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Abstract

Motivation: Single-cell RNA sequencing (scRNA-seq) has revolutionized biological sciences by re-

vealing genome-wide gene expression levels within individual cells. However, a critical challenge

faced by researchers is how to optimize the choices of sequencing platforms, sequencing depths

and cell numbers in designing scRNA-seq experiments, so as to balance the exploration of the

depth and breadth of transcriptome information.

Results: Here we present a flexible and robust simulator, scDesign, the first statistical framework

for researchers to quantitatively assess practical scRNA-seq experimental design in the context of

differential gene expression analysis. In addition to experimental design, scDesign also assists

computational method development by generating high-quality synthetic scRNA-seq datasets

under customized experimental settings. In an evaluation based on 17 cell types and 6 different

protocols, scDesign outperformed four state-of-the-art scRNA-seq simulation methods and led to

rational experimental design. In addition, scDesign demonstrates reproducibility across biological

replicates and independent studies. We also discuss the performance of multiple differential ex-

pression and dimension reduction methods based on the protocol-dependent scRNA-seq data gen-

erated by scDesign. scDesign is expected to be an effective bioinformatic tool that assists rational

scRNA-seq experimental design and comparison of scRNA–seq computational methods based on

specific research goals.

Availability and implementation: We have implemented our method in the R package scDesign,

which is freely available at https://github.com/Vivianstats/scDesign.

Contact: jli@stat.ucla.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

The emergence and rapid development of single-cell RNA-

sequencing (scRNA-seq) technologies offer unprecedented opportu-

nities for investigating transcriptional mechanisms underlying

biological and medical phenomena at the individual-cell resolution

(Haque et al., 2017; Wagner et al., 2016). While bulk RNA sequenc-

ing has been widely used to capture the average transcriptome infor-

mation in a batch of cells (Li and Li, 2018b), scRNA-seq allows the

investigation of transcriptome variation across thousands to millions

of cells. The scRNA-seq technologies have enabled researchers to in-

vestigate fundamental biomedical questions, such as cellular com-

position of various tissues and cell types, cell differentiation

trajectories, and spatial and temporal dynamics of single cells.

Important discoveries have been made from scRNA-seq data and

have advanced our understanding of diseases, such as neurological

disorders (Skene et al., 2018) and tumorigenesis (Tirosh et al.,

2016).

Since the first scRNA-seq study was published in 2009 (Tang

et al., 2009), more than 20 scRNA-seq experimental protocols have

been developed. An effective experimental design requires careful

consideration of the target research question as well as the experi-

mental budget, and a typical design in practice consists of two steps.

First, researchers need to select a proper protocol among the avail-

able ones, and the primary consideration is the choice between a

tag-based protocol that allows the integration of unique molecular

identifiers (UMIs) (Kivioja et al., 2012) and a full-length protocol

that captures full-length transcripts and allows the addition of the

External RNA Control Consortium (ERCC) spike-ins (Bacher and
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Kendziorski, 2016). The tag-based protocols [e.g. Drop-seq

(Macosko et al., 2015)] are usually used to obtain a broad but shal-

low view of the transcriptomes across many cells, while the full-

length protocols [e.g. Smart-seq2 (Picelli et al., 2013)] provide a

deeper account of the gene expression in fewer cells. For example, a

study about gene expression dynamics during stem cell differenti-

ation requires accurate gene expression measurements, so it should

opt for a full-length protocol. In contrast, in a study aiming to iden-

tify a previously unknown cell phase during the differentiation, it is

necessary to sequence a large number of cells using a tag-based

protocol to capture the transient phases. In the second step, to opti-

mize an experiment with a selected protocol and a fixed budget,

researchers need to choose between exploring the depth or breadth

of transcriptome information, which sums up to determining the ap-

propriate number of cells to sequence.

However, in contrast to the classical experimental design (Quinn

and Keough, 2002) guided by certain theoretical optimality (e.g. the

maximum power of a statistical test), the scRNA-seq experimental

design is impeded by various sources of data noises, making a rea-

sonable theoretical analysis tremendously difficult (Kolodziejczyk

et al., 2015; Pierson and Yau, 2015). Especially, scRNA-seq data

are characterized by excess zeros resulted from dropout events, in

which a gene is expressed in a cell but its mRNA transcripts are un-

detected. As a result, many commonly used statistical assumptions

are not directly applicable to modeling scRNA-seq data. For ex-

ample, Baran-Gale et al. proposed using a Negative Binomial model

to estimate the number of cells to sequence, so that the resulting ex-

periment is expected to capture at least a specified number of cells

from the rarest cell type (Baran-Gale et al., 2017). However, the esti-

mation accuracy depends on the idealized Negative Binomial model

assumption, which real scRNA-seq data usually do not closely fol-

low (Supplementary Fig. S1). There is also a theoretical investigation

of the cell-depth trade-off based on the Poisson assumption of gene

read counts and a specific list of genes of interests (Zhang et al.,

2018). In contrast to model-based design approaches (Dumitrascu

et al., 2018), multiple scRNA-seq studies used descriptive statistics

to provide qualitative guidance instead of well-defined optimization

criteria for experimental design (Grün and van Oudenaarden, 2015;

Rizzetto et al., 2017). However, because the descriptive statistics

were proposed from diverse perspectives, their resulting experimen-

tal designs are difficult to unify to guide practices. For example, one

study reported that the sensitivity of most protocols saturates at ap-

proximately one million reads per cell (Ziegenhain et al., 2017),

while another study found that the saturation occurs at around 4.5

million reads per cell (Svensson et al., 2017). The reason for this dis-

crepancy is that the two studies defined the sensitivity in different

ways: the first study used the gene detection rate, while the second

study used the minimum number of input RNA molecules required

for confidently detecting a spike-in control (Jiang et al., 2011).

In this article, we propose a statistical simulator scDesign for

optimizing scRNA-seq experimental design from the perspective of

detecting differentially expressed (DE) genes between two biological

conditions (determined before an experiment) or two cell states

(inferred after an experiment), a major scRNA-seq data analysis

task. Given a pre-defined significance level [e.g. a false discovery

rate (FDR)], the power of an scRNA-seq experiment for detecting

DE genes is jointly determined by the sensitivity of detecting gene

expression, the accuracy of measuring gene expression and the num-

ber of cells sequenced for each cell state. For each protocol and a

specified total sequencing depth (i.e., the total number of reads in an

scRNA-seq experiment), the cell-wise sequencing depth (i.e. the

expected number of reads per cell) decreases as the cell number

increases (Haque et al., 2017). However, existing power analysis

methods for scRNA-seq experiments unrealistically assume a fixed

cell-wise sequencing depth, which does not change as the cell num-

ber varies (Vieth et al., 2017; Ziegenhain et al., 2017). Therefore,

the practical scRNA-seq experimental design calls for a new ap-

proach that accounts for various characteristics and constraints of a

real scRNA-seq experiment.

ScDesign is a simulation-based experimental design framework

that has multiple advantages in real practice. First, scDesign is

protocol- and data-adaptive. It learns scRNA-seq data characteris-

tics from rapidly accumulating public scRNA-seq data generated

under diverse settings. For example, 1976 series of scRNA-seq data-

sets are currently available in the Gene Expression Omnibus (GEO)

database (Edgar et al., 2002). There are also newly developed

scRNA-seq databases, such as SCPortalen (70 studies with 67 146

cells) (Abugessaisa et al., 2018), scRNASeqDB (36 studies with

8910 cells) (Cao et al., 2017) and the Single Cell Portal (43 studies

with 496 366 cells). Second, scDesign generates synthetic data that

well mimic real scRNA-seq data under the same experimental set-

tings, providing a basis for using its synthetic data to guide practical

scRNA-seq experimental design. Third, scDesign is flexible in

accommodating user-specific analysis needs. Users can apply

scDesign to evaluate the performance of downstream analysis, such

as gene differential expression and cell clustering, under various ex-

perimental settings at no experimental cost. Assisted by the evalu-

ation results, users will be able to design an scRNA-seq experiment

based on the setting that leads to the best performance according to

their specified criteria.

2 Materials and Methods

2.1 The statistical framework of scDesign
We develop scDesign based on a statistical generative framework

that utilizes both existing real scRNA-seq data and reasonable

assumptions mimicking various experimental processes. In contrast

to the existing simulation methods for scRNA-seq data, scDesign

constructs a Gamma-Normal mixture model to account for dropout

events. This is motivated by the successful applications of our previ-

ously developed imputation method, scImpute, for recovering drop-

out gene expression values in scRNA-seq data (Li and Li, 2018a).

This mixture model allows scDesign to overcome the dropout hurdle

in learning key gene expression characteristics from real scRNA-seq

data (Supplementary Fig. S1), so that scDesign generates synthetic

data highly similar to real data in multiple aspects. Depending on

whether the task is to design an scRNA-seq experiment to sequence

one or two batches of cells, scDesign has the corresponding one-

state mode (Supplementary Fig. S2a) or the two-state mode

(Supplementary Fig. S2b). In the one-state mode, scDesign leverages

the information in a real scRNA-seq dataset from one biological

condition (e.g. treatment or control) or one cell state (e.g. T cells) to

generate a single scRNA-seq dataset given an experimental setting,

i.e. a pre-specified total sequencing depth and a cell number. From

the real scRNA-seq dataset, scDesign first estimates two cell-wise

and three gene-wise parameters, which jointly define the key charac-

teristics of scRNA-seq data. Second, scDesign simulates ideal gene

expression levels for new cells of the same biological condition or

cell state based on the estimated gene expression parameters. Third,

scDesign introduces missing values to mimic the actual dropout

events in an scRNA-seq experiment. Fourth, scDesign outputs a syn-

thetic gene expression matrix with entries as read counts. In the

two-state mode, scDesign leverages the information in two real
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scRNA-seq datasets from different biological conditions or cell

states to generate two scRNA-seq datasets given an experimental

setting. In this two-state mode, the simulation by scDesign mimics

an experiment where two groups of cells from two biological condi-

tions or cell states are sequenced together (Supplementary Fig. S2b).

2.2 scDesign for scRNA-seq data simulation
In this section, we describe how scDesign generates simulated RNA-

seq data given existing real scRNA-seq data from a certain cell state.

These simulated count matrices capture the characteristics of real

count matrices, and they thus can be used to assist the development

of computational methods and evaluate the performance of those

methods under user-specified settings. We introduce how to simu-

late a single count matrix below. Please refer to the Supplementary

Material for simulating multiple count matrices following a differen-

tiation path.

Given a real single-cell count matrix with I genes and J0 cells,

our goal is to generate a new count matrix with I genes and J cells,

under the constraint that the new matrix has a total of S reads

(Supplementary Fig. S2a). Both J and S are user-specified parame-

ters. This resembles the real scenario where both the cell number

and the total read number (i.e. the total sequencing depth) need to

be specified before an scRNA-seq experiment.

2.2.1. Step 1: Estimate parameters from real scRNA-seq data

Denote the real single-cell count matrix by X real, whose I rows and

J0 columns represent the genes and cells, respectively. About the two

cell-wise parameters, for each cell j we estimated its library size as

ŝ0j ¼
XI

i¼1

Xreal
ij ; j ¼ 1; . . . ; J0;

and its cell-wise dropout rate as

q̂0j ¼
1

I

XI

i¼1

I Xreal
ij ¼ 0

n o
; j ¼ 1; . . . ; J0:

Then we fit the cell library sizes ŝ01; . . . ; ŝ0J0
using a truncated

Normal distribution, and the estimated mean and standard devi-

ation (SD) are denoted as l̂s and r̂s, respectively.

To estimate the three gene-wise parameters, we first normalized

the read counts given their corresponding library sizes and then per-

formed a logarithmic transformation on the normalized values. The

transformed matrix is denoted as X log , where

X log
ij ¼ log 10

medianfŝ01; . . . ; ŝ0Jg
ŝ0j

Xreal
ij þ 1:01

 !
:

Using the Gamma-Normal mixture model described in the

scImpute method (Li and Li, 2018a), we estimated the gene-wise

dropout rate and mean and SD of gene expression. The mixture

model considers the expression levels of gene i as independently and

identically distributed random variable X log
i1 ; . . . ;X log

iJ0
following the

density function

fiðxÞ ¼ k0iGammaðx; a0i; b0iÞ þ ð1� k0iÞNormalðx; l0i; r
2
0iÞ;

where k0i is gene i’s dropout rate, a0i and b0i are the shape and rate

parameters of the Gamma distribution and l0i and r0i are the mean

and SD of the Normal distribution. The Gamma component

describes the gene expression distribution when dropout occurs,

while the Normal component represents the distribution of actual

gene expression levels. We use multiple real scRNA-seq datasets to

demonstrate that this mixture model outperforms the widely used

Negative Binomial model in terms of goodness of fit to real data

(Supplementary Fig. S1). The parameters in this model can be esti-

mated by the Expectation-Maximization (EM) algorithm and the

resulting dropout rate, mean and SD estimates are denoted as

k̂0i; l̂0i and r̂0i, respectively. We then used a Gamma distribution to

fit the estimated gene mean expression levels l̂01; . . . ; l̂0I and

denoted the estimated shape and scale parameters as k̂0 and ĥ0.

To summarize, we estimated two cell-wise parameters including

the cell library size ŝ0j and the cell-wise dropout rate q̂0j

(j ¼ 1; . . . ; J0), and three gene-wise parameters including the mean

expression l̂0i, the SD r̂0i and the gene-wise dropout rate k̂0i

(i ¼ 1; . . . ; I).

2.2.2. Step 2: Simulate ideal gene expression values

In this step, we simulated the ideal expression values independently

for each gene without considering varying cell library sizes and the

dropout issue. For each gene i (i ¼ 1; . . . ; I), we first simulated its

mean expression li � Gammaðk̂0; ĥ0Þ, then we simulated its SD by

stratified sampling from the binned observations, which we proc-

essed from the real count matrix. Specifically, we divided the esti-

mated gene mean expression values fl̂01; . . . ; l̂0Ig into B intervals,

and we use l̂0ðkÞ to denote the kth order statistic of fl̂01; . . . ; l̂0Ig.

Then, the first interval is �1; l̂0ð1Þ þ
l̂0ðIÞ�l̂0ð1Þ

B

� i
, the bth interval

(1 < b < B) is l̂0ð1Þ þ
l̂0ðIÞ�l̂0ð1Þ

B ðb� 1Þ; l̂0ð1Þ þ
l̂0ðIÞ�l̂0ð1Þ

B b
� i

and the

Bth interval is l̂0ð1Þ þ
l̂0ðIÞ�l̂0ð1Þ

B ðB� 1Þ;þ1
� i

. We define ẑ0i ¼ b if

l̂0i belongs to the bth bin, and similarly we define zi ¼ b if li

belongs to the bth bin. We simulated the SD ri of gene i by sampling

from the stratified gene SDs estimated from the real

data: ri � Uniformðfr̂0i0 : ẑ0i0 ¼ zi; i
0 ¼ 1; . . . ; IgÞ. Finally, we

generated the ideal expression matrix X ideal, where Xideal
ij �i:i:d:

Normalðli; r
2
i Þ; j ¼ 1; . . . ; J.

2.2.3. Step 3: Introduce dropout events

In this step, we introduced dropout events into the synthetic count

matrix, while accounting for the variability of both gene-wise and

cell-wise dropout rates. The cell-wise dropout rate in a synthetic cell

j was simulated as qj �i:i:d: Uniformðfq̂01; . . . ; q̂0J0
gÞ; j ¼ 1; . . . ; J. For

each gene i (i ¼ 1; . . . ; I), we simulated its gene-wise dropout rate ki

by sampling one value from the stratified dropout rates estimated

from the real data: ki � Uniformðfk̂0i0 : ẑ0i0 ¼ zi; i
0 ¼ 1; . . . ; IgÞ.

Then, we simulated the number of dropout events of gene i:

ni � BinomialðJ; kiÞ. In other words, gene i was affected by the drop-

out events in ni cells. These ni cells were sampled without replace-

ment from the cell population f1;2; . . . ; Jg, with cell j being selected

with probability
qjPJ

j¼1
qj

. We denote the sampling results by Iij, with

Iij ¼ 1 indicating that gene i is a dropout in cell j and Iij ¼ 0 indicat-

ing that gene i is successfully amplified in cell j, j ¼ 1; . . . ; J. Then

we obtained the synthetic count matrix with dropout events Xdrop,

where Xdrop
ij ¼ ½10Xideal

ij
IfIij¼0g � 1:01�; and ½x� is the nearest integer

to x.

2.2.4. Step 4: Simulate the final count matrix

We first simulated the library size of each synthetic cell j:

sj �i:i:d:Normalðl̂s; r̂
2
s Þ; j ¼ 1; . . . ; J, and then we calculated the

expected proportion of each entry in the count matrix

A statistical simulator scDesign i43
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Pij ¼
sjX

drop
ijPI

i¼1

PJ
j¼1 sjX

drop
ij

:

Finally, we obtained the final synthetic count matrix Xsyn, which

is constrained by the sequencing depth S, by simulating its counts

from the multinomial distribution: ðXsyn
11 ; . . . ;Xsyn

1J ; . . . ; Xsyn
I1 ; . . . ;

Xsyn
IJ Þ � Multinomial

�
S; ðP11; . . . ;P1J; . . . ;PI1; . . . ;PIJÞ

�
:

2.3 scDesign for scRNA-seq experimental design
ScDesign aims to determine the best number of cells to sequence

given a fixed sequencing depth, such that the resulting RNA-seq

data are optimized for differential gene expression analysis. We de-

note the two real count matrices as Xreal1, with I rows (genes) and

J01 columns (cells), and Xreal2, with I rows (genes) and J02 columns

(cells). Without loss of generality, we assume that the two matrices,

which represent two cell states, have the same genes listed in the

same order. We introduce how to simulate a synthetic count matrix

for each state with scDesign in two scenarios, and the procedure is

then repeated with varying cell numbers to obtain synthetic data for

power analysis (Supplementary Material).

2.3.1 Scenario (1)

In scenario (1), we assume that cells from the two cell states are pre-

pared as separate libraries and sequenced independently. Given

Xreal1 and Xreal2, the goal of scDesign is to generate a synthetic count

matrix with I genes and J1 cells for state 1, and a synthetic count ma-

trix with I genes and J2 cells for state 2. Cell states 1 and 2 have

sequencing depths of S1 and S2, respectively. For each state

g ðg ¼ 1;2Þ, we follow Section 2.2 to simulate a count matrix X
syn;g
I�Jg

.

The only difference is in step 2, where we directly set lg
i ¼ l̂g

0i and

rg
i ¼ r̂g

0i; i ¼ 1; . . . ; I, instead of simulating new parameters. This is

to ensure that the rows in the two simulated matrices still represent

the same set of real genes, and the power analysis based on the simu-

lated data is biologically meaningful.

2.3.2 Scenario (2)

Now we consider the case where the two cell states are jointly

sequenced. Suppose that the two cell states are mixed in one bio-

logical sample, and the experimental setting is that J cells are to be

sequenced to generate S RNA-seq reads in total. We assume that the

two cell states present in fractions of p1 and p2 in the sample, re-

spectively. That is, 0 < p1 < 1; 0 < p2 < 1 and p1 þ p2 � 1.

When p1 þ p2 < 1, there are more than two cell states present in

the same sample. The goal of scDesign in scenario (2) is to simulate

count matrices for the two selected cell states, based on a real count

matrix of each state (Supplementary Fig. S2b).

1. Determine cell numbers.

We denote the numbers of cells from state 1, state 2 and

the remaining states as J1, J2 and Jr, respectively. These numbers

were sampled from a Multinomial distribution:

ðJ1; J2; JrÞ � Multinomial
�

J; ðp1;p2; 1� p1 � p2Þ
�
:

2. Simulate count matrices with dropout events.

Following steps 1–3 in Section 2.2, we simulated two count

matrices X
drop1
I�J1

and X
drop2
I�J2

for cell states 1 and 2, respectively. The

only difference is in step 2, where we directly set lg
i ¼ l̂g

0i and

rg
i ¼ r̂g

0i; i ¼ 1; . . . ; I, to ensure that the rows in the synthetic count

matrices represent the same set of real genes.

3. Simulate the final count matrices.

We first simulated the library sizes of the cells in the two states:

s1
j � Normal

�
l̂1

s ; ðr̂1
s Þ

2
�
; j ¼ 1; . . . ; J1;

s2
j � Normal

�
l̂2

s ; ðr̂2
s Þ

2
�
; j ¼ 1; . . . ; J2;

where l̂1
s and r̂1

s are estimated from Xreal1, and l̂2
s and r̂2

s are esti-

mated from Xreal2. Then we combined the two count matrices to ob-

tain the expected proportion matrix PI�ðJ1þJ2Þ:

Pij ¼
ZijPI

i¼1

PJ1

j0¼1 s1
j0X

drop 1
ij0 þ

PI
i¼1

PJ2

j00¼1 s2
j00X

drop 2
ij00

;

where Zij ¼ s1
j Xdrop 1

ij if 1 � j � J1, and Zij ¼ s2
j�J1

Xdrop 2
iðj�J1Þ if

J1 < j � J1 þ J2. The first J1 columns and the last J2 columns in P

give the expected proportions of genes in cell states 1 and 2, respect-

ively. We further assume that the total number of reads from the

two states together is S0 ¼ ½SðJ1 þ J2Þ=J�, where ½x� denotes the near-

est integer to x. Then we simulated the final count matrix X
syn
I�ðJ1þJ2Þ

constrained by the sequencing depth from a Multinomial distribu-

tion: ðX syn
11 ; . . . ;X

syn
1ðJ1þJ2Þ; . . . ;X

syn
I1 ; . . . ;X

syn
IðJ1þJ2ÞÞ �Multinomial

�
S0;

ðP11; . . . ;P1ðJ1þJ2Þ; . . . ;PI1; . . . ;PIðJ1þJ2ÞÞ
�
: The final count matrix of

cell state 1 and state 2 are X
syn;1
I�J1

(Xsyn;1
ij ¼ Xsyn

ij ) and X
syn;2
I�J2�

Xsyn;2
ij ¼ Xsyn

iðjþJ1Þ

�
, respectively.

3 Results

3.1 scDesign captures key characteristics of scRNA-seq

data
We first demonstrate that scDesign accurately captures six key char-

acteristics of real scRNA-seq data, so it serves as a reliable data

simulator to assist scRNA-seq experimental design and to compare

relevant computational methods. To assess the simulation perform-

ance of scDesign as compared with four other simulation methods,

splat, powsimR, Lun and scDD, we compared the simulated data

generated by each method with the real data from various protocols.

Both splat and powsimR are software packages for simulating

scRNA-seq data (Vieth et al., 2017; Zappia et al., 2017); Lun

denotes the simulation design introduced by Lun et al. (Lun et al.,

2016); scDD denotes the simulation method designed to evaluate

the DE method scDD (Korthauer et al., 2016). We considered six

experimental protocols: Smart-seq2 (Picelli et al., 2013), Drop-seq

(Macosko et al., 2015), 10x Genomics (Zheng et al., 2017),

Fluidigm C1 (SMARTer) (Pollen et al., 2014), inDrop (Klein et al.,

2015) and Seq-Well (Gierahn et al., 2017), and we collected three

real scRNA-seq gene expression datasets of distinct cell types from

each protocol (Supplementary Table S1). In summary, we used 18

real count matrices of 17 cell types from human and mouse to evalu-

ate the five simulation methods.

For each real count matrix, we randomly split the columns (cells)

into two subsets of equal sizes, one used to estimate gene expression

parameters and simulate a new count matrix with the same dimen-

sions, and the other used to evaluate the simulation results. We com-

pared each pair of real and simulated count matrices in terms of six

summary statistics, including four gene-wise statistics [the count

mean, the count variance, the count coefficient of variation (cv) and
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the gene-wise zero proportion) and two cell-wise statistics (the li-

brary size and the cell-wise zero proportion) (Supplementary

Material). Our results show that scDesign well mimics real scRNA-

seq experiments based on all the six experimental protocols, even

though those protocols generate data with distinct properties. For

example, data from Smart-seq2 and Fluidigm C1 have relatively

larger library sizes and smaller count cvs (Fig. 1a and

Supplementary Figs S3 and S4), while data from the other four pro-

tocols have smaller library sizes and larger zero proportions

(Supplementary Figs S5–S8). We measured the similarity between

each summary statistics’ empirical distributions in real and the cor-

responding simulated data by each simulation method, using the

Kolmogorov–Smirnov (KS) distance, whose value is between 0 and

1 and a smaller value indicates greater similarity (Supplementary

Material). Comparing the KS distances of the five methods, we

found that scDesign performs the best for five protocols: Smart-

seq2, Fluidigm C1, Seq-Well, Drop–seq and inDrop (Fig. 1b and

Supplementary Figs S3–S5, S7 and S8), while scDesign and

powsimR perform comparably for 10x Genomics (Supplementary

Fig. S6). In summary, scDesign is ranked the best in 84 comparisons

and the second best in 20 comparisons, among all the 108 compari-

sons (6 statistics for each of the 18 datasets). In addition, our results

also show that scDesign is able to preserve the relationships between

genes’ expression mean and expression variance, expression cv and

zero proportion (Fig. 1c). The demonstrated advantage of scDesign

is rooted in its ability to incorporate both parametric and non-

parametric methods to simulate scRNA-seq data. By constructing a

mixture model to account for the dropout events, scDesign explicitly

models the gene-wise parameters from the real data. When generat-

ing cell-wise parameters for the simulated cells, scDesign uses differ-

ent sampling techniques for each parameter to capture its

distribution characteristic. In terms of the method stability,

scDesign, Lun and splat successfully estimated simulated data for all

the 18 datasets, while scDD encountered errors with 5 datasets, and

powsimR had errors with 4 datasets.

3.2 scDesign guides rational scRNA-seq experimental

design
Given a fixed sequencing depth in designing an scRNA-seq experi-

ment, scDesign assists users in predicting the optimal number of cells

for sequencing. In the context of gene differential expression ana-

lysis of two cell states, the cell number is optimal if its resulting

scRNA-seq data lead to the most accurate detection of DE genes,

where the accuracy depends on a user-specified criterion, e.g. a stat-

istical test’s power given a significance level. We consider two scen-

arios: (1) cells from the two cell states are prepared as two separate

libraries and sequenced independently; (2) cells from the two cell

states are prepared in the same library and sequenced together.

Scenario (1) includes many studies that investigated cells collected at

two differentiating time points, cells of the same tissue type from

patients and healthy subjects or cells of the same type but exposed

to different experimental treatments (Jaitin et al., 2014; Shekhar

et al., 2016). The experimental design under scenario (1) aims to se-

lect the optimal cell numbers simultaneously for two libraries, so

that the subsequent DE analysis becomes the most accurate given a

user-specified criterion. Scenario (2) includes many scRNA-seq stud-

ies that sequenced an in vivo tissue sample, e.g. the peripheral blood

mononuclear cell sample (Zheng et al., 2017), which is composed of

a mixture of cell subtypes. In scenario (2), DE analysis is performed

on a pair of known or putative cell subtypes within the sequenced

sample. We consider the experimental design to optimize the DE

analysis between two pre-selected cell subtypes under scenario (2).

In scenario (1), the constraints are the total sequencing depths of

the two cell states, and scDesign aims to determine the optimal cell

number for each cell state, among a set of candidate cell numbers.

ScDesign simulates a new count matrix of each state based on a real

count matrix of the same state, for each pre-specified sequencing

depth and cell number. Once obtaining the simulated count matrices

corresponding to various candidate cell numbers, scDesign assesses

the accuracy of DE gene identification using five measures: preci-

sion, recall, true negative rate, F1 score (the harmonic mean of

(a)

(c)

(b)

Fig. 1. Comparison of scRNA-seq simulation methods based on the Smart-seq2 protocol. (a) The gene-wise expression mean, expression variance, expression

coefficient of variation, zero proportion and the cell-wise zero proportion and library size in both real (monocytes) and simulated datasets. (b) The KS distances

between the six statistics in the real and simulated data. The best and second best simulation methods with respect to each statistic are respectively marked with

1 and 2 in the heatmaps. (c) The empirical relationships between the key statistics in the real and simulated data
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precision and recall) and F2 score (the harmonic mean of true nega-

tive rate and recall) (Supplementary Table S2). We applied scDesign

to optimize the designs of 14 example experiments (Supplementary

Table S3). In every experiment, we set the sequencing depth to 100

million reads, and considered eight candidate cell numbers per cell

state: 64, 128, 256, 512, 1024, 2048, 4096 and 8192. The DE genes

between two cell states were identified using the two-sample t-test.

Our results suggest that given a selected criterion in the DE ana-

lysis, the optimal cell number is jointly determined by multiple tech-

nical factors, including the experimental protocol and the variation

introduced by sequencing, as well as biological factors, such as the

intra- and inter-state cellular heterogeneity. Two factors are notable.

First, when cells of the same two states are sequenced, the optimal

cell number varies with protocols. For example, between two sub-

types of glial cells: astrocytes and oligodendrocytes, 512 cells per

state is the optimal cell number that maximizes the recall in DE ana-

lysis when Fluidigm C1 is used, but the number becomes 4096 per

state when inDrop is used (Fig. 2). If users choose the F1 score as the

criterion, the optimal cell number per state is 128 and 1024 for

Fluidigm C1 and inDrop, respectively. Therefore, Fluidigm C1 and

inDrop require vastly different cell numbers to reach the same level

of accuracy in DE analysis, and inDrop generally needs more cells

than Fluidigm C1. This result is reasonable, since inDrop is a tag-

based protocol that is advantageous in capturing more cells but dis-

advantageous in measuring each cell accurately, compared with the

full-length protocol Fluidigm C1. Second, under the same protocol,

the optimal cell number depends on the transcriptome similarity of

the two cell states. For instance, with Smart-seq2, 512 cells need to

be sequenced per state to maximize the recall in identifying DE genes

between two dendrocyte subtypes, but only 256 cells per state are

needed when dendrocytes are compared with monocytes

(Supplementary Fig. S9). If the goal is to maximize the F2 score, the

optimal cell number for comparing the two dendrocyte subtypes

remains 512 per state, but the number reduces to 128 for comparing

dendrocytes with monocytes. It is worth noting that the optimal cell

number for both comparisons becomes 64, the smallest candidate

cell number, when the criterion is the precision or the true negative

rate (Supplementary Table S3). The reason is that only the genes

with strong DE signals are detectable with a small sample size (cell

number) in any statistical testing. Hence, with a reasonable lower

bound on the cell number, the DE genes detected at a smaller cell

number have a higher precision. Unlike the precision, the largest re-

call in DE analysis is mostly achieved at a medium to large cell num-

ber. In all the experimental designs we evaluated, the recall rate of

DE genes first increases with the cell number and then decreases

after reaching a peak (Fig. 2 and Table S3). These results demon-

strate the trade-off between the cell number and the cell-wise library

size in scRNA-seq experiments. A combination of a small cell num-

ber and a large cell-wise library size ensures the identification of the

DE genes with strong DE signals (i.e. achieving a high precision

rate), but the small cell number may prohibit the detection of the DE

genes with small to medium DE signals (i.e. sacrificing the recall

rate). On the other hand, a combination of a reasonably large cell

number and a small cell-wise library size increases the recall rate in

(a)

(b)

Fig. 2. Power analysis for DE studies comparing astrocytes and oligodendrocytes scenario (1). The thresholds on the FDRs to identify DE genes are denoted in the

color legends. The table summarizes the optimal cell number according to each measure. (a) The Fluidigm C1 protocol and (b) the inDrop protocol
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detecting DE genes but compromises the precision rate due to high

dropout rates (Supplementary Fig. S10). We also performed the DE

analysis by replacing the two-sample t-test with an scRNA-seq DE

method MAST (Finak et al., 2015) (Supplementary Table S4). The

optimal cell number remains 64 per state when the criterion is the

precision. The optimal cell numbers defined by the recall have small

differences from the t-test results, but the scale and trend remain

largely consistent.

In scenario (2), the constraint is the total sequencing depth of

one experiment with at least two cell states, and the goal is to deter-

mine the optimal total cell number for that experiment given a cri-

terion in DE analysis. ScDesign simulates a new count matrix of

each cell state based on a real count matrix from the same state,

with pre-specified total sequencing depth, total cell number and cell

proportions of the two cell states of interest. We applied scDesign to

evaluate the designs of 12 example experiments (Supplementary

Table S5). In every experiment, we set the sequencing depth to 100

million reads and considered six cell numbers: 512, 1024, 2048,

4096, 8192 and 16 384. We estimated the cell proportions of the

two cell states from the corresponding real data (Supplementary

Table S5). In practical applications of scDesign, the cell state pro-

portions can be inferred from pilot studies, public data or literature

(Gierahn et al., 2017; Macosko et al., 2015).

In contrast to scenario (1), the optimal total cell number in scen-

ario (2) depends on an additional factor: the cell state proportions,

aside from the technical and biological factors we have discussed.

The two cell states of interest may present in various proportions de-

pending on biological conditions and experimental protocols, and

larger cell state proportions in general reduce the demand of a larger

total cell number. For example, the estimated cell state proportions

of astrocytes and oligodendrocytes in a human brain sample are

19.2% and 14.9%, respectively (Darmanis et al., 2015), and 1024

cells are needed to maximize the recall with Fluidigm C1

(Supplementary Fig. S11). In a mouse visual cortex sample, how-

ever, the estimated proportions of the same two cell types are 8.8%

and 13.1%, respectively, and 16 384 cells are required to achieve

the highest recall with inDrop (Supplementary Fig. S11). Given an

experimental protocol, the optimal total cell number depends on

both the two cell state proportions and the magnitude of gene ex-

pression differences between the two cell states. For example, the

proportions of CD4 cells, CD8 cells and B cells in a human periph-

eral blood mononuclear sample are 17.2%, 10.2% and 7.3%, re-

spectively (Gierahn et al., 2017). Two important facts about this

experiment are: first, the proportion of CD8 cells is higher than the

proportion of B cells; second, the magnitude of gene expression

differences is larger between CD4 and B cells than between CD4

and CD8 cells. With the Seq-Well protocol, the DE analysis of CD4

versus B cells only needs 4096 cells to achieve the highest F1 score.

On the other hand, the DE analysis of CD4 versus CD8 requires 16

384 cells to maximize the F1 score (Supplementary Fig. S12). To fur-

ther assess the effects of cell state proportions on DE analysis, we

synthesized CD4 and B cells with multiple hypothetical cell propor-

tions: 10%;20%; 30% and 40% (Supplementary Fig. S13), among

which the mixture of 40% B cells and 20� 30% CD4 cells led to

the minimum cell number required to maximize the recall and preci-

sion. Determining the optimal cell state proportions given a total

cell number is especially useful when the cell states of interest can be

enriched by fluorescence-activated cell sorting (Jaitin et al., 2014) or

flow cytometry (Yen-Rei et al., 2016) before the sequencing step.

3.3 scDesign demonstrates reproducibility across

studies
In addition to evaluating the results of scDesign across different cell

types and scRNA-seq protocols, we also analyzed the experimental

designs of the same cell types and protocols but different datasets, in

attempt to assess the reproducibility of scDesign.

First, we applied scDesign to optimize the pairwise DE analysis

between the oligodendrocyte precursor cells (OPCs) and three other

brain cell types: differentiation-committed oligodendrocyte precur-

sors (COPs), myelin-forming oligodendrocytes (MFOs) and newly

formed oligodendrocytes (NFOs). Two real datasets were collected

for each cell type, and the two datasets were generated using the

Fluidigm C1 protocol but from different brain regions: dorsal horn

and hypothalamus (Marques et al., 2016). We applied scDesign in

scenario (1), assuming a total sequencing depth of 50 million reads

for each cell type. In each experiment, we assumed that the libraries

of the two cell types have the same number of cells, and we consid-

ered five candidate cell numbers per cell type: 64 128, 256 512 and

1024. The experimental design based on the two brain regions lead

to highly consistent results. Both designs show that in a DE analysis

between OPCs and COPs, the optimal number of each cell type is 64

if selected by precision or true negative rate, 512 by F2 score and

1024 by recall or F1 score (Fig. 3); to better compare OPCs and

MFOs or NFOs, the optimal number of each cell type is 64 if

selected by precision, recall or true negative rate, 128 by F2 score

and 64 by F1 score (Supplementary Fig. S14). In fact, not only do

the two designs identify the same optimal cell number in each case,

but they also reveal highly consistent trends about how DE accuracy

changes as the number of sequenced cells increases (Fig. 3 and

Supplementary Fig. S14). This example implies the reproducibility

of scDesign when taking input data from biological replicates.

Second, we applied scDesign to optimize the pairwise DE ana-

lysis between three retina cell types: muller glia, amacrine and rods.

Two real datasets were collected for each cell type, and the two

datasets were generated using the Drop-seq protocol in two inde-

pendent studies (Macosko et al., 2015; Shekhar et al., 2016). We

applied scDesign in scenario (1), assuming a total sequencing depth

of 100 million reads for each cell type. In each experiment, we

assumed that the libraries of the two cell types have the same num-

ber of cells and considered six candidate cell numbers per cell type:

64, 128, 256, 512, 1024 and 2048. The experimental design based

on the single-cell studies lead to highly similar results

(Supplementary Fig. S15). As in the first example, both designs iden-

tified the same optimal cell number regardless of the DE criterion

used. The only exception was in the comparison between the muller

glia and rods: using the Macosko et al. data, the best cell number is

Fig. 3. Reproducibility of scDesign based on data from different brain regions.

The DE studies compare OPCs and COPs based on scRNA-seq data from two

brain regions: dorsal horn and hypothalamus. When identifying the DE

genes, the threshold set on the FDR rate is 10�10. The y-axis of each line are

divided by the maximum value of that line for normalization
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512 by F1 score and 1024 by F2 score, while using the Shekhar et al.

data, the best cell number is 1024 by F1 score and 512 by F2 score.

Such discrepancy is not suprising since we only evaluated a few can-

didate cell numbers, and the two input datasets inevitably differ in

qualities as they came from two studies. Overall, this example dem-

onstrates the reproducibility of scDesign when taking input data

from independent studies to design scRNA-seq experiments.

3.4 scDesign assists scRNA-seq method development
In addition to assisting single-cell experimental design, scDesign can

also simulate scRNA-seq data to benchmark various computational

methods for differential gene expression analysis, single cell cluster-

ing analysis, gene expression dimension reduction, etc. Due to excess

zeros resulting from dropout events and the fact that each gene’s ex-

pression level in each cell is only measured once, the ground truth of

individual genes’ expression levels in single cells cannot be accurate-

ly estimated from scRNA-seq data. Also, cellular identities of indi-

vidual cells are difficult to pre-determine in most experiments.

Lacking the aforementioned ground truth encumbers the develop-

ment of computational methods to decipher information from

scRNA-seq data. Direct evaluation of computational methods relies

on experimental validation, which is often unavailable for computa-

tionalists, and indirect interpretation from downstream analysis is

used instead as a not-so-ideal substitute. Empowered by its ability to

generate synthetic scRNA-seq data that well mimic real scRNA-seq

data and have ground truth information, scDesign provides a flex-

ible framework to benchmark computational methods for various

scRNA-seq data analysis tasks.

We first demonstrated the application of scDesign to evaluating

DE methods. We considered a baseline DE method, i.e. the two-

sample t-test, and four DE methods [MAST (Finak et al., 2015),

SCDE (Kharchenko et al., 2014), DESeq2 (Love et al., 2014) and

edgeR (Robinson et al., 2010)] specifically designed for scRNA-seq

data. Here both DESeq2 and edgeR denote their single-cell-adapted

versions, where gene expression values are weighted by the weights

estimated from a zero inflated Negative Binomial model before the

statistical testing step (Van den Berge et al., 2017) . We evaluated

scDesign using real scRNA-seq data of six cell types: dendrocytes

(Smart-seq2, 63.6% zero count), oligodendrocytes (Fluidigm C1,

62.9% zero count), interneurons (inDrop, 75.3% zero counts), ret-

inal ganglions (Drop–seq, 78.3% zero counts), enterocytes (10x

Genomics, 82.0% zero counts) and natural killer cells (Seq-Well,

88.0% zero counts) (Supplementary Table S1). Based on the real

data of each cell type, we simulated a pair of count matrices, with

one matrix representing the given cell type and the other including

up-regulated and down-regulated genes (Supplementary Material).

In the first setting, we set the percentage of DE genes to 5% and

sampled the fold changes of those DE genes’ expression values uni-

formly from the interval ½2; 5�. Then we evaluated the performance

of the five DE methods by comparing the areas under their preci-

sion–recall curves (Supplementary Fig. S16). With Smart-seq2 and

Fluidigm C1, MAST and SCDE were the only two methods that

achieved better accuracy than the two-sample t-test, but overall the

three methods had comparable precision and recall. With inDrop

and 10x Genomics, edgeR became the best DE method, followed by

MAST and SCDE. With Drop-seq and Seq-Well, the most accurate

method was SCDE, and the baseline two-sample t-test had poor per-

formance. These simulation results suggest that scRNA-seq data

from the 10x, inDrop, Drop-seq and Seq-Well protocols need more

specialized statistical modeling in the DE analysis, compared with

Smart-seq2 and Fluidigm C1. In the second setting, we set the

percentage of up-regulated and down-regulated genes in each com-

parison to 10% and sampled the fold changes of these DE genes uni-

formly from the interval ½4; 5�. Since the magnitude of fold changes

increased, the DE methods overall demonstrated improved accuracy

(Supplementary Fig. S17), but the relative accuracy of the five DE

methods was consistent with that under the first setting.

We next demonstrated the application of scDesign to comparing

dimension reduction methods. We considered four methods: princi-

pal component analysis (PCA), t-distributed stochastic neighbor

embedding (tSNE) (Maaten and Hinton, 2008), independent com-

ponent analysis (ICA) (Hyvärinen and Oja, 2000) and ZINB-WaVE

(Risso et al., 2018). We evaluated scDesign based on the same real

scRNA-seq data used in the comparison of DE methods. Based on

the real data of each cell type, we simulated a set of synthetic count

matrices, representing multiple cell states following a differentiation

path (Supplementary Material). For the Smart-seq2 and Fluidigm

C1 protocols, we simulated four cell states with two states each hav-

ing 80 cells and the other two each having 50 cells. For the other

four protocols, we simulated five cell states with two states each

having 300 cells and the other three each having 100 cells. In each

case, we first simulated the cell state at the starting point of differen-

tiation based on the real data, and then we simulated each of the

three subsequent cell states with 1% of up-regulated and down-

regulated genes from its previous state. In addition, we sampled the

fold changes of those DE genes’ expression values uniformly from

½2;5�. Among the four dimension reduction methods, ZINB-WaVE

had the best performance in grouping cells into biologically mean-

ingful clusters based on the C1 data, followed by the tSNE method

(Supplementary Fig. S18). Based on the Smart-Seq2 data, PCA had

the best performance in the 2D space, followed by ZINB-WaVE

(Supplementary Fig. S19). However, the comparison results were

different for droplet-based protocols. The tSNE method led to the

most accurate cell clusters for the Drop-seq, inDrop, 10x and Seq-

Well protocols, followed by ICA or PCA (Supplementary Figs S20–

S23). In addition to the clustering performance, another factor

worth noting is that PCA, ICA and ZINB-WaVE generate compar-

able cell�cell distances after dimension reduction, but tSNE does

not. The above results demonstrate the capacity of scDesign in help-

ing developers evaluate competing computational methods for the

same purpose (e.g. DE analysis or dimension reduction), and in

assisting users to select the appropriate method for analyzing

scRNA-seq data from a specific protocol.

4 Discussion

The scRNA-seq technologies have become an essential tool for

studying various biological and biomedical problems, but one unre-

solved challenge is how to balance the trade-off between exploring

the depth or breadth of transcriptome information in experimental

design. We introduce scDesign, the first statistical and computation-

al simulator that enables rational and practical scRNA-seq experi-

mental design. By integrating statistical assumptions and real

scRNA-seq datasets from public repositories into its generative

framework, scDesign is able to mimic real experimental processes

and simulate synthetic scRNA-seq datasets that well capture gene

expression characteristics in real data. In addition, scDesign is a

flexible and reproducible simulator that is capable of modeling

protocol-specific scRNA-seq data generated under multiple biologic-

al and experimental conditions. We conducted a comprehensive

comparison of scDesign and four other scRNA-seq simulation meth-

ods based on datasets from 17 different cell types and 6
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experimental protocols. The comparison suggests that scDesign gen-

erates synthetic data with the largest resemblance to real scRNA-seq

data regardless of cell types and protocols.

Using its simulated data, scDesign performs power analysis on

differential gene expression analysis to provide a quantitative and

objective standard for designing future experiments. In the context

of differential gene expression analysis between two cell states,

scDesign suggests an optimal cell number given a fixed sequencing

depth, in the trade-off between a deeper sequencing of a smaller

number of cells or a shallower sequencing of a larger number of

cells. Specifically, we demonstrated the application of scDesign in

two scenarios, where cells from the two states are sequenced as two

separate libraries or as one pooled library. We evaluated the experi-

mental designs for 14 and 12 scRNA-seq studies under the two scen-

arios, respectively. Our results for the first time demonstrate how

the optimal experimental design for DE analysis depends on the

scRNA-seq protocol and the intra- and inter-cell state transcriptome

heterogeneity. In addition, our results revealed a general phenom-

enon that a deeper sequencing of a smaller number of cells leads to a

higher precision in DE analysis. In contrast to the precision, maxi-

mizing the recall of DE analysis requires finding a balance between

the cell-wise sequencing depth and the cell number, because our

results show that the recall first increases and then decreases as we

increase the cell number with the total sequencing depth fixed.

ScDesign enables researchers to design effective scRNA-seq experi-

ments without pre-experimental costs in an objective manner, for

example, guided by the expected power in downstream DE analysis.

In addition, we demonstrate that scDesign leads to reproducible ex-

perimental design for target cell states given data generated in differ-

ent studies.

Aside from enhancing future experimental design, another main

contribution of scDesign is to assist computational method develop-

ment for scRNA-seq. Since large-scale benchmark data are not yet

available in the field, computationalists typically rely on scRNA-seq

datasets from public repositories to test and evaluate new methods

and algorithms. However, quality control and normalization of real

data are themselves ongoing research questions, making the evalu-

ation results in many method papers not comparable nor reprodu-

cible (McCarthy et al., 2017; Ziegenhain et al., 2017). To tackle this

challenge, scDesign allows users to generate synthetic scRNA-seq

datasets with user-specified experimental protocols, sequencing

depths, cell states, cell numbers, as well as pre-specified DE genes.

Given that scDesign generates synthetic data that have known truth

and well mimic real data, users can leverage its synthetic data to

comprehensively evaluate computational and statistical methods in

a flexible, reproducible and comparable way. For example, we com-

pared five DE methods (the two-sample t-test, MAST, SCDE,

DESeq2 and edgeR) and four dimension reduction methods (PCA,

tSNE, ICA and ZINB-WaVE) using synthetic data generated by

scDesign. Those comparison results provide useful guidance for

researchers to select the most appropriate computational method to

analyze real data.

We expect scDesign to assist scRNA-seq experimental design for

a vast array of available experimental protocols. ScDesign incorpo-

rates real scRNA-seq data into its statistical framework to make

flexible decisions based on the protocol and cell states used in the

target study. If the real data of the two cell states are not generated

from the same experiment, it is recommended to first correct the

batch effect before applying scDesign (Butler et al., 2018; Haghverdi

et al., 2018). To extend scDesign’s ability to evaluate experimental

designs for cell states whose scRNA-seq data are not yet publicly

available, a future direction is to incorporate bulk RNA-seq data of

the same type as a surrogate to estimate the gene expression parame-

ters. Otherwise, pilot experiments need to be conducted to collect

data for experimental design, which is also a widely adopted prac-

tice (Chatterjee et al., 2018). Another future extension of scDesign is

to find the optimal design in the context of other types of down-

stream analyses besides the differential gene expression analysis,

such as the detection of novel cell sub-types or the recovery of tem-

poral transcriptome trajectories (Dumitrascu et al., 2018). For in-

stance, we may jointly learn the proportions and the gene expression

profiles of multiple cell states from real scRNA-seq data and use

them as input into our simulation framework to evaluate how the

power of detecting rare cell types changes with experimental param-

eters. Given time-series scRNA-seq data, the scDesign framework

can be modified to conduct ANOVA or more advanced statistical

analysis to objectively select cell numbers for multiple time points. It

is also possible to generalize the simulation framework of scDesign

to account for more complex trajectories in the cell differentiation

process (Cannoodt et al., 2019; Papadopoulos et al., 2019). We ex-

pect scDesign to be an effective bioinformatic tool that assists ra-

tional scRNA-seq experiment design and benchmarks competing

scRNA–seq computational methods based on specific research

goals.
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