LPR method can consistently estimate the distribution of the

LPR estimator and, therefore, is valid for constructing a confidence interval for

each coefficient.

Second, we conduct comprehensive simulation studies to evaluate the finite-

sample performance of the bootstrap LPR method for both sparse linear models

and misspecified models. Our main findings are as follows. (1) Compared with

bootstrap lasso+ols, bootstrap LPR improves the coverage probabilities of the

95% confidence intervals by about 50%, on average, for small nonzero regression

coefficients. However, this improvement incurs a 15% heavier computational

burden for n = 200, p = 500. (2) Compared with the two de-sparsified lasso

methods, LDPE and JM, bootstrap LPR produces good coverage probabilities

for large and small regression coefficients. In some cases, it even outperforms

these methods by producing confidence intervals with lengths that are more than

50% shorter, on average. (3) Bootstrap LPR is more than 30% faster than the

two de-sparsified lasso methods, and is robust to model misspecification. We also

demonstrate the performance of bootstrap LPR on two real data sets: functional

magnetic resonance imaging (fMRI) data, and neuroblastoma gene expression

data.

Third, we extend the model selection consistency of the lasso from the hard

sparsity case (Zhao and Yu (2006); Wainwright (2009)) to a more general cliff-

weak-sparsity case. Under the irrepresentable condition and other reasonable

conditions, we show that the lasso can correctly select all “large” elements of β0,

while shrinking all “small” elements to zero.

Fourth, we develop an R package “HDCI” to implement the bootstrap lasso,
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bootstrap lasso+ols, and the proposed bootstrap LPR methods. This package

makes these methods easily accessible to practitioners.

Fifth, our method is not limited to using the lasso in the selection stage,

but can be extended to any other model selection criterion, such as the stability

selection (Meinshausen and Bühlmann (2010)), the smoothly clipped absolute

deviation (SCAD) estimator (Fan and Li (2001)), the Dantzig selector (Candès

and Tao (2007)), and the post-double selection (Belloni et al. (2014)), that does

not require the beta-min condition. If we replace the lasso by the post-double

selection method, the resulting confidence intervals may achieve better coverages

for medium-sized coefficients. This is an interesting research direction that is

worth further investigation, because the methodology, computation, and theory

will differ from those of our current work in many respects.

The remainder of this paper proceeds as follows. In Section 2, we define

the LPR estimator and introduce the residual bootstrap LPR (rBLPR) and

the paired bootstrap LPR (pBLPR) methods. In Section 3, we investigate

the theoretical properties of the proposed method. In Section 4, we conduct

comprehensive simulation studies to compare the finite-sample performance of

rBLPR, pBLPR, bootstrap lasso+ols, and three de-sparsified lasso methods

(LDPE, JM, and BLDPE). In Sections 5 and 6, we present two real-data case

studies. Section 7 concludes the paper. All relevant proofs, algorithms, and

simulation details can be found in the online Supplementary Material.

2. Framework and Definitions

2.1. Overview and background

In this section, we begin by introducing high-dimensional sparse linear mod-

els. We next define the cliff-weak-sparsity and the LPR estimator. Finally,

we propose two bootstrap procedures (residual bootstrap and paired bootstrap),

based on the LPR estimator, to construct confidence intervals for individual

regression coefficients.

We assume that data are generated from the following linear model:

Y = Xβ0 + ε, (2.1)

where ε = (ε1, . . . , εn)T is a vector of independent and identically distributed

(i.i.d.) random error variables, with mean 0 and variance σ2, Y = (y1, . . . , yn)T ∈
Rn is an n-dimensional response vector, and X = (x1, . . . , xn)T = (X1, . . . , Xp) ∈
Rn×p is a deterministic or random design matrix. Without loss of generality, we
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assume that every predictor is centered, that is,
∑n

i=1 xij/n = 0, for j = 1, . . . , p,

and there is no intercept term in the linear model. Denoting β0 ∈ Rp as a vector

of coefficients, we assume that β0 satisfies the cliff-weak-sparsity.

Definition 1 (Cliff-weak-sparsity). β0 satisfies the cliff-weak-sparsity if its el-

ements can be divided into two groups. The first group has s (s � n) large

elements, with absolute values much larger than n−1/2, and the second group

contains p− s small elements, with absolute values much smaller than n−1/2.

We are interested in constructing a confidence interval for each coefficient

β0j , j = 1, . . . , p. We consider the high-dimensional setting where both p and s

grow with n. Here, and in what follows, Y , X, and β0 are all indexed by n, but

we omit the index n whenever this does not cause confusion.

The lasso estimator (Tibshirani (1996)) is a useful tool for enforcing spar-

sity when estimating high-dimensional parameters. The estimator is defined as

follows:

β̂lasso = arg min
β

{
||Y −Xβ||22

2n
+ λ1||β||1

}
, (2.2)

where λ1 ≥ 0 is the tuning parameter controlling the amount of regularization

applied to the estimate. In general, λ1 depends on n, but we omit this depen-

dence in the notation, for simplicity. The limiting distribution of the lasso is

complicated (Knight and Fu (2000)), and the usual residual bootstrap lasso fails

to construct valid confidence intervals (Chatterjee and Lahiri (2010)). Various

modifications have been proposed to form a valid inference procedure, but these

rely on two restrictive assumptions: the hard sparsity and the beta-min con-

dition. In order to relax these two often unrealistic assumptions, we propose

the LPR estimator with two associated bootstrap procedures (the rBLPR and

pBLPR).

2.2. The LPR estimator

In this subsection, we first describe the rationale of the LPR estimator and

then formally define it. We argue that the LPR estimator is useful for weakly

sparse linear models, the coefficients of which have many small, but nonzero

elements decaying at a certain rate, satisfying the cliff-weak-sparsity.

In case of the cliff-weak-sparsity, existing bootstrap methods, such as boot-

strap lasso+ols, give very poor coverage probabilities for the small, but nonzero

regression coefficients because they are seldom selected by the lasso. Hence,

a large fraction of the bootstrap lasso+ols estimates are zero, producing zero-
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length confidence intervals [0, 0] that do not cover the corresponding non-zero

coefficients. To fix this problem, we need to increase the variance of our esti-

mates for small coefficients of predictors that are missed by the lasso. This is the

motivation for the LPR estimator proposed in this paper.

The LPR estimator is a two-stage estimator. It adopts the lasso to select

the predictors, and it then refits the coefficients using the partial ridge. The

latter is defined to minimize the empirical l2 loss with no penalty on the selected

predictors, but with an l2 penalty on the unselected predictors. This reduces the

bias of the coefficient estimates of the selected predictors, while increasing the

variance of the coefficient estimates of the unselected predictors. The l2 penalty

(as used in a ridge regression (Hoerl and Kennard (1970)) is used because it

regularizes the coefficient estimates without imposing sparsity. Formally, let

S = {j ∈ {1, . . . , p} : β0j 6= 0} be the support set of β0, and let Ŝ = {j ∈
{1, . . . , p} : (β̂lasso)j 6= 0} be the set of predictors selected by the lasso. Then,

we define the LPR estimator as

β̂LPR = arg min
β

 1

2n
||Y −Xβ||22 +

λ2
2

∑
j /∈Ŝ

β2j

 . (2.3)

Here, λ2 is a tuning parameter that, in general, depends on n, but we omit the

dependence in the notation, for simplicity. Our simulations in Section 4 show

that fixing λ2 at O(1/n) works quite well for a range of error variance levels.

For the sake of simplicity, we set λ2 = 1/n, with the understanding that further

research should be done on the selection of λ2.

In the next two subsections, we will discuss two commonly used bootstrap

procedures for the LPR estimator, and we will explain how to use them to

construct a confidence interval for each coefficient, respectively.

2.3. The rBLPR method

For a deterministic design matrix X in a linear regression model, the residual

bootstrap is a standard method used to construct confidence intervals. In this

subsection, we introduce the rBLPR procedure.

We first need to appropriately define residuals so that their empirical dis-

tribution can well approximate the true distribution of the error, εi. In a high-

dimensional linear regression, there are multiple ways to obtain residuals. For

example, we can calculate the residuals using estimation methods such as the

lasso, lasso+ols, and LPR. Simulations suggest that the residuals obtained from
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the lasso+ols approximate the true distribution of εi the best and, hence, are

adopted in this study. Note that, when the beta-min condition does not hold,

lasso+ols would fail to select all nonzero coefficients correctly. That is, lasso+ols

is not consistent for model selection, but its prediction performance could still

be good (i.e., it has a smaller mean squared error than that of the lasso). Let

β̂lasso+ols denote the lasso+ols estimator,

β̂lasso+ols = arg min
β: βŜc=0

{
1

2n
||Y −Xβ||22

}
, where, βŜc = {βj : j 6∈ Ŝ}. (2.4)

The residual vector is defined as ε̂ = (ε̂1, . . . , ε̂n)T = Y −Xβ̂lasso+ols. We con-

sider the centered residuals {ε̂i − ε̃, i = 1, . . . , n}, where ε̃ =
∑n

i=1 ε̂i/n. For the

residual bootstrap, we obtain ε∗ = (ε∗1, . . . , ε
∗
n)T by resampling with replacement

from the centered residuals {ε̂i − ε̃, i = 1, . . . , n}, and then we construct the

residual bootstrap (“rboot”) version of Y :

Y ∗rboot = Xβ̂lasso+ols + ε∗. (2.5)

Then, based on the residual bootstrap sample (X,Y ∗rboot), we can compute the

residual bootstrap lasso (rBlasso) estimator β̂∗rBlasso, as in (2.6) (replacing Y in

equation (2.2) by Y ∗rboot), and its selected predictor set Ŝ∗rBlasso = {j ∈ {1, . . . , p} :

(β̂∗rBlasso)j 6= 0}. We can also compute the rBLPR estimator β̂∗rBLPR, as in (2.7),

in the same way as in equation (2.3), except that we replace Y and Ŝ by Y ∗rboot
and Ŝ∗rBlasso, respectively:

β̂∗rBlasso = arg min
β

{
1

2n
||Y ∗rboot −Xβ||22 + λ1||β||1

}
, (2.6)

β̂∗rBLPR = arg min
β

 1

2n
||Y ∗rboot −Xβ||22 +

λ2
2

∑
j /∈Ŝ∗

rBlasso

β2j

 . (2.7)

If the conditional distribution (given ε) of T ∗n =
√
n(β̂∗rBLPR − β̂lasso+ols) from

the bootstrap is a good approximation of the distribution of Tn =
√
n(β̂LPR −

β0), then we can use the residual bootstrap to construct asymptotically valid

confidence intervals; see Algorithm S1 for the complete procedure.

2.4. The pBLPR method

In this subsection, we introduce the pBLPR procedure. Paired bootstraps

are widely used for the inference in linear models. In this procedure, we gener-
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ate a bootstrap sample {(x∗i , y∗i ), i = 1, . . . , n} from the empirical distribution of

{(xi, yi), i = 1, . . . , n}, and then we compute the paired bootstrap lasso (pBlasso)

estimator

β̂∗pBlasso = arg min
β

{
1

2n
||Y ∗pboot −X∗pbootβ||22 + λ1||β||1

}
, (2.8)

where Y ∗pboot = (y∗1, . . . , y
∗
n)T and X∗pboot = (x∗1, . . . , x

∗
n)T denote the paired boot-

strap samples. Let Ŝ∗pBlasso = {j ∈ {1, . . . , p} : (β̂∗pBlasso)j 6= 0} be the set of

predictors selected by the paired bootstrap lasso. We define the pBLPR estima-

tor as

β̂∗pBLPR = arg min
β

 1

2n
||Y ∗pboot −X∗pbootβ||22 +

λ2
2

∑
j /∈Ŝ∗

pBlasso

β2j

 . (2.9)

The pBLPR procedure for constructing confidence intervals is summarized

in Algorithm S2.

3. Theoretical Results

3.1. Overview

In this section, we investigate the theoretical properties of the rBLPR method.

In particular, we first show that, under the cliff-weak-sparsity and other reason-

able conditions, the lasso exhibits model selection consistency, in the sense that

it correctly identifies all large components of β0, while shrinking all small com-

ponents to zero; see Theorem 1. Second, and more interestingly, we show in

Theorem 2 that, under one further condition, the residual bootstrap lasso es-

timator achieves the same kind of model selection consistency. Based on these

properties, we provide the conditions under which the limiting distribution of√
nuTT ∗n =

√
nuT(β̂∗rBLPR − β̂lasso+ols), conditional on ε, is the same as the (un-

conditional) limiting distribution of
√
nuTTn =

√
nuT(β̂LPR − β0), for a general

class of u ∈ Rp; see Theorem 3.

3.2. Model selection consistency of the lasso under cliff-weak-sparsity

In this subsection, we extend the model selection consistency of the lasso

from the hard sparsity case to the more general cliff-weak-sparsity case, where

β0 has many small but nonzero elements.
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Zhao and Yu (2006) and Wainwright (2009) showed that the lasso is sign-

consistent (i.e., pr(sign(β̂lasso) = sign(β0)) → 1 as n → ∞, which implies model

selection consistency) under appropriate conditions, including the irrepresentable

condition, beta-min condition, and hard sparsity.

Definition 2 (Zhao and Yu (2006)). If an estimator β̂ is equal in sign to the true

β0, we write β̂ =s β
0, which is equivalent to sign(β̂) = sign(β0), where sign(·)

maps positive entries to one, negative entries to -1, and zero entries to zero.

We extend this result to the cliff-weak-sparsity case. Without loss of general-

ity, we assume β0 = (β01 , . . . , β
0
s , β

0
s+1, . . . , β

0
p), with β0j � n−1/2 for j = 1, . . . , s,

and β0j � n−1/2 for j = s + 1, . . . , p. Let S = {1, . . . , s} and β0S = (β01 , . . . , β
0
s ).

Assuming the columns of X are ordered in accordance with the components of β0,

we write XS and XSc as the first s and the last p− s columns of X, respectively.

Let C = XTX/n, which can be expressed in block-wise form, with four blocks,

C11 = XT

SXS/n, C12 = XT

SXSc/n, C21 = XT

ScXS/n, and C22 = XT

ScXSc/n. Let

Λmin(A) and Λmax(A) denote the smallest and largest eigenvalues of a matrix A.

To obtain model selection consistency, we require the following assumptions:

Condition 1. εi are i.i.d. sub-Gaussian random variables.

Condition 2. The predictors are standardized, that is,

1

n

n∑
i=1

xij = 0,
1

n

n∑
i=1

x2ij = 1, j = 1, . . . , p.

Condition 3. There exists a constant Λ > 0, such that Λmin(C11) ≥ Λ.

Conditions 1 and 2 are fairly standard in the sparse linear regression liter-

ature; see, for example, (Zhao and Yu (2006); Huang et al. (2008); Huang, Ma

and Zhang (2008)). Theorems 1, 2, and 3 hold if we replace Condition 2 with a

bounded second-moment condition. However, to simplify our argument, we use

Condition 2. Condition 3 ensures that the smallest eigenvalue of C11 is bounded

away from zero, such that its inverse behaves well.

Condition 4. There exist constants 0 < c1 < 1 and 0 < c2 < 1− c1, such that

s = sn = O(nc1) , p = pn = O(en
c2

). (3.1)

Condition 5 (Irrepresentable condition (Zhao and Yu (2006))). There exists

a constant vector η with entries in (0, 1], such that |C21C
−1
11 sign(β0S)| ≤ 1 − η,
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where 1 is a (p− s)×1 vector with entries equal to one, and the inequality holds,

element-wise.

Remark 1. The irrepresentable condition is implied by the slightly stronger

condition, |C21C
−1
11 | ≤ 1 − η. This condition basically imposes a regularization

constraint on the regression coefficients of the unimportant covariates (with small

coefficients) on the important covariates (with large coefficients): the absolute

value of any unimportant covariate’s regression coefficient, represented by the

important covariates, is strictly smaller than one. This condition can be weakened

if we use other model selection criteria, such as stability selection.

Condition 6. There exist constants c1 + c2 < c3 ≤ 1 and M > 0, such that

n(1−c3)/2 min
1≤i≤s

|β0i | ≥M ; n(1+c1)/2 max
s<j≤p

|β0j | ≤M. (3.2)

Condition 7. There exists a constant c4 (c2 < c4 < c3 − c1), such that the

tuning parameter λ1 in the definition of the lasso in equation (2.2) satisfies λ1 ∝
n(c4−1)/2. Based on empirical evidence from the simulation results (see subsection

4.2), we assume the tuning parameter λ2 ∝ n−1.

Condition 8. Let c4 be the constant defined in Condition 7, and suppose that

||
√
nC−111 C12β

0
Sc ||∞ = O(1); ||

√
n(C21C

−1
11 C12 − C22)β

0
Sc ||∞ = o(nc4/2). (3.3)

Condition 4 implies that both the number of larger components of β0 (i.e.,

s) and the number of predictors (i.e., p) diverge with the sample size n. In par-

ticular, s is allowed to diverge much more slowly than n, and p can grow much

faster than n (up to exponentially fast), which is standard in almost all of the

high-dimensional inference literature. Although this assumption is stronger than

the typical one (s log p)/n → 0, it has been used in previous works (Zhao and

Yu (2006)). Condition 6 is the cliff-weak-sparsity assumption on β0, which al-

lows the existence of small, but nonzero coefficients, and is thus weaker than the

hard sparsity and the beta-min condition. Conditions 1–5, the first half of the

statement of Condition 6 on min1≤i≤s |β0i |, and the first half of the statement of

Condition 7 on λ1 are the same as those used in (Zhao and Yu (2006)) to show the

sign-consistency of the lasso. Condition 8 is a technical assumption stating that

the projection of small effects (i.e., XScβ0Sc) onto the linear subspace spanned by

the predictors corresponding to the large coefficients (i.e., the predictors in S)

decays at a certain rate. In the Supplementary Material, we present examples
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where this condition holds. Conditions 1–5 and 7 are also assumed in (Liu and

Yu (2013)) to show the validity of the residual bootstrap lasso+ols.

An interesting fact is that both the lasso and the residual bootstrap lasso

are model selection consistent under the cliff-weak-sparsity and appropriate con-

ditions.

Theorem 1. Under Conditions 1 – 8, we have

pr
(

(β̂lasso)S =s β
0
S , (β̂lasso)Sc = 0

)
= 1− o(e−nc2

)→ 1 as n→∞.

Remark 2. Theorem 1 shows that, under suitable conditions, the probability

that the lasso correctly identifies the large coefficients of β0, while shrinking

the small ones to zero, goes to one at an exponential rate. This is a natural

generalization of the sign consistency of the lasso from the hard sparsity to the

cliff-weak-sparsity. We adopt the analytical techniques in (Zhao and Yu (2006)),

with necessary modifications to account for the cliff-weak-sparsity. The proof is

provided in the Supplementary Material.

3.3. Weak convergence of the rBLPR method

Condition 9. The number of large coefficients s satisfies s2/n→ 0.

Condition 10. There exists a constant D > 0, such that

max
1≤i≤n

||xi,S ||22 = o(
√
n); max

1≤i≤n
|xT

i,Scβ0Sc | < D, where xi,S = (xi1, . . . , xis)
T.

Condition 9 is stronger than Condition 4 because it requires 0 < c1 < 1/2.

Without considering model selection, Bickel and Freedman (1983) showed that a

residual bootstrap OLS fails if p2/n does not tend to zero. Therefore, Condition

9 cannot be weakened easily. This condition is weaker than (s log p)/
√
n → 0,

as required by the de-sparsified lasso (Zhang and Zhang (2014); van de Geer

et al. (2014); Javanmard and Montanari (2014)). The first part of Condition 10

is not very restrictive, because the length of the vector xi,S is s �
√
n, and it

holds, for example, when the predictors corresponding to the large coefficients

are bounded by a constant M ; that is, |xij | ≤M , for i = 1, . . . , n, j = 1, . . . , s.

This condition is also assumed in (Huang et al. (2008)) to obtain the asymptotic

normality of the bridge estimator. The second part of Condition 10 assumes that

the small effects, {xT

i,Scβ0Sc , i = 1, . . . , n}, are bounded from above by a constant.

Theorem 2 shows that the residual bootstrap lasso estimator also has sign-

consistency under the cliff-weak-sparsity and other appropriate conditions. The
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proof of this theorem is given in the Supplementary Material.

Theorem 2. Under Conditions 1 – 10 , the residual bootstrap lasso estimator

has the sign-consistency; that is,

pr
(

(β̂∗rBlasso)S =s β
0
S , (β̂∗rBlasso)Sc = 0 | ε

)
= 1− op(e−n

c2
).

Remark 3. By Theorem 2, the residual bootstrap lasso correctly identifies the

large coefficients and shrinks the small ones to zero, with probability approaching

one. The proposed bootstrap LPR method uses the partial ridge regression to

recover these small, but nonzero coefficients.

Using Theorems 1 and 2 and Condition 11, we can show that the rBLPR

procedure can consistently estimate the distribution of β̂LPR and, thus, construct

asymptotically valid confidence intervals for the regression coefficients β0.

Let I be a (p− s)× (p− s) identity matrix, and denote the matrix Cλ2
as

Cλ2
=

(
C11 C12

C21 C22 + λ2I

)
. (3.4)

Condition 11. Let u ∈ Rp be a fixed vector, with ||u||2 = 1. Assume σ21 =

limn→∞
(
uTC−1λ2

C(C−1λ2
)Tu
)
σ2 <∞ and

max

{(
β0Sc

)T
C22

(
β0Sc

)
, max

1≤k≤n

∣∣uTC−1λ2
xk
∣∣

√
n

,
uTC−1λ2

(
0T,
(
β0Sc

)
T
)T

√
n

}
= o(1).

Remark 4. The first statement
(
β0Sc

)
T
C22

(
β0Sc

)
= o(1) is used to guarantee that

the conditional variance of ε∗i , given ε, converges to σ2, the variance of εi. Hence,

the conditional distribution of ε∗i is a valid approximation to the distribution of

εi. The other two statements are a Linderberg-type condition and a technical

condition, which are used to obtain the asymptotic normality.

Remark 5. For an orthogonal design matrix (i.e., (1/n)XTX = I), in which

there are no correlations between predictors, p ≤ n, and σ21 = σ2. Then Condi-

tion 11 reduces to the following, much simpler form: max1≤k≤n |uTxk| = o(
√
n).

When u = ej , a basis vector with the jth element equal to one and other elements

equal to zero, this condition is equivalent to max1≤k≤n |xkj | = o(
√
n), which is

not a strong condition, and is expected to hold in many practical situations.

The conclusion is still true when the correlation between two predictors satisfies

cor(Xi, Xj) = ρ|i−j|, with ρ < 1/5 (see Section S3 for more detail).
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Theorem 3. Under Conditions 1 – 11, we have

√
nuT(β̂LPR − β0) = U + op(1);

√
nuT(β̂∗rBLPR − β̂lasso+ols) = U∗ + op(1).

Both U and (U∗ | ε) converge in distribution to the normal distribution N(0, σ21).

Remark 6. Theorem 3 shows that, under appropriate conditions, the limiting

distribution of
√
nuT(β̂∗rBLPR − β̂lasso+ols), conditional on ε, is the same as the

(unconditional) limiting distribution of
√
nuT(β̂LPR − β0). Thus, the unknown

distribution of
√
nuT(β̂LPR − β0) can be approximated by the conditional distri-

bution of
√
nuT(β̂∗rBLPR− β̂lasso+ols), which can be estimated using the bootstrap.

Based on the estimated conditional distribution of
√
nuT(β̂∗rBLPR− β̂lasso+ols) , we

can construct asymptotically valid confidence intervals for the linear combination

uTβ0. Specifically, by setting u = ej , we can construct an asymptotically valid

confidence interval for an individual coefficient β0j .

We can also show the model selection consistency of the paired bootstrap

lasso estimator (similar to Theorem 2). However, even in the orthogonal design

matrix case, the design matrix X∗ of the paired bootstrap samples is no longer

orthogonal, making the components of the pBLPR estimates, (β̂∗pBLPR)S and

(β̂∗pBLPR)Sc , dependent on each other and, thus, have complicated forms. Hence,

it becomes difficult to verify the convergence property of the pBLPR estimator

using techniques similar to those used to prove Theorem 3 for the rBLPR esti-

mator. Our simulation studies in the following section indicate that the pBLPR

method works as well as the rBLPR method. We leave the theoretical analysis

of the pBLPR method to future research.

4. Simulation Studies

We perform simulation studies to evaluate the finite-sample performance of

two bootstrap LPR methods, rBLPR and pBLPR. We compare our method

with the bootstrap lasso+ols method and three de-sparsified lasso methods (

LDPE, JM, and BLDPE) in terms of their coverage probabilities and confidence

interval lengths. Additional information about the simulation studies and results

is provided in the Supplementary Material. The main conclusions are summa-

rized as follows:

(1) λ2 = O(1/n) works well for a wide range of noise levels.

(2) pBLPR is slightly better than rBLPR, in most cases.
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(3) Under the setting of normal design matrices, bootstrap lasso+ols has the

shortest confidence interval lengths, with good coverage probabilities for

large coefficients. However, for small, but nonzero coefficients, rBLPR and

pBLPR have the shortest confidence interval lengths, with good coverage

probabilities.

(4) LDPE and JM are more robust to low signal-to-noise ratios (SNRs), whereas

rBLPR and pBLPR do not perform well when the SNRs are low, that is,

no greater than one. This is mainly because the lasso cannot select all of the

important predictors correctly. The rBLPR and pBLPR methods produce

much better confidence intervals when the SNRs are high, that is, larger than

five: with comparable coverage probabilities, their interval lengths are 50%

shorter than those of LDPE and JM, on average.

(5) With regard to the point estimates of the linear model coefficients, the LPR

estimator has smaller biases for most coefficients than those of LDPE and

JM. However, its standard deviations are larger than those of LDPE and JM

for large coefficients, and are smaller for small coefficients. Overall, its root

mean squared errors (RMSEs) are 60% smaller than those of LDPE, but 42%

larger than those of JM.

(6) When the predictors are generated from a Student’s t distribution with two

degrees of freedom, the methods all fail to produce valid confidence intervals.

New statistical techniques are needed for inference in this case.

(7) Our rBLPR and pBLPR methods are robust to model misspecification, and

the confidence intervals constructed using our methods are more than 50%

shorter, on average, than those produced by LDPE and JM.

(8) BLDPE has the best coverage probabilities of the considered methods. Its

confidence interval lengths are close to the better ones of LDPE and JM, but

are still larger than those of pBLPR and rBLPR.

5. Real-Data Case Study 1: fMRI Data

In this section, we demonstrate the performance of our method pBLPR on

a real fMRI data set and compare its performance with that of two de-sparsified

methods. The fMRI data were provided by the Gallant Lab at UC Berkeley

(Kay et al. (2008)). The fMRI measured blood oxygen level-dependent activity at

1,331 discretized 3D brain volumes (2×2×2.5 millimeters): cube-like units called
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voxels. We use a sub-dataset focusing on the responses in the ninth voxel, located

in the brain region responsible for visual functions. A single human subject was

shown pictures of everyday objects, such as trees, stars, and so on. Each picture

was a 128 pixel by 128 pixel grayscale image, reduced to a vector of length 10,921,

as follows: (1) use a Gabor transform of the gray image to generate local contrast

energy features Zj ; and (2) take the nonlinear transformation Xj = log(1+
√
Zj),

for j = 1, . . . , 1, 0921. Training and validation data sets were collected during the

experiment. There were 1,750 natural images in the training data, consisting of

a design matrix of dimensions 1, 750×10, 921. The validation data set contained

responses to 120 natural images (we do not use the validation data in this study).

After reading the training data set into R, we calculate the variance of each

feature (column) in X, and delete those columns with variances ≤ 1e−4. Then,

we have a matrix of dimension 1, 750× 9, 076. We further reduce the dimension

of the design matrix using correlation screening, that is, sorting the correlations

(Pearson correlation between every feature in X and the response Y ) in decreas-

ing order of absolute value, and then selecting the top 500 features with the

largest absolute correlations. We use the lasso+ols estimate of the feature coef-

ficients, based on the 1, 750 × 500 design matrix, as the pseudo-true parameter

values, denoted by β0. We randomly choose a subset of n = 200 rows to create

a high-dimensional simulation setting, and then generate Y from a linear regres-

sion model yi = xT

i β
0 + εi. We set B = 1, 000 for the number of replications in

the bootstrap, and compare the performance of the pBLPR method with that

of LDPE and JM.

Based on the sub-dataset with n = 200 and p = 500, we evaluate the perfor-

mance of pBLPR, LDPE, and JM in their construction of confidence intervals.

The 95% confidence intervals constructed by these three methods cover 95.8%,

97%, and 99.6%, respectively, of the 500 components of β0. All three methods

cover more than 95% of the pseudo-true values and, thus, have satisfactory per-

formance in terms of coverage. In terms of interval lengths, however, our pBLPR

method produces much shorter confidence intervals than those of the other two

methods for most of the coefficients, especially the small ones. Figure S15 shows

the confidence interval lengths of 100 coefficients (44 nonzero coefficients in β0

and 56 randomly chosen zero coefficients) produced by the three methods. The

satisfactory coverage and much shorter lengths of the confidence intervals pro-

duced by pBLPR, demonstrate that it outperforms LDPE and JM, overall, in

this real-data case study.
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6. Real-Data Case Study 2: Neuroblastoma Gene Expression Data

In this section, we apply our proposed pBLPR and rBLPR methods and

three de-sparsified lasso methods (LDPE, JM, and BLDPE), to a data set con-

taining 43, 827 gene expression measurements from the Illumina RNA sequencing

of 498 neuroblastoma samples. More details about this data set can be found in

the Supplementary Material.

Constructing gene-gene regulatory relationships is of primary interest for this

data set. In this section, we apply five methods (pBLPR, rBLPR, LDPE, JM,

and BLDPE) to identify the significant genes that affect the expression of a gene

called CAMTA1, which is known to be neuroblastoma-related and is observed to

be highly correlated with the risk of neuroblastoma. Given our lack of knowledge

on the complex regulatory relationships between genes, the linear model is almost

certainly a misspecified model. However, this case study serves as a reasonable

real-data example to demonstrate the ability of our pBLPR and rBLPR methods

and the three de-sparsified lasso methods (LDPE, JM, and BLDPE) to identify

significant predictors in a misspecified linear model.

The results show that LDPE and its bootstrap version, BLDPE, find the

most significant genes; pBLPR and rBLPR find 91 and 26 significant genes,

respectively; JM finds only one significant gene. The functions related to nat-

ural and regulated cell deaths (e.g., apoptosis and autophagy), which are key

processes used to prevent cancer, are only enriched in the significant genes found

by pBLPR or rBLPR, but not in those found by any of the de-sparsified lasso

methods. On the other hand, only general functions, such as basic processes

in cells, are enriched in the significant genes found by each de-sparsified lasso

method, but not by our methods. This suggests that pBLPR and rBLPR find

significant features that are more reasonable and interpretable, based on domain

knowledge, implying that pBLPR and rBLPR are robust to model misspecifica-

tion. The detailed analysis results are provided in the Supplementary Material

and the additional Supplementary File.

7. Conclusion and Future Work

Assigning p-values and constructing confidence intervals for parameters in

high-dimensional sparse linear models are challenging tasks. The bootstrap, as a

standard inference tool, has been shown useful in addressing this problem. How-

ever, previous works that extended the bootstrap technique to high-dimensional

models relied on two key assumptions: the hard sparsity and the beta-min con-
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dition. The beta-min condition is rather restrictive. In order to relax it, we pro-

pose two new bootstrap procedures based on a new two-stage estimator, called

lasso+partial ridge. Our methods improve the performance of the bootstrap

lasso+ols method proposed in (Liu and Yu (2013)) when there exist a group of

small, but nonzero regression coefficients. We conduct extensive simulation stud-

ies to compare our methods with three de-sparsified methods (LDPE, JM, and

the bootstrap version of LDPE (BLDPE)). We find that our methods yield com-

parable coverage probabilities, but shorter (on average) intervals, and are more

robust to misspecified models than the other methods are under many scenar-

ios. We apply our methods to an fMRI data set, finding that it gives reasonable

coverage probabilities and shorter interval lengths than those of LDPE, JM, and

BLDPE. In a second real-data application, we applied our methods to identify

genes that have significant effects on predicting a cancer gene’s expression levels

in a (likely) misspecified linear model. Compared with three de-sparsified lasso

methods, our methods find genes that are biologically more reasonable and in-

terpretable, suggesting that our methods are robust to model misspecification in

certain applications, despite the lack of rigorous theoretical analysis in this work.

Future work is needed to investigate the robustness of various inference methods

to different types of model misspecification, from both theoretical and empirical

perspectives.

A disadvantage of our method is that its resulting inference is not uniformly

valid over the class of sparse models, owing to the cliff-weak-sparsity assump-

tion. It is possible that our methods are uniformly valid for some pseudo-true

parameter, that is, the parameters of the nearest model that satisfies the cliff-

weak-sparsity; we leave this to future work. Moreover, compared with uniformly

valid inference procedures such as the de-sparsified lasso methods, our empirical

studies show that our methods are more likely to identify small, but nonzero coef-

ficients, owing to the shorter confidence interval lengths returned by our methods.

In many real-world applications, the covariates (or features) with small effects

are not negligible, but may be important. For example, in genomic applica-

tions, where complex gene-gene regulatory relationships are of primary interest,

researchers searching for regulators of a target gene are not only interested in

the genes with large effects, but also in other genes with small effects. This is

because many small effects have been discovered to play important functional

roles in biological mechanisms. In this application, our methods provide a means

to identify genes with small effects. However, note that subsequently experi-

ments are still required to validate the identified genes. Furthermore, when an
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individual coefficient is too small, no method can successfully identify it; then, a

statistical procedure should instead aim to detect the joint significance of a set

of covariates.

Overall, the bootstrap lasso+ols method has the shortest confidence inter-

val lengths, with good coverage probabilities, for large coefficients. However,

for small, but nonzero coefficients, the bootstrap LPR method (rBLPR and

pBLPR) has the shortest confidence interval lengths, with good coverage prob-

abilities. Therefore, if practitioners focus on the confidence intervals for large

coefficients, we recommend the bootstrap lasso+ols method; however, if they

are also interested in identifying small, but significant coefficients in a possibly

misspecified linear model, we recommend our bootstrap LPR methods. Never-

theless, note that the confidence intervals of the coefficients, with magnitudes

of order 1/
√
n, may be invalid. If practitioners’ major concern is the coverage

probabilities of confidence intervals, they should use the de-sparsified lasso meth-

ods, which are uniformly valid over the class of sparse models. Moreover, from

an application perspective, our bootstrap LPR methods have the advantages of

being technically simple, interpretable, and easy to implement and parallelize.

Finally, multiple testing is another important task in hypothesis testing, and

is closely related to confidence interval construction. Several procedures, such as

the Bonferroni correction, Benjamini–Hochberg procedure and FDR control, have

been proposed to correct multiple testing in low-dimensional settings. However,

these procedures are based on accurate estimations of the p-values of each test,

where small p-values can only be obtained using large numbers of bootstrap runs

(e.g., a p-value of 0.001 requires at least 1, 000 runs), thus imposing too much

computational complexity. We leave the correction for multiple testing in high-

dimensional models as future work.

Supplementary Material

The online Supplementary Material includes proofs, algorithms, and sim-

ulation results. An additional Supplementary File contains the detailed Gene

Ontology analysis results for real-data case study 2.
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