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Abstract

Community detection or clustering is a fundamental task in the analysis of network data. Many
real networks have a bipartite structure which makes community detection challenging. In this
paper, we consider a model which allows for matched communities in the bipartite setting,
in addition to node covariates with information about the matching. We derive a simple fast
algorithm for fitting the model based on variational inference ideas and show its effectiveness
on both simulated and real data. A variation of the model to allow for degree-correction is
also considered, in addition to a novel approach to fitting such degree-corrected models.

Keywords: bipartite networks, community detection, stochastic block model, bipartite
matching, node attributes

1. Introduction

Network analysis has been a very active area of research with applications to social sciences,
biology and marketing, to name a few. A fundamental problem in network data analysis is
community detection, or clustering: Given a collection of nodes and a similarity matrix among
them, interpreted as the adjacency matrix of a (weighted) network, one wants to partition the
nodes into clusters, or communities, of high similarity. For undirected networks, a popular
model for community-structured networks is the stochastic block model (SBM) (Holland et al.,
1983) and its variants (Karrer and Newman, 2011; Gopalan and Blei, 2013), which have been
extensively investigated in recent years both in terms of theoretical properties and efficient
fitting algorithms. See for instance Bickel and Chen (2009); Decelle et al. (2011); Rohe et al.
(2011); Mossel et al. (2015); Zhao et al. (2012); Amini et al. (2013); Qin and Rohe (2013); Mossel
et al. (2013); Massoulié (2014); Amini and Levina (2018); Gao et al. (2017); Abbe (2017); Jing
and Rinaldo (2015); Hajek et al. (2016); Abbe et al. (2016); Gao et al. (2016) for a sample of
the work. On the other hand, a natural structure is often present in many real networks, that of
being bipartite, where nodes are divided into two sets, or sides, and only connections between
nodes of different sides are allowed. Examples include networks of actors and movies, scientific
papers and their authors, shoppers and products, and proteins and the genes they regulate.
Block-modeling with the explicit aim of taking into account the bipartite nature of a network
has received comparatively less attention. Interesting new modeling possibilities emerge in the
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bipartite case, chief among them being the issue of matching between the communities of the
two sides.

Finding matched node communities in a bipartite network is a necessary task for network
analysis in many applications, especially in biomedical sciences. For example, in molecular
biology, a key question is to understand how thousands of proteins regulate their downstream
genes in a collaborative manner (Davidson and Levin, 2005; Hecker et al., 2009). Provided with
a protein-gene interaction network, constructed from high-throughput biological data, a much
needed task is to find clusters of proteins that co-regulate a cluster of genes (Barabasi and
Oltvai, 2004). Understanding this complicated protein-gene relationship will shed new light on
understanding molecular mechanisms underlying diseases, such as cancers (Madhamshettiwar
et al., 2012) and neurodegenerative diseases (Parikshak et al., 2015). For another example,
in evolutionary biology, certain genes in two different species share common ancestors in the
evolutionary history (Harvey et al., 1991). The pairwise gene conservation relationship is
described by an ortholog bipartite network, where an edge connects two conserved genes, one
from each species, and such two genes are referred to as orthologs (Liao and Zhang, 2005).
How to identify two clusters of genes, one cluster in each species, that are jointly evolutionarily
conserved, is a matched community detection question. For a third example, in cancer biology,
researchers are often interested in linking DNA profiles with gene expression (RNA) profiles of
cancer patients (Hedenfalk et al., 2001; Iwakawa et al., 2015; Robinson et al., 2015). In other
words, researchers would like to learn what DNA mutations would cause what gene expression
changes, so that they can design treatment strategies at the RNA or protein levels given a
patient’s DNA profile. It is well known that multiple mutations often have a joint effect on
the expression levels of multiple genes (Vogelstein and Kinzler, 2004). Thus how to detect
such a joint effect given a mutation-gene bipartite network is a matched community detection
problem. Another key question in cancer biology is to discover new and rare subtypes for a
given type of cancer (Sørlie et al., 2001, 2003; Banerji et al., 2012; Wang et al., 2011). To
address this question, one can consider the bipartite gene-patient network where the edges are
mutation status (or the expression value) of a gene in a patient. This is clearly a matched
community detection problem where the co-cluster of the genes and patients determine the
cancer subtypes.

In addition to biomedical sciences, finding matched clusters in a bipartite network also
has broad applications in social sciences. For example, consider the author–paper bipartite
networks where an edge signifies the authorship. There is a matching between the authors
and the papers in these networks since most authors follow a theme in their publications.
The matched communities in this case correspond to high-level fields of study. As an another
example, consider the Wikipedia page–user networks where an edge captures the act of editing
a page. In these networks, the users also congregate in groups based on their interests and
the subject matter of the pages or, say, their language. The common subject or the language
constitutes a matched community pair in this case. We refer to Section 5 for a detailed analysis
of some of these networks.

The problem of community detection in bipartite networks is closely related to that of
co-clustering, also known as bi-clustering, which goes back at least to (Hartingan, 1972). Co-
clustering refers to simultaneous clustering of the rows and columns of a matrix, the bi-
adjacency matrix of a bipartite graph. It has been extensively used in biological applica-
tions (Cheng and Church, 2000; Madeira et al., 2010) and text mining (Dhillon, 2001, 2003;
Bisson and Hussain, 2008). Recently, (Choi and Wolfe, 2014; Flynn and Perry, 2012) studied
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likelihood-based co-clustering. Rohe et al. (2016) proposed a spectral co-clustering algorithm
for directed networks and discussed how it can be applied to bipartite setting. Often, the co-
clustering formulation ignores the issue of matching of the clusters, in the sense that in general
any row cluster can be in relation to any column cluster.

Another common approach is to reduce community detection in the bipartite setting to two
separate instances of usual clustering of (undirected) unipartite networks, by forming one-mode
projections of the network onto the two sides (Zhou et al., 2007). Despite a moderate reduction
in the dimension (having to deal with two smaller networks), the projection approach suffers
from information loss and identifiability issues (Zhou et al., 2007). Projection can also turn a
structured bipartite network into unstructured unipartite ones or vice versa (Larremore et al.,
2014). Another major difficulty is establishing a link between the communities on the two sides.
One can come up with ad-hoc association measures between communities of the two sides, e.g.,
by counting links between each pair. This, however, leads to another bipartite graph on the
communities, leading to the difficulty of interpretation. In effect, the problem transfers from
community detection on the individual nodes, to that on the newly-discovered communities,
or supernodes.

Block-modeling in the bipartite setting has recently gained more attention. Wyse et al.
(2014) proposed a method to infer both community memberships as well as the number of
communities in a bipartite network using a block model and an algorithm similar to the iterated
conditional modes (Besag, 1986). Larremore et al. (2014) has proposed a bipartite stochastic
block model (BiSBM) that built on the work of Karrer and Newman (2011) to infer bipartite
community structure in both degree-corrected and uncorrected regimes by maximizing a profile
likelihood over all partitions. In both cases, the issue of matching of the communities on the
two sides is not the main concern.

Motivated by the matching problem, in this paper, we consider the problem of matched
community detection in a bipartite network. In many practical examples, one either expects
a one-to-one correspondence between the communities of the two sides, or it is reasonable to
postulate such structure, due to ease of interpretation (Section 2). The problem of “finding
communities in a bipartite network that are in one-to-one correspondence between the two
sides” is what we refer to as matched community detection. In its simplest form, the model
assumes that nodes belonging to matched communities have a higher probability of connection
(cf. Equation (3)) and may also have correlated values for their nodal covariates. In other
words, we will propose a generative model for such networks where there is a hidden matched
community structure that affects the distribution of the observed network and the nodal co-
variates. This avoids the need for post-hoc matching of the communities: the matching is built
into the model and inferred simultaneously along with the communities in the process of fitting
the model. Our model is a natural extension of the well-known stochastic block model (SBM)
and is discussed in detail in Section 2. We also discuss an extension of our model to allow
for degree-correction (Section A.3), providing a matched version of the degree-corrected block
model (DC-SBM).

In another direction, many networks come with metadata, often in the form of node at-
tributes, or covariates. In our four motivating examples from biomedical sciences, node co-
variates are often available and provide useful information for detecting matched communities.
In the protein-gene example, expression levels of the proteins and genes are natural node co-
variates (Segal et al., 2003; Bansal et al., 2006). Incorporating the covariate information will
allow us to more accurately identify a group of proteins that co-regulate a cluster of genes,
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because it is expected that the proteins in a group should share similar expression patterns, and
likewise for the genes. In the ortholog example, the expression levels of genes in each species
are useful node covariates, which will help researchers better identify clusters of genes that are
not only conserved between the two species but also share similar functional characteristics
within each species (Li et al., 2014; Gerstein et al., 2014). In the mutation-gene network, gene
expression levels are the covariates of the gene nodes. Using this covariate information will be
useful for identifying the active genes as a result of mutations (Hedenfalk et al., 2001; Iwakawa
et al., 2015; Robinson et al., 2015). For cancer sub-type detection example, using the patient’s
data such as age, gender, race, progression-free and overall survival time, the primary site of
the tumor as well as its stage and grade, etc. as node covariates will help in identifying rare
and often more aggressive subtypes (Cheang et al., 2009; Arvold et al., 2011; Von Minckwitz
et al., 2012). For the author–paper example, the frequencies of the words in each paper can
be considered as node covariates for the paper side. In the Wikipedia user–page networks, the
location of the users can be informative covariates.

The potential for improving quality of the clusters by incorporating node covariates has
been explored in recent work, in the context of unipartite networks (Binkiewicz et al., 2017;
Zhang et al., 2016; Yan and Sarkar, 2016; Newman and Clauset, 2016). The bipartite setting
adds another challenge to modeling node covariates, in particular, how to jointly model the
covariates on the two sides, considering that one often has covariates of different dimensions
on each side. (The extreme case is when only one side has node covariates.) We extend our
proposed model to allow for the presence of node covariates that are aware of the matching
between communities of the two sides. In other words, covariates corresponding to nodes
in matched communities are statistically linked. The linkage can be tuned using a general
cross-covariance matrix, allowing for varying degrees of covariate influence on the community
detection problem (Section 2). It is worth noting that we specifically model the problems where
the network and node covariates are driven by a single latent community structure. This is
often a plausible assumption in many applications. In these cases, one expects to obtain
more accurate community estimates by properly combining the two sources of information;
our model allows for a natural incorporation of these two sources by maximizing the joint
likelihood. Modeling cases where the node covariates and the network provide conflicting
information about a potential clustering remains a challenging task and is outside the scope of
the present paper.

To fit our models, we derive an algorithm based on the variational inference, also known as
the variational Bayes (Jordan et al., 1999; Blei et al., 2017) ideas (Section 3). We derive both
the degree-corrected and uncorrected versions of algorithm within the same unified framework,
namely, sequential block-coordinate ascent on the variational likelihood. This in particular
leads to a novel approach to fitting degree-corrected likelihoods using methods of continuous
optimization (as opposed to profiling out the degree-correction parameters and optimizing
over the space of discrete labels.). As part of the initialization of the algorithm, we revisit a
bipartite spectral clustering algorithm, biSC first proposed in Dhillon (2001), and identify it
as an effective algorithm for matched bipartite clustering. We show the effectiveness of our
approach on simulated (Section 4) and real data, namely, page-user networks collected from
Wikipedia and two sets of author-paper networks, one extracted from Arnetminer collection
by Tang et al. (2012) and the other scraped from DBLP(Section 5).

To summarize, our contributions in this paper are the following:
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(i) Identify the matching problem in bipartite community detection more clearly and give it
the prominent role, by showing that it is possible to consider matched communities from
the start in the modeling process. Bringing attention to matched bipartite clustering
(or community detection) as a well-defined problem also allows us to identify an earlier
spectral algorithm, namely that of Dhillon (2001), originally proposed in the context
of topic modeling, as effectively solving the matched version of bipartite clustering. At
present, we are unaware of any other algorithm that attempts to solve this problem
directly.

(ii) Propose a natural bipartite extension of the SBM and DC-SBM: matched bipartite stochas-
tic block model (mbiSBM), which has a latent structure of matched communities and allows
for node covariates that are potentially informative about the matching (see Section 2).
Some of the challenges involved in joint modeling of the node covariates of the two sides
are resolved by appealing to hierarchical Bayesian modeling ideas (Gelman et al., 2003).

(iii) Show the effectiveness of the variational Bayes approach in fitting the overall mbiSBM
model, when combined with good initialization, especially a variant of the biSC algorithm
of Dhillon (2001). The algorithm is a block-coordinate ascent with a closed-form, fairly
cheap iterations, and can be scaled to large networks.

Notation. We write [K] := {1, . . . ,K} and PK := {p ∈ RK+ : 1T p = 1}, for the set of
probability vectors on [K]. Here, 1 is the all-ones vector of dimension K. We identify [K] with
{0, 1}K ∩PK , the set of binary vectors of length K having exactly a single entry equal to one.
The identification is via the so-called one-hot encoding: z = k as an element of [K] iff zk = 1,
treating z as element of {0, 1}K ∩ PK . We will use Id to denoted the d× d identity matrix.

The probability density function (PDF) of a multivariate Gaussian distribution with mean
µ and covariance Σ is denoted as x 7→ N(x;µ,Σ). The constant terms in an expression are
denoted as “const.”. We write

.
= for equality up to additive constants. We use [Z1;Z2] to denote

the vertical concatenation of two matrices Z1 and Z2, having the same number of columns.

2. Matched Bipartite SBM

The stochastic block model (SBM) is a generative model for networks with communities (or
blocks). In the most basic SBM, sometimes called the planted partition model, each node is
assigned to one of the K communities and the edges are placed independently between two
nodes i and j, with probability p if i and j belong to the same community, and with probability q
otherwise. When p = q, one recovers the famous Erdős–Rényi model, where there is no genuine
community structure. The interesting cases are the assortative model where p > q and the
dissortative model where p < q. Our focus in this paper is mainly on the assortative case,
though the results can be easily adapted to the other case.

We start with the ingredients needed to define the matched bipartite SBM (mbiSBM). As-
sume that we have two groups of nodes [N1] = {1, . . . , N1} and [N2] = {1, . . . , N2}, representing
nodes on the two sides of a bipartite network. We assume that there is a partition {Crk}Kk=1

of [Nr], for each r = 1, 2. This is our latent community structure. In referring to Crk, we will
use the terms community and cluster interchangeably. We assume the following implicit (true)
one-to-one matching between these communities:

C1k ↔ C2k, k = 1, . . . ,K. (1)
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Figure 1: Schematic diagram for the hierarchical generation of node covariates (left) and the overall
graphical representation of the model (right). The label zri selects which of vk∗ = (v1k, v2k) for k =
1, . . . ,K we select and the index “r ∈ {1, 2}” determines which component of vk∗ is used to generate
xri. For example, if z1i = k then the v1k component of vk∗ is used as the mean of x1i, and similarly if
you replace 1 with 2. Here, k and k′ distinguish two different clusters. For example, if z2i = k′ then
v2k′ will be the mean of x2i, and so on.

To each node i in group r, we assign a community membership variable zri showing which
community it belongs to:

zri = k ⇐⇒ i ∈ Crk, ∀i ∈ [Nr], r = 1, 2.

Recalling the identification [K] ∼= {0, 1}K ∩ PK , we treat zri as both an element of [K] and
a binary vector of length K, hence, with some abuse of notation, zri = k and zrik = 1 are
equivalent. We collect these labels in membership matrices Zr := (zri : i ∈ [Nr]) ∈ {0, 1}Nr×K ,
r = 1, 2, where each zri, treated as a binary vector, appears as a row in Zr. We also let
Z = [Z1;Z2] ∈ {0, 1}(N1+N2)×K be the matched membership matrix obtained by vertical
concatenation of Z1 and Z2.

For each node i in group r, we observe a covariate vector xri ∈ Rdr . If we want to specify
the components of this vector we write xrij , j = 1, . . . , dr. Let X := (xri, i ∈ [Nr], r = 1, 2).
We often think of X as a matrix in R(N1+N2)×(d1+d2), by padding covariate vectors with zeros
on the left or right: x1i form rows (x1i, 0d2) for i ∈ [N1] and x2j form rows (0d1 , x2j) for j ∈ [N2].

In addition to the covariate matrix X, we also observe a bipartite network on [N1] × [N2]
represented as a bi-adjacency matrix A ∈ {0, 1}N1×N2 . Thus, the observed data is (X,A). We
assume that given the latent community labels Z, X is independent of A. Below, we outline
how each of these components are generated given Z.

2.1. Generating Covariates

To generate xri, we use a hierarchical mixture model: First we generate the mean vector
vrk ∈ Rdr associated with each cluster Crk, and then we draw xri from a normal distribution
with mean vrk when zri = k; see Figure 1. In order to model the correlation (i.e., a statistical
link) between covariates of matched clusters, we draw the entire vector v∗k := (vrk, r = 1, 2) =
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(v1k, v2k) from a multivariate normal distribution with possibly nonzero covariance matrix
between the two components v1k, v2k. We have the following model:

zri ∼ Mult(1, πr),

(vrk, r = 1, 2)
iid∼ N(µ,Σ), k = 1, . . . ,K.

(xri | zri = k, vrk) ∼ N(vrk, σ
2
rIdr), i ∈ [Nr], r = 1, 2

(2)

where the draws are independent over r and i ∈ [Nr], on each line. Here, πr = (πr1, . . . , πrK)
is the prior on cluster proportions for group r (πr ∈ [0, 1]K with

∑K
k=1 πrk = 1). (σ2

r , r = 1, 2)
models the variance of measurement noise in the two groups.

The idea behind the covariate generation is as follows: Each covariate xri is going to to be
determined by vrk, that is x1i will have mean v1k and x2j will have mean v2k, assuming nodes
i and j belong to the same cluster k (a single cluster encompasses both sides of the network,
based on the matching). That is, we break each v∗k = (v1k, v2k) into two pieces v1k and v2k

and these two pieces determine the covariates of the two sides, x1i and x2j , assuming nodes i
and j belong to the same cluster k.

Note that the covariates for two nodes that are in the same cluster on the same side have
the same mean: If z1i = z1j = k then both x1i and x1j have mean v1k. On the other hand the
covariates for two nodes that are in the same cluster but on different sides will have different
means: If z1i = z2j = k, then x1i has mean v1k while x2j as mean v2k. These two mean vectors
however are still related since they are the components of the single vector vk∗ = (v1k, v2k)
which is derived from a multivariate Gaussian distribution. That is, v1k and v2k are jointly
Gaussian with a potential nonzero cross-covariance matrix.

To make the correlation structure in (vrk, r = 1, 2) more explicit, we can partition µ =
(µr, r = 1, 2) and Σ, so that(

v1k

v2k

)
ind∼ N

[(
µ1

µ2

)
,

(
Σ11 Σ12

ΣT
12 Σ22

)]
, k = 1, . . . ,K.

Note that µr ∈ Rdr . In subsection 2.5, we discuss how this model provides a statistical link
between covariates of the two groups. For future reference, v∗k := (vrk, r = 1, 2) collects the
matched hidden covariate means of the clusters C1k and C2k. On the other hand, we write
vr∗ = (vrk, k ∈ [K]) which collects all the hidden covariate means for side r = 1, 2 of the
network.

2.2. Generating the Network

Given Z, the bipartite graph is generated as follows: For each node i in [N1] and each node j
in [N2], we put an edge between them with probability p if they belong to matched clusters,
and with probability q 6= p otherwise. With A = (Aij) ∈ {0, 1}N1×N2 denoting the resulting
bi-adjacency matrix, we have

Aij | Z ind∼
{

Ber(p) z1i = z2j

Ber(q) z1i 6= z2j

, i ∈ [N1], j ∈ [N2]. (3)

Combined, (2) and (3) describe our full matched bipartite SBM model. The objective is to
find the posterior probability of Z given A and X = {xri : i ∈ [Nr], r = 1, 2}.
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Although we will focus on the simple model (3) in deriving the algorithms, it is possible to
allow for a more general edge probability structure as in the usual SBM, by assuming

Aij | Z ind∼ Ber(Ψz1i,z2j ) i ∈ [N1], j ∈ [N2]. (4)

where Ψ ∈ [0, 1]K×K is a connectivity (or edge probability) matrix. Model (3) corresponds to
the case where Ψkk = p and Ψk` = q for k 6= `. We will refer to this model as mbiSBM for
matched bipartite SBM.

Remark 1. Parameter Σ in (2) is key in tuning the effect of the node covariates on community
detection. Assume for simplicity that σ2

r = 0, r = 1, 2. Then, when Σ = 0, v∗k = µ a.s. for
all k, hence x∗i = µ for all i, and the covariates carry no information about communities.
When, Σ 6= 0 there is variability in v∗k across k, hence community detection benefits from
the covariate information. On the other hand, it is well-known that the information in the
adjacency matrix A about community structure is roughly controlled by the expected degree
of the network, i.e., the scaling of Q = (p, q), in addition to the separation of p and q. By
scaling of (p, q) we mean the following: One can take p = a/n and q = b/n; then, how fast a
and b increase as a function of n determines the difficulty of the network community detection
problem. For the case a, b = O(1), the so-called sparse regime, only partial recovery of the
labels is possible (given only the network information), whereas when a, b→∞ one can recover
with asymptotically vanishing misclassification error; at higher densities, namely a, b & log n,
it is possible to exactly recover the labels for sufficiently large n. See Abbe (2017) for more
details. Thus, by rescaling Σ and Q = (p, q), we can control the balance of the two sources of
information (i.e., the network versus node covariate information). This is explored in Section 4
through simulation studies.

2.3. Connection with the Usual SBM

Ignoring the covariate part of the model, one might wonder whether mbiSBM, introduced in (4),
can be thought of as a sub-model of a usual SBM with perhaps increased number of com-
munities. First, it should be clear that the model is not a usual SBM with K communities.
However, it can be thought of as a SBM with 2K communities with restrictions imposed on
both its membership and connectivity matrix. To see this, let us recall the matrix represen-
tation of the usual SBM with K blocks, where one has the connectivity matrix Ψ ∈ [0, 1]K×K

and binary membership matrix Z ∈ {0, 1}N×K . Such model can be compactly represented as
E[A|Z] = ZΨZT .

Now, consider model (4), and let Zr = (zri) ∈ {0, 1}Nr×K for r = 1, 2. We express the
model compactly as

E
(

0 A
AT 0

)
︸ ︷︷ ︸

Ã

=

(
Z1 0
0 Z2

)
︸ ︷︷ ︸

Z̃

(
0 Ψ

ΨT 0

)
︸ ︷︷ ︸

Ψ̃

(
ZT1 0
0 ZT2

)
. (5)

given Z1, Z2. Letting N := N1 +N2 and defining the matrices Ã ∈ {0, 1}N×N , Z̃ ∈ {0, 1}N×2K

and Ψ̃ ∈ [0, 1]2K×2K as in (5), it is clear that model (4) is equivalent to E[Ã|Z̃] = Z̃Ψ̃Z̃T . This
is a SBM with restrictions on both Z̃ and Ψ̃: Nodes 1, . . . , N1 can only belong to communities
1, . . . ,K and nodes N1 + 1, . . . , N1 +N2 can only belong to communities K+ 1, . . . , 2K. As for
Ψ̃, the restriction imposes zero connectivity among communities 1, . . . ,K and among those of
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K + 1, . . . , 2K. With these restrictions in place, we have a natural bipartite matching between
communities: `↔ K + ` for ` ∈ [K].

2.4. Degree-corrected Version

A limitation of the SBM is that nodes in the same community have the same expected de-
gree. To allow for degree heterogeneity within communities, bringing the model closer to real
networks, a common approach is to use the DC-SBM (Dasgupta et al., 2004; Karrer and New-
man, 2011). It is fairly straightforward to introduce degree-correction in our setup. Consider
the form of the matched SBM introduced in (4). To each node i in group r, we associate a
propensity parameter θri > 0. Thus, we have additional parameters θr := (θri, i ∈ [Nr]) for
r = 1, 2. The degree-corrected (DC) version of the model replaces (4) with

Aij | Z ind∼ Poi(θ1iθ2jΨz1i, z2j ) i ∈ [N1], j ∈ [N2]. (6)

Replacing the Bernoulli with Poisson is for convenience in later derivations, and is common in
dealing with DC-SBM (Karrer and Newman, 2011). In order for the parameters (θ1, θ2,Ψ) to
be identifiable, we need to agree on a normalization of θri per each community. Here, we adopt
the following:

1

|Crk|
∑
i∈Crk

θri = 1 ⇐⇒
Nr∑
i=1

(θri − 1)zrik = 0, k ∈ [K], r = 1, 2. (7)

With this normalization, we recover the original model when θri = 1 for all i and r. Our
normalization is similar to the one considered in Gao et al. (2016).

Remark 2. A normalization of the form (7) is often assumed when one considers both
θ = (θ1, θ2) and Z to be deterministic unknown parameters, or alternatively when working
conditioned on θ and Z. Throughout, we assume θ to be an unknown parameter. However, to
be pedantic, (7) is inconsistent with i.i.d. random generation of zri from a Mult(1, πr) as in (2).
One way to get around this is to assume that the labels are generated a priori from the product
multinomial distribution described in (2) conditioned on the set of labels satisfying (7). We
will ignore the change in the label prior this conditioning makes in deriving the algorithms.
In the end, we enforce (7) in an “averaged” sense, replacing zrik with the corresponding (ap-
proximate) posterior τrik, as detailed in subsection A.3. Viewed as a set of constraints on the
collection of soft-labels (τrik), (7) is not that restrictive.

2.5. Covariate Correlation on Matched Clusters

One desirable feature in modeling covariates, in the context of a matched bipartite network,
is the ability to gain some information about whether a pair (i, j) ∈ [N1] × [N2] belongs to
a matched cluster, by just looking at their respective covariates x1i and x2j . Assume for the
moment that there is no measurement noise, i.e., σ2

r = 0, r = 1, 2. Then, the question boils
down to whether we can tell (v1k, v2k′) for k 6= k′ apart from (v1k, v2k). According to the
model, (v1k, v2k) and (v1k′ , v2k′) are independent Gaussian vectors, hence (v1k, v2k, v1k′ , v2k′) is
Gaussian with mean (µ, µ) = (µ1, µ2, µ1, µ2) and covariance ( Σ 0

0 Σ ). Recalling the decomposition

of Σ, it follows that (v1k, v2k′) ∼ N(µ, ( Σ11 0
0 Σ22

)) for k 6= k′ whereas (v1k, v2k) ∼ N(µ, ( Σ11 Σ12
Σ21 Σ22

)).
As long as Σ12 6= 0, these two distributions are different, hence the model is able to distinguish

9
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(a) (b) (c) (d)

Figure 2: Possible relations between communities of the two sides, in a bipartite network. (a) and (b)
are hard to interpret. Structures like (c), i.e., collections of disjoint stars, are interpretable and (d) is
the simplest within this class.

between the two cases. In other words, there is information in the covariates about the matching
of the clusters in the two groups. However, this information (in itself) is quite weak since it
amounts to distinguishing between two multivariate Gaussian distributions, based only on a
single draw from each. Fortunately, the model also carries information about the matching in
the adjacency matrix A.

2.6. Interpretability and Identifiability

We alluded earlier to the merits of having a 1-1 matching between the communities of the
two sides built into the model. Our main argument for the advantage of a 1-1 matching is
interpretability. Figure 2 shows some possible relations that could exist between communities
of the two side (each circle represents a community). The closer this relation is to a complete
bipartite graph, the harder it is to interpret; Figure 2(a) is perhaps the least informative
relation among the four. In Figure (b), the relation is much sparser. However, it is still hard
to interpret: all communities seem to be related, albeit indirectly. We would like to argue that
structures like (c) where the graph is a collection of disjoint stars is interpretable. One would
like to fit such models, though in full generality, this seems to be a difficult task. One has
to somehow control the branching numbers of the stars, which indirectly control the number
of communities on either side. Thus, the problem is at least as hard as deciding the number
of communities in the usual SBM. Our 1-1 matching relation, Figure 2(d), is the simplest
structure of the type depicted in (c). It is in a sense a first-order approximation of the models
in this class. It is easiest to fit and is the most interpretable.

3. Model Fitting

In order to fit the model, we derive algorithms based on variational inference ideas. The
algorithm starts from some initial guess of the labels and parameters and proceeds to improve
the likelihood via simple iterative updates to the parameters and an approximate posterior
on the labels. We first discuss the case with no degree correction. The extension to the
degree-corrected model is discussed in subsection A.3.

10
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3.1. The Likelihood

Let us introduce some notation. We write v∗k = (vrk, r = 1, 2) ∈ Rd1+d2 and vr∗ = (vrk, k ∈
[K]) ∈ RKdr , and V = (vrk, r = 1, 2, k ∈ [K]) ∈ RK(d1+d2). Similarly, Z = (zri, i ∈ [Nr], r =
1, 2) and X = (xri, i ∈ [Nr], r = 1, 2). (In this section, the particular matrix form of Z
and X are not of interest. Z and X are simply placeholders for the collections of labels and
covariates.) Let

yij := 1{z1i = z2j}, zrik := 1{zri = k}.

The joint distribution of all the variables in the model factorizes as follows:

p(A,X,Z, V ) = p(A|Z) p(X|Z, V ) p(Z) p(V )

=

N1∏
i=1

N2∏
j=1

p(Aij |z1i, z2j)

2∏
r=1

Nr∏
i=1

{
p(xri|zri, vr∗)p(zri)

} K∏
k=1

p(v∗k).

We have p(xri|zri, vr∗) =
∏K
k=1[fr(xri; vrk)]

zrik where fr(xri; vrk) := N(xri; vrk, σ
2
rIdr). In

addition, p(zri) =
∏K
k=1 πrk

zrik . For the network part, we in general have

`1(Ψ) =: log p(A|Z) =
∑
ij

∑
k`

z1ikz2j` g(Ψk`, Aij) (8)

where g is either the log-likelihood of the Bernoulli, gber(p, α) = α log p
1−p + log(1 − p), or

Poisson, gpoi(p, α) = α log p− p.
In the special planted partition case, log p(A|Z) greatly simplifies: By breaking up over

k = ` and k 6= `, we obtain

`1(Ψ) = log p(A|Z) =
∑
ij

[∑
k

z1ikz2jk g(p,Aij) +
∑
k 6=`

z1ikz2j` g(q, Aij)
]

=
∑
ij

yijg(p,Aij) + (1− yij)g(q, Aij). (9)

where we have used
∑

k` z1ikz2j` = 1. The complete log-likehood of the model, i.e., assuming
we observe the latent variables (Z, V ), is then

`(µ,Σ, σ, π,Ψ) = `1(Ψ) + `2(µ,Σ, σ, π)

where `1(Ψ) is as defined in (8) and

`2(µ,Σ, σ, π) =

2∑
r=1

Nr∑
i=1

∑
k

zrik log
[
πrk fr(xri; vrk)

]
+
∑
k

log p(v∗k|µ,Σ).

3.2. Mean-Field Approximation

Variational inference is often regarded as the approximation of a posterior distribution by
solving an optimization problem (Wainwright and Jordan, 2008; Blei et al., 2017). The idea is
to pick an approximation q from some tractable family of distributions over the latent variables
(Z, V ) and try to make this approximation as close as possible in KL divergence to the true
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posterior. We prefer to think of the approach as a generalization of the EM algorithm, i.e., a
general approach to maximize the incomplete likelihood by maximizing a lower bound on it.
This lower bound, which we call variational likelihood, also known as the evidence lower bound
(ELBO) (Jordan et al., 1999), involves both the likelihood parameters and a distribution q,
namely,

J := Eq[`(µ,Σ, σ, π,Ψ)− log q(Z, V )]. (10)

Here the expectation is taken, assuming (Z, V ) ∼ q. One maximizes J by alternating between
maximizing over likelihood parameters (µ,Σ, σ, π,Ψ) and the variational posterior q. Without
additional constraints, the optimization over q leads to the posterior distribution of (Z, V ) given
(X,A), resulting in the EM algorithm. A genuine variational inference procedure, however,
imposes some simplifying constraints on q. In particular, we impose the following factorized
form, often referred to as the mean-field approximation:

q(Z, V ) = qV (V )qZ(Z), qZ(Z) =
∏
r,i qri(zri), qV (V ) =

∏K
k=1N(v∗k; µ̃k, Σ̃k) (11)

where qri(zri) =
∏K
k=1 τ

zrik
rik is a multinomial distribution. In keeping up with our notation we

write τri = (τrik, k ∈ [K]). Note that τ = (τri) collects the approximate posteriors on node
labels. They are the key parameters in our inference.

The particular form assumed for qV in (11) is motivated by looking at the (true) posterior
of V given Z. We could have assumed a factorized form q(Z, V ) = qZ(Z)p(V |Z) where p(V |Z)
is the the true posterior of V given Z. However, the parameters of p(V |Z) have a complicated
dependence on Z. We have kept the form of p(V |Z) while freeing the parameters, letting them
be optimized by the algorithm.

To simplify notation, let us define Γ̃ := ((Σ̃k, µ̃k), k = 1, . . . ,K), collecting the parameters
for the variational posterior qV . Plugging in the variational distribution (11) into the variational
likelihood (10) using expression (9) for `1(Ψ), after some algebra detailed in Appendix B.2, we
get

J =
∑
i,j

[
γij(τ)g(p;Aij) + (1− γij(τ))g(q;Aij)

]
+
∑
r,i,k

τrik
[
βrik(Γ̃, σ

2) + log
πrk
τrik

]
− 1

2

∑
r

drNr log σ2
r −

K

2

{
log |Σ|+ tr[Σ−1S(Γ̃, µ)]

}
+

1

2

∑
k

log |Σ̃k|+ const.

(12)

where

γij(τ) := EqZ (yij) =
K∑
k=1

τ1ikτ2jk, βrik(Γ̃, σ
2) := − 1

2σ2
r

[
tr
(
(Σ̃k)rr

)
+ ‖xri − µ̃rk‖2

]
, (13)

(Σ̃k)rr, r = 1, 2 refers to the two diagonal blocks of Σ̃k of sizes dr × dr, and

S(Γ̃, µ) :=
1

K

K∑
k=1

[
Σ̃k + (µ̃k − µ)(µ̃k − µ)T

]
. (14)

12
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3.3. Optimizing the Variational Likelihood

We proceed to maximize J by alternating between the likelihood parameters (µ,Σ, σ, π,Ψ)
and variational parameters (τ, Γ̃). Each of these two sets of parameters is also optimized
by alternating maximization. In other words, the overall optimization algorithm is a block
coordinate ascent. The key update is that of label distributions τ , which we describe in details
below. The other updates are more or less standard and detailed in Appendix B.4.

Updating node labels (τ). To optimize τ , we use block coordinate ascent, by fixing
τ2 := (τ2j , j ∈ [N2]) and optimizing over τ1 := (τ1j , j ∈ [N1]) and vice versa. Here we only
consider optimization over τ1 given τ2. To simplify notation, let h(p, q;α) := g(p;α)− g(q;α).
Considering only the terms in J that depend on τ , we have

J =
∑
ij

γij(τ)h(p, q;Aij) +
∑
r,i,k

τrik
[
βrik(Γ̃, σ

2) + log
πrk
τrik

]
+ const.

where const. collects terms that do not depend on τ . Let ξrik := βrik(Γ̃, σ
2) + log πrk. Using

the definition of γij(τ) =
∑K

k=1 τ1ikτ2jk,

J =
∑
ij

(∑
k

τ1ikτ2jk

)
h(p, q;Aij) +

∑
r,i,k

τrik
[
ξrik − log τrik

]
+ const.

Now, assume further that τ2 is constant. Then,

J =
∑
i

∑
k

τ1ik

(∑
j

τ2jk h(p, q;Aij)
)

+
∑
i,k

τ1ik

[
ξ1ik − log τ1ik

]
+ const.

=
∑
i

∑
k

τ1ik

(∑
j

τ2jk h(p, q;Aij) + ξ1ik − log τ1ik

)
+ const. (15)

where const. includes terms also dependent on τ2, but not on τ1. The cost function above
is separable over i, and for each i we have an instance of the problem given in the following
lemma. Recall that PK is the set of probability vectors in RK .

Lemma 1. For any nonnegative vector (a1, . . . , aK), let fa : PK → R be defined by fa(p) :=∑K
k=1 pk(ak − log pk). Then the maximizer of fa over PK is given by the softmax operation:

argmax
p∈Pk

fa(p) = softmax(a) :=
eak∑
` e
a`
. (16)

We write the solution of Lemma 1 simply as pk ∝k eak where ∝k means proportional as a
function of k. Then, τ1 update is τ1ik ∝k exp

[∑
j τ2jk h(p, q;Aij) + ξ1ik

]
, or after unpacking

ξ1ik,

τ1ik ∝k π1k exp
[∑

j

τ2jk h(p, q;Aij) + β1ik(Γ̃, σ
2)
]

i = 1, . . . , N1. (17)

The update for τ2 is similar.
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Updating Σ̃ and µ̃. Let us define τ̄rk :=
∑Nr

i=1 τrik and D−1
k := diag

(
τ̄1k
σ2
1
Id1 ,

τ̄2k
σ2
2
Id2
)

Then,

as a function of Σ̃, J can be written as (see Appendix B.3)

J(Σ̃)
.
= −1

2

∑
k

tr
[
(D−1

k + Σ−1)Σ̃k

]
− log |Σ̃k|. (18)

This is separable over k, with each term being the likelihood of a multivariate Gaussian with
covariance parameter. The maximizers are then simply Σ̃k = (D−1

k + Σ−1)−1 for k ∈ [K].

To derive the updates for µ̃, let x̄rk :=
∑Nr

i=1 τrikxri and µ̄rk := x̄rk/τ̄rk. Then, as a function
of µ̃, J can be written as (see Appendix B.3):

J(µ̃)
.
= −1

2

∑
k

(µ̃k −mk)
T (D−1

k + Σ−1)(µ̃k −mk) (19)

where mk = (D−1
k + Σ−1)−1(D−1

k µ̄k + Σ−1µ). It is clear that the optimal value of µ̃k is equal

to mk, which using the optimal value of Σ̃k, can be written as µ̃k = Σ̃k(D
−1
k µ̄k + Σ−1µ).

Updating Σ, µ and σ2. As a function of Σ, we have J(Σ)
.
= −K

2

[
log |Σ| + tr(Σ−1S(Γ̃))

]
which is the standard Gaussian likelihood, giving the optimal value Σ = S(Γ̃, µ). Similarly,
as a function of µ, J(µ)

.
= −K

2

[
tr(Σ−1S(Γ̃))

] .
= −1

2

∑
k

[
(µ̃k − µ)TΣ−1(µ̃k − µ)

]
giving the

optimal solution µ = 1
K

∑
k µ̃k. The update for σ2 = (σ2

1, σ
2
2) can be easily obtained too (see

Appendix B.4)

σ2
r =

1

Nrdr

[∑
k

τ̄rk tr
(
(Σ̃k)rr

)
+
∑
i,k

τrik‖xri − µ̃rk‖2
]
, r = 1, 2. (20)

Updating π and Ψ ≡ (p, q). Updating these parameters is standard (See Appendix B.4):

πr =
(τ̄r1, . . . , τ̄rK)∑

k τ̄rk
, r = 1, 2, p =

∑
ij γij(τ)Aij∑
ij γij(τ)

, q =

∑
ij

(
1− γij(τ)

)
Aij∑

ij

(
1− γij(τ)

) . (21)

3.4. Extensions

Various extensions and improvements of the basic algorithm discussed in Section 3.3 are pre-
sented in Appendix A. A detailed derivation of an algorithm for fitting the degree-corrected
model is given in Appendix A.3. The algorithm employs a novel application of the Douglas–
Rachford splitting algorithm for optimization over the degree inhomogeneity parameter θ. We
also provide in Appendix A.2 an extension of the algorithm to the general matched SBM
model (4). Improvement to the speed for the basic algorithm of Section 3.3 is discussed in Ap-
pendix A.1.1 as well as the possibility of adding a diagonal restriction on covariate covariance
matrices (Appendix A.1.2).

Overall the algorithm has 16 variations based on four options: (1) Poisson versus binomial
likelihood, (2) planted partition versus general edge probability matrix, (3) full versus diagonal
covariances, (4) with or without degree correction. In the following we will focus on the follow-
ing defaults for the first three options: A Poisson likelihood with planted partition connectivity
and full covariances.

14



MATCHED BIPARTITE BLOCK MODEL WITH COVARIATES

Algorithm 1 Variational block coordinate ascent for fitting mbiSBM

1: Initialize τr using biSC, and θr = 1Nr for r = 1, 2. Pick tolerance ε ∈ (0, 1].

2: Initialize Σ, Σ̃k with Id1+d2 and µ, µ̃k with 0, for k ∈ [K], and σ2
r = 1 for r = 1, 2.

3: while not CONVERGED, nor maximum iterations reached do

4: Update (p, q) using (26) and πr, r = 1, 2 using (21).

5: Update (φ0, φ1)← (q − p, log(p/q)).

6: if DC-version then

7: Update θr by repeating (36) till convergence.

8: end if

9: Update βr, r = 1, 2 using (13).

10: τold
r ← τr, r = 1, 2.

11: Update τ1 by repeating (34) till convergence.

12: Update τ2 by repeating (34), with subscripts 1 and 2 switched and A replaced with AT ,
till convergence.

13: Update the following for for r = 1, 2 and k ∈ [K]: . Update parameters

14: τ̄rk ←
∑Nr

i=1 τrik, and D−1
k ← diag

(
τ̄1kId1/σ

2
1, τ̄2kId2/σ

2
2

)
,

15: x̄rk ←
∑Nr

i=1 τrikxri, and µ̄rk ← x̄rk/τ̄rk.

16: Update Σ̃k ← (D−1
k + Σ−1)−1 and µ̃k ← Σ̃k(D

−1
k µ̄k + Σ−1µ).

17: Update µ← 1
K

∑
k µ̃k and Σ← 1

K

∑K
k=1

[
Σ̃k + (µ̃k − µ)(µ̃k − µ)T

]
.

18: Update σ2
r , r = 1, 2 using (27).

19: CONVERGED ←
[

max{δ1, δ2} < ε/K
]
, where δr := |||τr − τold

r |||∞, r = 1, 2

20: end while

3.5. Summary of the Algorithms

Algorithm 1 summarizes the updates for fitting the proposed matched bipartite SBM model,
to which we refer as mbiSBM. We have stated the general form of the algorithm with degree
correction (DC) and covariates. Note for example that if no degree-correction is desired, θr
remains equal to 1Nr and the iterations (34) in steps 11 and 12, for updating the label distri-
butions (τr), automatically reduce to the simple update (25) (that is, the iterations converge in
one step.). There are other variations available. For example, if desired, step 5 can be replaced

with (φ0, φ1) ← (log 1−p
1−q , log p(1−q)

q(1−p)) to use values based on a Bernoulli likelihood instead of a
Poisson. Empirically, we have not found much difference between the two. With minor mod-
ifications, the algorithm can be used when only one side has covariates or without covariates
for either side. The code is available on Github (Razaee et al.).

3.5.1. Initialization of the Algorithms

It is known that variational inference is sensitive to initialization (Blei et al., 2017). The main
component of the algorithm that needs careful initialization is the matrix of (approximate)
posterior node labels τ = [τ1; τ2]. We propose to initialize τ using a bipartite spectral clustering
algorithm, biSC for short, which is a variant of the approach of Dhillon (2001). The difference
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Algorithm 2 Bipartite Spectral Clustering (biSC)

1: Input: bi-adjacency matrix A ∈ {0, 1}N1×N2 .

2: Let D1 = diag(
∑

j Aij , i = 1, . . . , N1) and D2 = diag(
∑

iAij , j = 1, . . . , N2).

3: Form L = D
−1/2
1 AD

−1/2
2 .

4: Let L = USV T be the SVD of L truncated to K largest singular values (U ∈ RN1×K and
V ∈ RN2×K).

5: Normalize each row of U and V to unit `2 norm to get Ũ and Ṽ , resp., then form

Z =

[
D
−1/2
1 Ũ

D
−1/2
2 Ṽ

]
.

6: Run k-means with K clusters on the rows of Z.

between our version and that of Dhillon (2001) is that Dhillon (2001) does not normalize the
rows of the singular vectors and keeps top dlog2Ke singular vectors, as opposed to K. We have
found that row normalization greatly improves the performance, and it is fairly standard in
usual (non-bipartite) Laplacian-based spectral clustering. Algorithm 2 summarizes our version.

In simulation studies, we also consider a couple of competing initializations. One interesting
choice is to use the usual Laplacian-based spectral clustering, which is oblivious to the bipartite
nature of the problem. For this choice, we use the regularized version described in Amini et al.
(2013) as SCP. Note that SCP will be applied to the (symmetric) adjacency matrix Ã; see (5).
It is also possible to regularize biSC using similar ideas, though surprisingly, we found the
simple unregularized version of biSC is quite robust, and we have used this simple version
when reporting results.

When working with simulated data, since we have access to the true labels, we will also
consider a perturbed version of truth as an initialization. Specifically, we generate from a
mixture of the true label distribution and Dirichlet noise, i.e. τri = ωzri + (1 − ω)εri where
εri ∼ Dir(.51K). Here, we treat zri, the true label of node i in group r, as a distribution
on the K labels. Parameter ω ∈ [0, 1] measures the degree of initial perturbation towards
noise. For example, with ω = 0.1, about 10% of the initial labels are correct. We will refer
to this initialization as ∼rnd, for approximately random. This initialization will act as a
proxy for a “good enough” initialization and allows us to study the behavior of our variational
inference procedure decoupled from specific initializations produced by spectral clustering (or
other methods).

Let us say a few words about the initialization of other parameters. The algorithm is
moderately sensitive to the initialization of p, q and πr, r = 1, 2. When the quality of the
initial labels (τ1 and τ2) is good, one can initialize these parameters, based on (τr), by running
the corresponding updates first, as is done in Algorithm 1, lines 4–5. This is the form we
suggest in practice when using the biSC initialization, and is used in the real data application
(Section 5). However, when the quality of the initial labels is not good, for example, when using
SCP in the simulations, p and q obtained based on initial (τr) can become quite close leading to
numerical instability. We have found in those cases that initializing these parameters with fixed
values, say (p, q) = (0.1, 0.01) and πr set to uniform distribution of [K], greatly improves the
stability of the algorithm. (This is since even one iteration of the algorithm could significantly
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improve upon initial labels.) This fixed initialization of (p, q, πr), independent of τr is what
we have used in Monte Carlo simulations on synthetic data, when comparing different label
initializations (Section 4).

4. Simulations

In this section, we show that effectiveness of our proposed algorithm in recovering the true
labels in synthetic bipartite networks. For the most part, we generate data from our proposed
model (2)–(3). In the plots investigating the degree-corrected version of the algorithm, we
generate from the degree-corrected version of the network described in subsection 2.4.

4.1. Data generation

Key parameters regarding covariate generation in (2) are (µ,Σ) for generating v∗k. We take
µ = 0 and Σ = νId1+d2 throughout. Varying ν (or dimensions dr) changes the information
provided by the covariates (Appendix E). Larger ν causes v∗k to be further apart, hence
covariates are more informative. ν = 0 corresponds to zero covariate information. We also fix
covariate noise levels at σr = 0.5 for r = 1, 2, and the network size atN = (N1, N2) = (200, 800).

Key parameters regarding network generation in (3) are p and q. We reparametrize our
planted partition model in terms of expected average degree

λ =
2N1N2

N1 +N2

[
q + (p− q)

∑
k

π1kπ2k

]
(22)

(see Appendix D) and the out-in-ratio α = q/p ∈ [0, 1). Estimation becomes harder when
λ decreases (few edges) or when α increases (communities are not well separated). We fix
α = 1/7 and vary λ in the subsequent simulations.

When generating from the degree-corrected version, we draw (θi, i ∈ Crk) from a Pareto
(i.e., power-law) distribution, for each k ∈ [K] and r = 1, 2. Real networks are frequently
reported to have power-law degree distributions Barabási and Albert (1999). The Pareto(a,R)
in general has density θ 7→ (aRa)θ−a−11{θ > a}, with mean aR/(a− 1) for a > 1 and variance
R2a/[(a − 1)2(a − 2)] for a > 2. Since |Crk|−1

∑
i∈Crk

θi will be approximately equal to the
mean of the Pareto, and we want this average to be 1, we have to choose R = (a−1)/a, that is,

we generate θi
iid∼ Pareto(a, (a− 1)/a) for i ∈ Crk. (To comply with our model specification, we

further normalize θi for their within-community averages to be exactly one; this will have little
effect since the average is already close to 1.) The variance in this case is [a(a − 2)]−1 which
is decreasing in a over (2,∞). In order to get maximum degree heterogeneity (i.e., the worse
case in terms of the difficulty of fitting), we take a = 2, corresponding to infinite variance.
We note that expression (22) remains valid for the degree-corrected case without modification,
assuming normalization (7); see Appendix D.

4.2. Matched NMI for evaluation

In general, we measure the accuracy of the algorithms by the normalized mutual information
(NMI) between the inferred and correct communities which is defined as the mutual infor-
mation of the (empirical) joint distribution of the two label assignments divided by the joint
entropy (Malvestuto, 1986). NMI has a maximum value of 1 for perfect agreement and a min-
imum of 0 for no agreement. One could measure NMI individually between Zr ∈ {0, 1}Nr×K
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Figure 3: Typical output of the algorithm. Top row: bi-adjacency matrix. Bottom row: (a) Con-
catenated covariate matrix [X1;X2]. (b) Concatenated true labels [Z1;Z2]. (c) Initial labels for the
algorithm, Dirichlet-perturbed truth 0.1[Z1;Z2] + 0.9 Dir(0.51K). (d) Concatenated output of the algo-
rithm [τ1; τ2].

(the true label matrix) and τr ∈ [0, 1]Nr×K (the estimated soft-label matrix) for each r = 1, 2.
However, one can also measure a matched NMI by concatenating the labels of two sides ver-
tically, i.e., forming [Z1;Z2] and [τ1; τ2] and measuring a single NMI between the resulting
(N1 +N2)×K matrices. Some thought should convince the reader that this the natural way
to also measure the effectiveness of the matching between the communities of the two sides:
We have a matched NMI of 1, if the true and estimated clusters on each side are in perfect
agreement, and the matching between them is perfectly recovered.

4.3. Typical output

Figure 3 shows the typical output of the algorithm on the data generated from the model
without degree correction (DC), i.e., a = ∞. Here the empirical average degree is λ̂ = 3.1,
K = 5, ν = 10 and d = (2, 2), the dimensions of the covariates. Concatenated matrices of the
true labels and the initial and final labels are shown. Vertical concatenation is used as discussed
earlier, giving matrices of dimension (N1 +N2)×K. Initial labels are the Dirichlet-perturbed
truth with ρ = 0.1, i.e. 90% noise, as discussed in Section 3.5.1. It is interesting to note that
the output of the algorithm has recovered the communities with a nontrivial permutation of
the community labels.

In other words, the perturbation of the initial labels is high enough that the convergence of
the algorithm cannot simply be explained by a local perturbation analysis: the algorithm has
not converged to the original labels, but to a perfectly valid permuted version of the original
labels. That is, τr ≈ ZrQr for r = 1, 2 where Q1 and Q2 are K×K permutation matrices. The
matched NMI and misclassification rate for the algorithm are 0.98 and 0.30% in this case. If
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Figure 4: Effect of different initialization methods on mbiSBM with (left) ν = 0 and (right) ν = 10. The
case ν = 0 corresponds to no covariate information whereas ν > 0 gives some covariates information.

one runs k-means on the concatenated matrix of covariates [X1;X2], disregarding the network
information, one gets matched NMI and misclassification rate, 0.44 and 38.50%. That is, the
covariates themselves are not as informative alone as in combination with the network.

4.4. Average behavior

Figure 4 shows the mathched NMI versus average expected degree λ for various methods. The
results are averaged over 50 Monte Carlo replications. Naive (regularized) spectral clustering,
denoted as SCP, is shown in addition to biSC as discussed in Section 3.5.1. Moreover, the
plots show our algorithm mbiSBM, initialized with both spectral methods and with Dirichlet-
perturbed truth (ρ = 0.1) denoted as ∼rnd. The two plots correspond to the case with no
covariate information, ν = 0, and the case with covariate information ν = 10. In both cases,
covariate dimensions are d = (2, 2), number of communities K = 10 and out-in-ratio is α = 1/7.
There is no degree-correction in the model or mbiSBM algorithm.

As can be seen, biSC outperforms SCP significantly. Without covariates, mbiSBM started
with biSC slightly improves upon biSC; initializing with ≈ 10% truth (mbiSBM (∼rnd)) has
similar performance for sufficiently large λ, showing that mbiSBM behaves well with any suf-
ficiently good initialization. Note also that mbiSBM initialized with SCP, improves upon SCP
for large λ. With covariate information (ν = 10), mbiSBM significantly outperforms biSC which
does not incorporate the covariates.

4.5. Effect of degree correction

Figure 5 investigates the effect of employing degree-correction in the algorithm. In both plots of
the figure, we are generating from the same DC-version of the model using within-community
Pareto degree distribution with parameter a = 2 as described earlier, d = (2, 2), K = 10,
α = 1/7, and ν = 2. The difference between the two plots is how we initialize mbiSBM algorithm.
The left panel corresponds to “Dirichlet-perturbed truth” initialization (ρ = 0.1) denoted as
∼rnd, whereas the right panel corresponds to completely random initialization, denoted as rnd.
Four versions of the algorithm are considered, with or without covariate (X) incorporation,
and with or without degree-correction (DC).
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Figure 5: Effect of the degree correction steps 6–8 in the algorithm, for a power-law network. Data is
generated from DC version of the model (subsection 2.4) with Pareto distribution p(θ) ∝ θ−3, θ > 2
for degree parameters within each community. (Left) shows the results for a good initialization, the
Dirichlet perturbed truth, denoted as ∼rnd (with ≈ 10% true labels) and the (right) shows the results
for a completely random initialization, denoted as rnd.
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Figure 6: Effect of degree correction steps on variability, for a power-law network.

Surprisingly, as the left panel shows, with sufficiently good initialization (∼rnd), degree-
correction step of the algorithm provides only a slight improvement. However, the improvement
of degree-correction is quite significant when starting from a poor initialization (rnd). In
general, it is advisable to use the DC version since its solution has less variance. Figure 6,
illustrates the algorithm with DC correction and without, in the same setup of the left panel of
Figure 5, that is, both cases initialized with ∼rnd (and both incorporating covariates). Though
Figure 5(a) shows that mean behaviors are close, Figure 6 shows that the distributions of the
outputs are quite different, with the solution of DC version having less variability. This is
expected as the DC version is solving an optimization problem with much restricted feasible
region.
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Figure 7: Scaling behavior. Both the average NMI (top) and the mean execution time (time) are shown
as a function of the number of clusters per community for three-community (K = 3) networks. The

two columns show two block models generated according to model (23): (Left) B
(1)
0 and (Right) B

(2)
0

as defined in (24).

4.6. Scaling behavior

Figure 7 illustrates how the algorithm scales to large networks compared to the spectral ap-
proach. The simulation setup for this figure is as follows: We consider a base connectivity
matrix B0 ∈ RK×K+ and let the edge probability matrix be

B =
log(N1N2)√

N1N2
B0, N1 = n0K, N2 = [0.75n0K] (23)

where n0 is the number of nodes per community; that is, we assume that communities of both
sides are balanced and each contains n0 nodes. We then let n0 vary from 100 to 35000, while
K = 3 is fixed, to study the large-scale behavior of the network. This simulation setup has
recently been considered in Zhou and Amini (2018) and is suitable for studying the semi-sparse
asymptotic regime. Note that the average degree of the network will be ∼ log(n0) as n0 →∞
resulting in fairly sparse large networks. We consider two versions of B0, corresponding to the
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Figure 8: Boxplot of the NMI corresponding to Figure 7.

two columns in Figure 7:

B
(1)
0 =

1

2

2 1 1
1 2 1
1 1 2

 , B
(2)
0 =

1

3

1 2 3
3 2 1
2 1 3

 . (24)

Note that B
(1)
0 gives a planted partition model whereas B

(2)
0 corresponds to the more general

class of SBM given by (4), i.e., it contains both assortative and dissortative relations. We also

note that for B
(2)
0 , the within-community connectivities are variable (i.e., B

(2)
0 has unequal

diagonal elements). Both models are quite hard as the so-called out-in-ratio is quite high; in

the planted partition case B
(1)
0 , for which the ratio directly characterizes hardness, we have

q/p = 0.5. The covariates are generated similar to Section 4.4 with ν = 10 and d = (5, 5). The
results are averaged over 50 replications.

The hardness of the two problems are reflected in the NMI plots of Figure 7 where the spec-
tral method (spectral) is barely above the random assignment. In addition to the spectral
method, three versions of mbiSBM have been shown: (1) Algorithm 1 with spectral initialization,
mbiSBM (spectral), (2) Algorithm 1 with random initialization, mbiSBM (rnd), (3) modifica-
tion of Algorithm 1 to allow for a general connectivity matrix (Section A.2), with random
initialization, mbiSBM (gen)(rnd).

All the three versions perform reasonably and comparably except for the mbiSBM with
spectral initialization which significantly outperforms other versions on the planted partition

model B
(1)
0 . It is also worth nothing that the performance of mbiSBM with general connectivity

matrix is not much better than the planted partition version (i.e., the default Algorithm 1),

even on B
(2)
0 which is far from satisfying the simplifying planted partition assumption. We

note that the spectral approach alone performs very poorly in both cases. (We also experi-
mented with moderate perturbations for the spectral approach which did not result in notice-
able improvement.) Figure 8 shows the box plots corresponding to the NMI plots in Figure 7,
illustrating the variability of the results. It is worth noting that for planted partition model,
mbiSBM (spectral) achieves a NMI of 1 for most replications.

The bottom row in Figure 7 illustrates the average run time of the algorithms. For
mbiSBM (spectral) only the overhead relative the spectral initialization is considered. It
is clear the family of mbiSBM algorithms are about an order of magnitude faster than the
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spectral approach. We conclude that when the signal is high, mbiSBM with random initial-
ization is outperforms in both speed and accuracy. When the signal is low, we can initialize
with the spectral approach and then boost the performance by computationally cheap mbiSBM

iterations.

5. Application to Real Data

5.1. Wikipedia networks

We have applied the algorithm to two wikipedia page–user networks, which we will call TopAr-
ticles and Cities. Each is a bipartite network between a collection of Wikipedia pages and
the users who edited them: An edge is placed between a user and a page if the user has edited
that page (at least once). In the TopArticles, the pages are selected from the top articles
(based on monthly contributions) from Chinese (CN), Korean (KR) and Japanese (JP) lan-
guage Wikipedia, corresponding to the period from January to October 2016. In the Cities
network, the pages correspond to city names in English language Wikipedia; the cities were
chosen from five countries: Unites States (US), United Kingdom (GB), Australia (AU), India
(IN), Japan (JP). In both cases, on the user side, only those with IP addresses were retained.
Although, not perfect, IP addresses were the only means by which we could obtain additional
information about each user, esp. geo-location data. Wikipedia usage statistics were scraped
from Wikimedia Statistics using code inspired by Keegan (2014). For geo-data we used both
the ggmap R package by Kahle and Wickham (2013) and the API provided by ipapi.

In TopArticles, the true labels are the language assigned to each page and each user, that
is, matched communities are specified by common language. The user language was assigned
based on the dominant language of the country from which the IP address originates. In
Cities network, the true labels are the country names assigned to each user based on user’s IP
address and assigned to each city page based on its geo-location tag. The IPs were also used to
obtain latitude and longitude coordinates on each user, providing us with user covariate matrix
X2 ∈ RN2×2,

For TopArticles, we do not have any page covariate. For Cities, we use the geo-location
data of the city (latitude and longitude) to give us the page covariate matrix X1 ∈ RN1×2.

Figure 9 shows the two networks along with the true communities. Note that Cities is
specially hard to cluster based only on network data due to the presence of nodes of different
communities among each community (as positioned by the layout algorithm). Tables 1 and 2
show the break-down of pages/users based on community for the two networks. Also shown are
the average degrees of each side of the network, as well as the overall average degree. For each
of the two networks, we first obtained a 2-core, restricted to the giant component, then removed
users from countries not under consideration. (If the last step created disjoint components we
restricted again to the giant component. This only happened for Cities and only removed 5
nodes.)

Results on Wikipedia networks. Table 3 illustrates the result of the application of biSC,
and the mbiSBM (biSC) algorithm with various combination of covariates. In all cases the
degree-corrected (DC) version of mbiSBM is used. For TopArticles, without using covariates,
there is no improvement on biSC while using X2 gives significant boost to mbiSBM. For Cities,
biSC outperforms mbiSBM with no covariates. One the other hand, adding X2 or both X1 and
X2 significantly improves the result of mbiSBM.
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CN JP KR Total Avg. deg. Covariates

Pages 139 143 171 453 14.2 N/A
Users 579 695 828 2102 3.1 X2 = user (lat.,lon.)

Total 718 838 999 2555 5

Table 1: TopArticles page–user network

US IN AU JP GB Total Avg. deg. Covariates

Pages 267 235 182 113 59 856 10.2 X1 = city (lat.,lon.)
Users 1054 1029 705 101 201 3090 2.8 X2 = user (lat.,lon.)

Total 1321 1264 887 214 260 3946 4.4

Table 2: Cities page–user network

To get a more refined understanding of the relative standing of biSC and mbiSBM (biSC),
we have run two Monte Carlo analyses based on these real networks, one using subsampling
and the other by adding Erdös–Rényi noise. Figure 10 shows the results when we subsample
the network to retain a fraction of the nodes on each side (from 95% down to 10%). The
x-axis shows the resulting overall average degree of the network at each subsampling level. The
results are averaged over 50 replications and the interquartile range (IQR) is also shown as a
measure of variability. The figures in Table 3 correspond to the rightmost point of these plots.
(Average degrees of Cities vary in these ranges: overall ∈ [0.4, 4.2], page ∈ [1, 9.7] and user
∈ [0.3, 2.7], whereas for TopArticles the ranges are: overall ∈ [0.6, 4.9], page ∈ [1.6, 13.8] and
user ∈ [0.3, 3].)

The plots show that mbiSBM (biSC) with covariates outperforms biSC, and the improvement
is quite significant the sparser the network becomes. Note for example that in Cities adding X1

does not have much effect in the original network, however, there is a considerable improvement
when average degree starts to drop under subsampling. In the Cities case, the two covariates
X1 and X2 together are quite strong leading to an NMI ≈ 1 and masking the effect of the
network to some extent.

However, by looking at cases where only one of X1 and X2 is present, we observe that
mbiSBM (biSC) manges to pass the covariate information via the network to the side without
covariates, thus improving matched NMI significantly. To see this, consider for example the
TopArticles, where only X2 is present. In this case, even if a method could cluster X2

perfectly and, in the absence of network information randomly guessed the labels of the other
side, the NMI would be 0.42. That in Figure 10(b), the NMI starts at 0.98 and remains much

Network biSC mbiSBM (biSC), DC

X1 & X2 X1 X2 no X

TopArticles 0.86 - - 0.98 0.86

Cities 0.6 1.0 0.59 0.85 0.47

Table 3: Matched NMI for biSC and mbiSBM on the two Wikipedia networks.
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Figure 9: The two Wikipedia networks: (left) Cities (right) TopArticles. Nodes are colored according
to true communities. Pages are denoted with squares and users with circles. Node sizes are proportional
to log-degrees.
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Figure 10: Effect of subsampling on Wikipedia networks: (left) Cities (right) TopArticles.

above 0.42 for most of the range of subsampling illustrates the ability of mbiSBM to effectively
utilize both covariate and network information to correctly infer the labels of the other side.
The same can be observed in the case of Cities. Finally, we note that without covariates, biSC
usually performs better. We expect this since it is hard for local methods starting from biSC

to improve upon it. The strength comes when we use the covariate information.
Figure 11 shows another experiment where we added Erdös–Rényi noise of average degree

from 0 to 10. Again, the advantage gained by mbiSBM from using covariates can be quite clearly
observed when one increases the noise. The covariates mitigate the effect of noise and lead to
a much graceful degradation of performance for mbiSBM relative to biSC.
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Figure 11: Effect of adding Erdös–Rényi noise on Wikipedia networks: (left) Cities (right) TopArti-
cles.

5.2. Author-Paper networks

In this subsection, we use real data examples to showcase the performance of our algorithm
when the the network is large, has high dimensional covariates and under model misspecifica-
tion, that is, when the covariates are discrete.

We have applied the algorithm to two sets of author-paper networks. The first set represents
papers and their authors in different sub-domains of computer science (CS): (1) data mining,
(2) medical informatics, (3) visualization , (4) database, and (5) theory. The data for the first
set was extracted from the Arnetminer collection, based on papers published from 1990 to
2005 in certain CS venues by Tang et al. (2012). The second set of data was scraped from
DBLP, using the papers published in bioinformatics (BI), biomedical/medical informatics (BM)
and computational neuroscience (CN) venues from 1995 to 2018. Each set contains various
subnetworks of the two basic bipartite network described above.

In both sets, we first consider the paper-author bipartite networks with covariates being
high-dimensional vectors of word frequencies appearing in the title of the papers. To deal with
the binary nature of the covariates, we take their z-scores. Although the Gaussian assumption
about these transformed covariates does not hold, we have found that such transformation
allows us to apply our model to discrete covariates with minimal modification and with good
empirical performance as discussed below. A more principled approach to dealing with discrete
covariates would be to model them using a multinomial likelihood (cf. Section 6). The process of
building the network and extracting the covariates is done by restricting to the giant component
of the author-paper network such that each paper is associated with at least one word after
removing sparse words. For the second set, we also removed some non-informative words to
slightly boost the covariate signals.

These datasets have an interesting feature: They can be viewed as tri-partite author-paper-
word networks. Thus, although not intuitive, we can also view the paper-word frequency matrix
as a bipartite network and use the (binary) author vectors as covariates for the papers. Taking
z-scores again bring these binary covariates within our framework.

For these datasets, the ground truth labels are only available for the papers: we treat
their venues (i.e., their main topic) as the true community of the paper. As a result, we can
only find the NMI for the paper labels. Note that assuming a matching between authors and
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Dimensions Avg. deg.

authors papers words authors papers

CS12345 5126 8500 1089 4.75 2.87
BM-BI-CN 10561 8482 1649 3.4 4.23

Table 4: Statistics on the author–paper networks with words as covariates

Network X2 biSC mbiSBM (biSC) mbiSBM (rnd)

α = 0 α = 1 α = 10 α = 0 α = 1 α = 10 mean max

CS12345 0.23 0.29 0.28 0.10 0.23 0.36 0.34 0.16 0.23

CS2345 0.30 0.39 0.34 0.15 0.28 0.45 0.38 0.13 0.26

CS345 0.38 0.35 0.45 0.09 0.21 0.62 0.35 0.14 0.29

CS45 0.35 0.00 0.76 0.04 0.00 0.73 0.71 0.02 0.08

BM-BI-CN 0.32 0.00 0.01 0.02 0.00 0.01 0.04 0.23 0.35

BI-CN 0.36 0.32 0.00 0.00 0.55 0.00 0.00 0.15 0.37

BM-BI 0.00 0.00 0.00 0.04 0.08 0.00 0.27 0.17 0.27

Table 5: NMI for biSC and mbiSBM on the Author-Paper networks.

papers is reasonable as most authors have a theme; similarly a matching between words and
papers is plausible, as previously has been considered in the text mining applications by Dhillon
(2001). Table 4 shows the break-down of authors/papers/words for CS12345 and BM-BI-CN
networks. Also shown are the average degrees of each side of the networks.

CS12345 refers to the the dataset including all the five topics. CS2345 refers to the dataset
excluding the first topic (data mining), and so on. Note that CS2345, for instance, is not
necessarily an induced subnetwork of CS12345 as we take the giant component each time to
make the networks for each set of topics.

Results on paper-author-word networks. Tables 5 and 6 illustrate the results for various
algorithms. The first column from the left is the NMI obtained by applying k-means on
the truncated SVD of the covariates (X2 column); this approach captures the covariate-only
information. The next three columns show the result for the application of biSC with various
levels of perturbation α. Here, we are adding the constant perturbation α(N1N2)−1/2 to every
entry of the adjacency matrix before forming the Laplacian. This is similar to the approach
of Amini et al. (2013) for unipartite setups and is known to have a regularization effect on the
spectral clustering, especially for sparse networks. Note that the case α = 0 corresponds to
the unregularized version as shown in Algorithm 2.

The remaining columns show the performance of mbiSBM initialized with each of biSC

results, collected under mbiSBM (biSC) columns, as well as mbiSBM initialized at random, where
both the mean and the maximum achieved on 25 random initializations is recorded, under
mbiSBM (rnd) columns.

The results show that mbiSBM outperforms covariate-only clustering in all cases and out-
performs biSC in 12 out of 14 datasets, indicating that utilizing covariates as well as network
structure can boost the signals compared to using each source of the information alone. It is
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Network X2 biSC mbiSBM (biSC) mbiSBM (rnd)

α = 0 α = 1 α = 10 α = 0 α = 1 α = 10 mean max

CS12345 0.00 0.26 0.26 0.24 0.43 0.45 0.45 0.03 0.11

CS2345 0.00 0.27 0.28 0.28 0.52 0.52 0.54 0.02 0.20

CS345 0.00 0.24 0.39 0.37 0.74 0.74 0.76 0.02 0.29

CS45 0.00 0.37 0.38 0.36 0.70 0.70 0.71 0.01 0.02

BM-BI-CN 0.00 0.00 0.31 0.35 0.00 0.45 0.43 0.01 0.03

BI-CN 0.00 0.01 0.02 0.36 0.00 0.00 0.68 0.00 0.01

BM-BI 0.00 0.00 0.01 0.26 0.00 0.00 0.17 0.00 0.00

Table 6: NMI for biSC and mbiSBM on the Word-Paper networks.
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(1) data mining
(2) medical informatics
(3) visualization
(4) database
(5) theory
authors
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Figure 12: The two paper-author networks: (left) CS12345 (right) BM-BI-CN. Nodes corresponding
to the papers are colored according to their true communities. The authors are denoted with squares
and the papers with circles. Node sizes are proportional to log-degrees.

also worth noting that perturbation often boosts the performance of biSC, but not always. In
cases where a version of biSC works well, mbiSBM often boosts the results; this is especially
pronounced for the word-paper networks. Overall random initialization of mbiSBM performs
respectably and surprisingly in some outperforms biSC and biSC-initialized mbiSBM.

6. Discussion

In this paper, we considered the problem of matched community detection in the bipartite
setting, where one assumes a latent one-to-one correspondence between communities of the
two sides. This matching is built into the model and inferred simultaneously with the commu-
nities in the process of fitting the model. Our model is an extension of the stochastic block
model (SBM) and its degree-corrected version (DC-SBM). We extended our proposed model
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to allow for the presence of node covariates that are aware of the matching between communi-
ties: Covariates corresponding to nodes in matched communities are statistically linked using
hierarchical Bayesian modeling ideas.

Although we only considered Gaussian distributions in generating covariates, our hierar-
chical mixture approach has the potential for extension to more general settings. For example,
one can easily model discrete covariates, such as word counts in documents, as mixtures of
multinomial distributions. Some care however is needed when deciding the distribution of the
top layer if one wants to allow for information sharing among the lower level variables (i.e., vrk)
from the two sides. In addition, as mentioned (cf. Section 2.5), our current statistical linkage
carries weak information about the matching and it would be interesting to design models in
which the degree of covariate information about the matching can be tuned more effectively.

Our model has natural extensions to r-partite (r > 2) networks where some of the modes
may or may not have node covariates. We note that the general r-partite case is related to the
so-called multilayer or multiplex community detection problem (Kivela et al., 2014). Finally,
one would like to allow for edge covariates to accommodate many cases in real data, where
edges are annotated in some way, say by the ratings as in recommender systems, by time-
stamps as in our Wikipedia user-page examples, and so on. Poisson model of edge generation
can, to some extent, take simple edge weights into account. Whether one can go beyond that
in modeling more complex edge information is an interesting avenue for future work.
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Appendix A. Extensions and improvements

A.1. Speed improvement and diagonal restriction

A.1.1. Improving the Speed

For r = 1, 2, we treat each (τrik)ik as a matrix τr ∈ [0, 1]Nr×K . The τ -update in (17) can
be simplified to improve computational complexity for sparse networks A. We can write
h(p, q;α) = αφ1 + φ0, where for the binary likelihood, φ1 = log p(1−q)

q(1−p) and φ0 = log 1−p
1−q ,

and for the Poisson likelihood considered in Section A.3 below, φ0 = q − p and φ1 = log(p/q).
Then, in matrix notation

τ1ik ∝k π1k exp
(
φ1[Aτ2]ik + φ0τ̄2k + β1ik(Γ̃, σ

2)
)

i = 1, . . . , N1

where [Aτ2]ik =
∑

j τ2jkAij and we recall τ̄2k :=
∑N2

i=1 τ2ik. When A is sparse, the matrix-

vector product Aτ2 can be computed quite fast. Letting βr = (βrik)ik ∈ RNr×K , we have the
τ -update in vector form:

τ1 = row-softmax
[
φ1Aτ2 + φ01N1(τ̄2 + log π1)T + β1

]
(25)

and similarly for τ2. Here, row-softmax is the row-wise softmax operator, applying (16) to
each row of a matrix.
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Further improvements are possible in estimating p and q. Note that we can write τ̄rk :=
[τTr 1Nr ]k. Let us treat τ̄r as a K-vector, with elements τ̄rk. Then, we have

∑
ij γij(τ)Aij =

tr(τT1 Aτ2) and
∑

ij γij(τ) = 〈τ̄1, τ̄2〉 , and

p =
tr(τT1 Aτ2)

〈τ̄1, τ̄2〉
, q =

δρ− p
δ − 1

, where
1

δ
= 〈 τ̄1

N1
,
τ̄2

N2
〉 and ρ =

1

N1N2

∑
ij

Aij . (26)

Note that ρ is the density of the graph (or A) and that 〈τ̄1, τ̄2〉 = tr(τT1 Eτ2) where E is the

all-ones matrix of appropriate dimension. Finally, let us define β′rik = tr
(
(Σ̃k)rr

)
+‖xri− µ̃rk‖2

noting that βrik = 1
2σ2

r
β′rik from definition (13). Letting β′r = (β′rik)ik be its matrix form, we

can write the update for σ2
r compactly as

σ2
r =

1

Nrdr

∑
ik

τrikβ
′
rik =

1

Nrdr
tr(τTr β

′
r). (27)

A.1.2. Diagonal covariance restriction

For ultra high-dimensional covariates, one can restrict the covariance matrix Σ to be diagonal,
which greatly improves the speed of the algorithm. This choice is also reasonable from a sta-
tistical perspective since in high-dimensions, without additional restrictions (such as sparsity),
estimates of a full-dimensional covariance matrix are unreliable. Under the diagonal restriction,
one only needs to make a minor modification to the algorithm: Recalling the variational likeli-
hood J(Σ)

.
= −K

2

[
log |Σ|+ tr(Σ−1S(Γ̃))

]
, the maximizer over Σ under the diagonal constraint

is Σii = [S(Γ̃))]ii and Σij = 0 for i 6= j, or compactly

Σ = ddiag(S(Γ̃)),

where A 7→ ddiag(A) is an operator that take a square matrix A and outputs a diagonal
matrix with the same diagonal as A. We note that the update for Σ̃k goes as before: Σ̃k =
(D−1

k +Σ−1)−1 for k ∈ [K]. Since both D and Σ are diagonal, Σ̃k will be diagonal as well. Thus,
all the covariance matrices throughout the algorithm will remain diagonal which improves the
speed and scalability.

A.2. Extension to general SBM

Let us now briefly discuss the changes needed for fitting the general SBM model (4). We only
consider the case with no degree correction. Let us derive the label updates first. Using the
general form of the network likelihood (8), the variational likelihood in (15) is replaced with

J =
∑
i

∑
k

τ1ik

(∑
j

∑
`

τ2j` g(Ψk`, Aij) + ξ1ik − log τ1ik

)
+ const. (28)

which by the same argument used for (17), gives the following τ1ik update

τ1ik ∝k π1k exp
[∑

j

∑
`

τ2j` g(Ψk`, Aij) + β1ik(Γ̃, σ
2)
]

i = 1, . . . , N1. (29)
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The update for τ2 follows similarly. The only other modification to the algorithm is the update
for the edge probabilities Ψ, replacing the (p, q) updates. For Ψ updates, we need to maximize

Eq[`1(Ψ)] =
∑
ij

∑
k`

τ1ikτ2j` g(Ψk`, Aij)

over Ψ. Assume that g(p, α) = αφ1(p) + φ0(p). For any fixed (k, `), we need to maximize(∑
ij

τ1ikτ2j`Aij

)
φ1(Ψk`) + τ̄1kτ̄2` φ0(Ψk`)

where we have used τ̄rk :=
∑

i τrik. The problem reduces to maximizing p 7→ aφ1(p) + bφ0(p)
for some positive a, b ∈ R. It is not hard to see that the maximizer is the same for both the
Bernoulli likelihood (φ1(p) = log[p/(1− p)], φ0p) = log(1− p)) and the Poisson (φ1(p) = log p,
φ0(p) = −p), and is equal to p∗ = a/b. This give the following Ψ-update

Ψk` =
1

τ̄1kτ̄2`

∑
ij

τ1ikτ2j`Aij . (30)

Speeding up the updates. Using the notation introduced for g, we have∑
j

∑
`

τ2j` g(Ψk`, Aij) =
∑
`

(∑
j

τ2j`Aij

)
φ1(Ψk`) +

∑
`

τ̄2` φ0(Ψk`).

Let Φ1,Φ0 ∈ RK×K be matrices with entries [Φs]k` = φs(Ψk`) for s = 0, 1. Then, τ1 update is

τ1ik ∝k π1k exp
(

[Aτ2ΦT
1 ]ik + [Φ0τ̄2]k + β1ik(Γ̃, σ

2)
)

i = 1, . . . , N1

or in matrix form (similar to (25))

τ1 = row-softmax
(
Aτ2ΦT

1 + 1N1 [Φ0τ̄2 + log π1]T + β1

)
. (31)

Here τ̄2 = (τ̄2`) ∈ RK is viewed as a column vector.

A.3. Extension to the Degree-Corrected Case

In this case the network-dependent part of the likelihood is replaced with

`1(Ψ, θ) =
∑
ij

∑
k`

z1ikz2j` g(θ1iθ2jΨk`, Aij).

Again, we focus on the case where Ψkk = p and Ψk` = q for k 6= `. Recalling the notation
h(p, q, α) = g(p, α)− g(q, α), we have

`1(Ψ, θ) =
∑
ij

[
yij h

(
pθ1iθ2j , qθ1iθ2j , Aij

)
+ g
(
θ1iθ2jq, Aij

)]
. (32)

We assume a Poisson log-likelihood with g(p, α) = α log p−p for which h(p, q, α) = α log(p/q)+
q − p. We also recall the normalization assumption (7),

∑
i θrizrik =

∑
i zrik, which implies
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∑
ij yijθ1iθ2j =

∑
ij yij and

∑
ij θ1iθ2j = N1N2. Using these two implications, the first term

in (32) simplifies to∑
ij

yij
[
(q − p)θ1iθ2j +Aij log(p/q)

]
+
∑
ij

[
−θ1iθ2jq +Aij log(θ1iθ2jq)

]
=
∑
ij

yij
[
(q − p) +Aij log(p/q)

]
− qN1N2 +

∑
ij

Aij log(θ1iθ2jq)

Let φ0 = q − p and φ1 = log(p/q).

τ-update. Let us fix θ and obtain updates for the label posteriors τ . Taking expectations of
the objective and the constraints, the τ -portion of the update is equivalent to maximizing∑

ij

γij(τ)
[
φ0 +Aijφ1

]
+
∑
rik

τrik
[
βrik(Γ̃, σ

2) + log
πrk
τrik

]
subject to constraints

∑
i τrik(θri−1) = 0 for all k. Note that these constraints follow by taking

expectations of the normalization constraints (7) under Z ∼ q. Focusing on updating τ1k, we
have the following optimization problem:

max
τ1

∑
i,k τ1ik

(∑
j τ2jk

[
φ0 +Aijφ1

]
+ ξ1ik − log τ1ik

)
subject to

∑
i τ1ik(θ1i − 1) = 0,

∑
k τ1ik = 1, τ1ik ≥ 0

(33)

where ξ1ik = β1ik + log π1k as before. In Appendix C.1, we derive a dual ascent algorithm for
solving this problem with the following updates:

τ1(λ) = row-softmax
[
φ1Aτ2 + φ01N1(τ̄2 + log π1)T + β1 + (θ1 − 1)λT

]
,

λ+ = λ− µ[τ1(λ)]T (θ1 − 1).
(34)

Here, λ ∈ RK is the dual variable, λ+ is its update, θ1 = (θ1i) ∈ Rn, and µ is a proper step-
size. These two iterations are repeated till convergence, before updating other parameters.
Note that when θ1 = 1, the dual ascent algorithm reduces to the single step of (25) obtained
for the case without degree correction.

θ-update. Let us now fix τ and the rest of the parameters and optimize over θ. The relevant
portion of the objective function is∑

ij

γij(τ)
[
q − p+Aij log(p/q)

]
− qN1N2 +

∑
ij

Aij log(θ1iθ2jq).

Consider optimizing over (θ1i), which is equivalent to maximizing
∑

i d1i log θ1i, subject to∑
i τ1ik(θ1i−1) = 0 for all k, and θ1i ≥ 0 for all i. This problem is suitable for an application of

the Douglas–Rachford (DR) splitting algorithm (Douglas and Rachford, 1956; O’Connor and
Vandenberghe, 2014). Let ft(·; d) : Rn+ → Rn+ with d ∈ Rn+ and t > 0, be defined by

[ft(x; d)]i :=
1

2

[
xi +

√
x2
i + 4tdi

]
. (35)
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Also, let H1 := τ1(τT1 τ1)−1τT1 be the projection operator onto the span of τ1 ∈ RN1×K . The
algorithm performs the following iterations for updating (ξ1, θ1) to (ξ+

1 , θ
+
1 ):

θ+
1 = ft(ξ1; d1)

ξ+
1 = θ+

1 −H1(2θ+
1 − ξ1 − 1)

(36)

where ξ1 ∈ RN1 is an auxiliary variable, d1 = (d1i) ∈ RN1 collects the degrees of side 1, and
t > 0 is the fixed parameter of DR algorithm (often set to 1). The details for the derivation
of this algorithm can be found in Appendix C.2. The same updates apply to θ2, replacing
subscript 1 with 2.

Remark 3. Note that if τ1 = (τ1ik) was a hard label assignment, then the optimization for
(θ1i) would have a simple solution. To see this, let Ck(τ1) be the kth cluster of hard label τ1.
Then, the optimal value of θ1 is given by

θ1i =
d1i∑

i′∈Ck(τ1) d1i′
, for i ∈ C1k(τ1).

This is in fact, the choice in profile-likelihood approaches to fitting DC-SBM, where one replaced
θ1 with this optimal value, in addition to optimal values of edge probabilities and class priors,
all in terms of {C1k(τ1)}, and then optimize the resulting profile likelihood over {C1k(τ1)}. See
for example (Karrer and Newman, 2011). Our approach here, allows us to keep a soft-label
assignment τ1 throughout the algorithm, viewing optimization over θ1 as another phase of
block-coordinate ascent for the overall constrained optimization problem.

(p, q)-update. To optimize over p and q we note that because of the Poisson model, p and
q are not tied together and the only constraint we have is p, q ≥ 0. Optimizing over p is
equivalent to maximizing −p∑ij γij + log p

∑
ij γijAij and optimizing over q, is equivalent to

maximizing over −q∑ij(1−γij)+ log q
∑

ij(1−γij)Aij , both giving the same updates as those
in (21).

Appendix B. Details of Section 3

B.1. Proof of Lemma 1

We have fa(p) = −∑k pk log(pk/e
ak). If

∑
k e

ak = 1, then−fa(p) is the KL-divergence between
(pk) and (eak) and the result follows. Otherwise, normalizing only adds a constant to fa, that
is, with C = 1/

∑
k e

ak and qk = Ceak , we have fa(p) = −∑k pk log(pk/qk) − logC and the
result follows.

B.2. Derivation of (12)

We write Eq for expectation w.r.t. the above joint distribution on (Z, V ). Similarly, we
write EqZ and EqV for the expectation (or integration) w.r.t. to each of qZ and qV . Note
that Eq[ · ] = EqV EqZ [ · ]. Plugging in the variational distribution (11) into the variational
likelihood (10). we have

J = Eq
[
`(µ,Σ, σ,Q)]− log q(Z, V )

]
= T1 + T2 + T3 − T4 − T5
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where

T1 = EqZ
[∑
i,j

ψ(Aij , yij)
]
, T2 = EqV EqZ

[∑
r,i,k

zrik
[

log fr(xri; vrk) + log πrk
]]

T3 = EqV
[∑

k

log p(v∗k|µ,Σ)
]
, T4 = EqZ log q(Z), T5 = EqV log q(V )

Let γij(τ) := EqZ (yij) =
∑K

k=1 τ1ikτ2jk, so that

T1 =
∑
i,j

[
γij(τ) log(pAij (1− p)1−Aij ) + (1− γij(τ)) log(qAij (1− q)1−Aij )

]
(37)

We frequently use the following elementary result in the sequel. Let x 7→ N(x;µ,Σ) be the
PDF of the multivariate normal distribution with mean µ and covariance Σ.

Lemma 2. Let ε be a random vector with mean µ̃ and covariance Σ̃, and x a nonrandom
vector. Then,

E[εTΛε] = tr[ΛΣ̃] + µ̃TΛµ̃, (38)

E[logN(x; ε,Σ)] = E[logN(ε;x,Σ)] = −1

2

{
log |Σ|+ (x− µ̃)TΣ−1(x− µ̃) + tr(Σ−1Σ̃)

}
= −1

2

{
log |Σ|+ tr(Σ−1Ψ)

}
, (39)

where Ψ = Σ̃ + (x− µ̃)(x− µ̃)T .

Proof Let us prove (39). We have logN(x; ε,Σ) = −1
2 log |Σ| − 1

2(x− ε)TΣ−1(x− ε). Noting

that x− ε has mean x− µ̃ and covariance Σ̃ and applying (38) gives the desired result.

Recall that fr(xri; vrk) = N(xri; vrk, σ
2
rIdr), and note that under qV , vrk has mean µ̃rk and

covariance (Σ̃k)rr. Note that we are partitioning Σ̃k into four blocks of sizes {d1, d2}×{d1, d2}
and (Σ̃k)rr, r = 1, 2 correspond to the two diagonal blocks in this partition. Using Lemma 2,
we have

T2 = EqV
{∑
r,i,k

τrik
[

logN(xri; vrk, σ
2
rIdr) + log πrk

]}
=
∑
r,i,k

τrik
[
− dr

2
log σ2

r −
tr
(
(Σ̃k)rr

)
+ ‖xri − µ̃rk‖2
2σ2

r

+ log πrk
]
.

Recall that Γ̃ := ((Σ̃k, µ̃k), k = 1, . . . ,K) and S(Γ̃) := 1
K

∑K
k=1

[
Σ̃k + (µ̃k − µ)(µ̃k − µ)T

]
.

Another application of Lemma 2 gives

T3 = EqV
[∑

k

logN(v∗k;µ,Σ)
]

= −1

2

∑
k

[
log |Σ|+ tr(Σ−1Σ̃k) + (µ̃k − µ)TΣ−1(µk − µ)

]
= −1

2

∑
k

[
log |Σ|+ tr(Σ−1Ψk(Γ̃))

]
= −K

2

[
log |Σ|+ tr(Σ−1S(Γ̃))

]
.
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Using Lemma 2 once more, we have

T5 = EqV log q(V ) =
∑
k

EqV logN(v∗k; µ̃k, Σ̃k)

=
∑
k

−1

2

[
log |Σ̃k|+ tr(Id1+d2)

]
= −1

2
K(d1 + d2)− 1

2

∑
k

log |Σ̃k|

Finally, we have

T4 = EqZ log q(Z) = EqZ
∑
r,i,k

zrik log τrik =
∑
r,i,k

τrik log τrik. (40)

Putting the pieces together we get expression (12).

B.3. Updates of Σ̃ and µ̃

From (12), the relevant portion of J which is a function of Γ̃ = (µ̃, Σ̃) is given by

J(µ̃, Σ̃)
.
=
∑
r,i,k

τrikβrik(Γ̃, σ
2)− K

2
tr[Σ−1S(Γ̃, µ)] +

1

2

∑
k

log |Σ̃k|

Substituting βrik(Γ̃, σ
2) := − 1

2σ2
r
[tr
(
(Σ̃k)rr

)
+‖xri−µ̃rk‖2], and S(Γ̃, µ) := 1

K

∑K
k=1

[
Σ̃k+(µ̃k−

µ)(µ̃k−µ)T
]

from their definitions, and looking at the result only as a function of Σ̃, we obtain

J(Σ̃)
.
= −1

2

∑
k

[∑
r,i

τrik
tr
(
(Σ̃k)rr

)
σ2
r

+ tr[Σ−1Σ̃k]− log |Σ̃k|
]

(41)

Recalling τ̄rk :=
∑Nr

i=1 τrik and D−1
k := diag

(
τ̄1k
σ2
1
Id1 ,

τ̄2k
σ2
2
Id2
)
, we have

∑
r,i

τrik
tr
(
(Σ̃k)rr

)
σ2
r

=
∑
r

τ̄rk
tr
(
(Σ̃k)rr

)
σ2
r

= tr
[∑

r

τ̄rk
σ2
r

(Σ̃k)rr

]
= tr(D−1

k Σ̃k).

Hence, we obtain J(Σ̃)
.
= −1

2

∑
k tr[(Σ−1 +D−1

k )Σ̃k]− log |Σ̃k| which is the desired result.

Similarly, by substituting βrik(Γ̃, σ
2) and S(Γ̃, µ) and looking at the result as a function

only of µ̃, we obtain

J(µ̃) = −1

2

∑
k

[∑
r,i

τrik
‖xri − µ̃rk‖2

σ2
r

+ (µ̃k − µ)TΣ−1(µ̃k − µ)
]
.

Let us simplify the sum over r and i. Up to constants as function of µ̃, we have∑
i

τrik‖xri − µ̃rk‖2 .
=
∑
i

τrik
(
‖µ̃rk‖2 − 2〈xri, µ̃rk〉

)
= τ̄rk‖µ̃rk‖2 − 2〈x̄rk, µ̃rk〉
= τ̄rk

(
‖µ̃rk‖2 − 2〈µ̄rk, µ̃rk〉

)
.
= τ̄rk‖µ̃rk − µ̄rk‖2
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where the second to last equality is by definition of µ̄rk := x̄rk/τ̄rk. Recalling the definitions
of τ̄rk and x̄rk :=

∑Nr
i=1 τrikxri. Hence,

∑
r,i

τrik
‖xri − µ̃rk‖2

σ2
r

.
=
∑
r

τ̄rk
σ2
r

‖µ̃rk − µ̄rk‖2 = (µ̃k − µ̄k)TD−1
k (µ̃k − µ̄k)

Thus, we obtain

J(µ̃)
.
= −1

2

∑
k

[
(µ̃k − µ̄k)TD−1

k (µ̃k − µ̄k) + (µ̃k − µ)TΣ−1(µ̃k − µ)
]
.

Desired expression (19) follows by applying the following lemma.

Lemma 3 (Sum of quadratic forms). For symmetric matrices Q1, Q2, . . . ,∑
r

(x−mr)
TQ−1

r (x−mr) = (x−m)TQ−1(x−m) + const., ∀x

where Q = (
∑

rQ
−1
r )−1 and m =

∑
rQQ

−1
r mr.

Proof Since the two sides are quadratic functions, they are equal up to constants if their deriva-
tives up to second-order match. Equating the Hessians gives

∑
rQ
−1
r = Q−1. Then, equating

the gradients gives
∑

rQ
−1
r (x−mr) = Q−1(x−m), which simplifies to

∑
rQ
−1
r mr = Q−1m in

light of the Hessian equality.

B.4. Updates of σ2, π, p and q

The relevant portion of J as a function (σ2
r ) is

J((σ2
r )) = −1

2

∑
r

[ 1

σ2
r

∑
i,k

τrik
[

tr
(
(Σ̃k)rr

)
+ ‖xri − µ̃rk‖2

]
+ drNr log σ2

r

]
. (42)

The maximizer of the function x 7→ Ax−1+B log x is A/B (assuming A,B > 0), from which (20)
follows.

As a function π, J has the form J(π)
.
=
∑

r,i,k τrik log πrk =
∑

r,k τ̄rk log πrk using the
definition of τ̄rk. The following lemma is standard. (Recall that PK is the set of probability
K-vectors.)

Lemma 4. For any nonnegative vector (a1, . . . , aK),

argmax
p ∈ PK

∑
k

ak log pk =
1∑
k ak

(
a1, . . . , aK).

Based on the lemma, π1-update is π1 = (τ̄11, . . . , τ̄1K)/(
∑

k τ̄1k). The update for π2 is
similar.

To update p we note that J(p)
.
=
∑

i,j γij(τ)(Aij log p + (1 − Aij) log(1 − p)). The update
is obtained by setting the derivative to zero. The q-update is similar.
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Appendix C. Details for degree-corrected algorithm

C.1. τ-update with degree restriction

In this section, we derive a dual ascent algorithm for the optimization problem (33) which
has to be solved for updating τ under the degree corrected model. Letting aik := φ1[Aτ2]ik +
φ0τ̄2k + ξ1ik, and with some notational simplifications, problem (33) can be stated as

min
X=(xik)

−
∑
ik

xik(aik − log xik), s.t. X ∈ Pn,K ,
∑
i

xik(θi − 1) = 0, ∀k (43)

where Pn,K := {(xik) ∈ Rn×K+ :
∑

k xik = 1, ∀i}. Let f(X) be the objective function in (43),
and let us write the constraint in vector form

∑
i xik(θi − 1) = XT (θ − 1) = 0. With the

Lagrangian L(X,λ) = f(X)− λT [XT (θ − 1)], the dual function is

Φ(λ) := min
X∈Pn,K

L(X,λ),

and the dual problem is maxλ Φ(λ). A dual-descent algorithm maximizes Φ by performing a
gradient ascent on Φ: λ+ = λ+µ∇Φ(λ). We know that the gradient of Φ is given by ∂λL(X,λ)
evaluated at X∗(λ), the optimizer of the Lagrangian. More precisely,

∇Φ(λ) = [X∗(λ)]T (θ − 1), where X∗(λ) = argmax
X ∈Pn,K

−L(X,λ)

Solving for X∗(λ) is an instance of the problem in Lemma 1. The problem is separable over i
and for fixed i, we are maximizing

∑
k xik(aik − log xik) +

∑
k λkxik(θi − 1) =

∑
k xik{[aik +

λk(θi − 1)]− log xik} over xi∗ ∈ P1,K , the solution of which is given by the softmax operation

x∗ik(λ) ∝k exp(aik + λk(θi − 1)). (44)

Thus, the update for the dual descent can be written

λ+
k = λk − µ

∑
i

x∗ik(λ)(θi − 1), ∀k. (45)

C.2. θ-update

Simplyfying the notation, let h(θ) = −∑i di log θi and V := {θ :
∑

i τik(θi − 1) = 0}. The
problem is equivalent to minimizing h(θ) + δV (θ) over θ where δV is the indicator of V in the
sense of convex analysis. Douglas-Rachford algorithm, also known as Spingarn’s method of
partial inverses in this special case, is given by

θ+ = proxth(ξ)

ξ+ = ξ + PV (2θ+ − ξ)− θ+ (46)

where proxth is the proximal operator of th(·) and PV is the projection onto V . Due to
separability, it is not hard to see that [proxth(θ)]i = proxtdi log(·)(θi). This univariate proximal
operator can be easily shown to coincide with [ft(θ, d)]i as given in (35).

As for the projection, in general with C = {x : Ax = b}, we have PC(x) = x +
AT (AAT )−1(b − Ax). Note that V = {θ : τT (θ − 1) = 0}. Applying the general result
with A = τT and b = τT1, we get PV (θ) = θ + τ(τT τ)−1τT (1 − θ) = θ −H(θ − 1), with the
obvious choice for H. Thus (46) simplifies to

ξ+ = ξ + (2θ+ − ξ)−H(2θ+ − ξ − 1)− θ+

which gives the claimed update.
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Appendix D. Expected average degree

Let λ̂i =
∑

j Aij and λ̂j =
∑

iAij be the degree of node i from group 1, and node j from group
2, respectively. Then, the average degree of the network is

λ̂ =

∑
i λ̂i +

∑
j λ̂j

N1 +N2
=

2
∑

i,j Aij

N1 +N2
.

Recall the definition of clusters Crk from (1). The expected average degree can be derived as
follows: Assume that i ∈ C1k, then E[Aij ] = θ1iθ2j(p1{j ∈ C2k}+ q1{j /∈ C2k}). Then

E(λ̂i) = θ1i

(
p
∑
j∈C2k

θ2j + q
∑
j /∈C2k

θ2j

)
= θirk, where rk := |C2k|p+ (N2 − |C2k|)q

Here, we have used the normalization (7):
∑

j∈C2`
θ2j = |C2`| for all ` ∈ [K]. Now,

N1∑
i=1

E(λ̂i) =

N1∑
i=1

∑
k

1{i ∈ C1k}E(λ̂i) =
∑
k

rk

N1∑
i=1

θ1i1{i ∈ C1k} =
∑
k

rk|C1k|

using the normalization of θ1i. Dividing by N1N2 and using |Crk|/Nr = πrk for r = 1, 2,

N1∑
i=1

E(λ̂i) = N1N2

∑
k

[
π1kq + π1kπ2k(p− q)

]
= N1N2(q + Π(p− q)),

where Π :=
∑

k π1kπ2k. By symmetry,
∑N2

j=1 E(λ̂j) = N1N2(q + Π(p− q)). Hence,

λ = E[λ̂] =
2N1N2

N1 +N2

(
q + Π(p− q)

)
, where Π :=

∑
k

π1kπ2k.

Note that 2N1N2
N1+N2

= 2/(N−1
1 +N−1

2 ) is the harmonic mean of N1 and N2.

Appendix E. More simulations

Figure 13 shows the effect of varying the dimension of the covariates d = (d1, d2) and the scale
of the covariance matrix ν. The setup is as in Section 4, and in particular Σ = νI controls how
far apart the centers of the covariate clusters v∗k ∈ Rd1+d2 are. Only the mbiSBM algorithm is
shown (with no degree correction and) initialized with Dirichlet-perturbed truth (∼rnd). As
one expects, increasing the dimensions of the covariates increases the performance (seemingly
without bound). Increasing ν improves the performance up to a point, but there is a saturation
effect beyond that point, where the performance remains more or less the same.
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Tao Zhou, Jie Ren, Matúš Medo, and Yi Cheng Zhang. Bipartite network projection and per-
sonal recommendation. Physical Review E - Statistical, Nonlinear, and Soft Matter Physics,
76(4):1–7, 2007.

Zhixin Zhou and Arash A. Amini. Optimal bipartite network clustering. arXiv preprint
arXiv:1803.06031, 2018.

44

https://stats.wikimedia.org

	Introduction
	Matched Bipartite SBM
	Generating Covariates
	Generating the Network
	Connection with the Usual SBM
	Degree-corrected Version
	Covariate Correlation on Matched Clusters
	Interpretability and Identifiability

	Model Fitting
	The Likelihood
	Mean-Field Approximation
	Optimizing the Variational Likelihood
	Extensions
	Summary of the Algorithms
	Initialization of the Algorithms


	Simulations
	Data generation
	Matched NMI for evaluation
	Typical output
	Average behavior
	Effect of degree correction
	Scaling behavior

	Application to Real Data
	Wikipedia networks
	Author-Paper networks

	Discussion
	Extensions and improvements
	Speed improvement and diagonal restriction
	Improving the Speed
	Diagonal covariance restriction

	Extension to general SBM
	Extension to the Degree-Corrected Case

	Details of Section 3
	Proof of Lemma 1
	Derivation of (12)
	Updates of "0365 and "0365
	Updates of 2, , p and q

	Details for degree-corrected algorithm
	-update with degree restriction
	-update

	Expected average degree
	More simulations

