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Next-generation RNA sequencing (RNA-seq) technology has been
widely used to assess full-length RNA isoform abundance in a high-
throughput manner. RNA-seq data offer insight into gene expression levels
and transcriptome structures, enabling us to better understand the regulation
of gene expression and fundamental biological processes. Accurate isoform
quantification from RNA-seq data is challenging due to the information loss
in sequencing experiments. A recent accumulation of multiple RNA-seq data
sets from the same tissue or cell type provides new opportunities to improve
the accuracy of isoform quantification. However, existing statistical or com-
putational methods for multiple RNA-seq samples either pool the samples
into one sample or assign equal weights to the samples when estimating
isoform abundance. These methods ignore the possible heterogeneity in the
quality of different samples and could result in biased and unrobust estimates.
In this article, we develop a method, which we call “joint modeling of multi-
ple RNA-seq samples for accurate isoform quantification” (MSIQ), for more
robust isoform quantification by integrating multiple RNA-seq samples under
a Bayesian framework. Our method aims to (1) identify a consistent group
of samples with homogeneous quality and (2) improve isoform quantifica-
tion accuracy by jointly modeling multiple RNA-seq samples and allowing
for higher weights on the consistent group. We show that MSIQ provides a
consistent estimator of isoform abundance, and we demonstrate the accuracy
and effectiveness of MSIQ compared with alternative methods through simu-
lation studies on D. melanogaster genes. We justify MSIQ’s advantages over
existing approaches via application studies on real RNA-seq data of human
embryonic stem cells, brain tissues, and the HepG2 immortalized cell line.
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We also perform a comprehensive analysis of how the isoform quantification
accuracy would be affected by RNA-seq sample heterogeneity and different
experimental protocols.

1. Introduction. Transcriptomes are complete sets of RNA molecules in bio-
logical samples. Unlike the genome, which is largely invariant in different tissues
and cells of the same individual, transcriptomes can vary greatly and cause dif-
ferent tissue and cell phenotypes. Understanding transcriptomes is essential for
interpreting genome function and investigating molecular bases for various dis-
ease phenomena. In transcriptomes, the most important components are messenger
RNA (mRNA) transcripts, as they will be translated into proteins—the key func-
tional units in most biological processes. During the transcription process from
genes to mRNA transcripts, one gene may give rise to multiple mRNA transcripts
with different nucleotide sequences, thus contributing to the diversity of transcrip-
tomes. mRNA transcripts from the same gene are often referred to as isoforms,
which are different combinations of whole or partial exons (i.e., contiguous ge-
nomic regions within genes that will be transcribed into RNA molecules).

Transcriptomics is an emerging field and one of its primary goals is to quantify
the dynamic expression levels of mRNA isoforms under different biological con-
ditions. For common species [e.g., Homo sapiens (humans), Mus musculus (mice),
and Drosophila melanogaster (fruit flies)], extant gene annotations record a large
number of mRNA isoforms reported in previous literature. For example, the UCSC
genome browser [Kent et al. (2002)], GENCODE [Harrow et al. (2012)], and Ref-
Seq [Pruitt et al. (2014)] contain known mRNA isoform structures in transcrip-
tomes of humans and several other species. However, the annotations lack gold
standard abundance information of these isoforms. In many biological studies, it
is important to identify and catalog expression levels of mRNA isoforms [Hansen
etal. (2011)] in order to perform downstream analyses such as identification of dif-
ferentially expressed genes and construction of transcript co-expression networks.
Hence, how to accurately estimate isoform abundance is a key question.

Over the past decade, next-generation RNA sequencing (RNA-seq) technolo-
gies have generated numerous data sets with unprecedented nucleotide-level in-
formation on transcriptomes, providing new opportunities to study the dynamic
expression of known and novel mRNAs in a high-throughput manner [Wang, Ger-
stein and Snyder (2009), Conesa et al. (2016), Trapnell, Pachter and Salzberg
(2009)]. The ideal data would include the sequences of full-length mRNA tran-
scripts; however, most widely used next-generation Illumina sequencers generate
millions of short sequences called reads (typically shorter than 400 base pairs)
from the two ends of mRNA transcript fragments [Wang, Gerstein and Snyder
(2009)], while other third-generation sequencing technologies (e.g., Ion Torrent
and Pacific Biosciences) produce longer but more erroneous reads [Quail et al.
(2012)]. In this paper, our discussion focuses on paired-end RNA-seq data gener-
ated by Illumina sequencers. For more details on Illumina RNA-seq experiments,
see Supplementary Figure S1 [Li et al. (2018)].
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FIG. 1. Definition of subexons. The example gene has two exons, represented by magenta and green
boxes, and three mRNA isoforms. The solid lines between exons represent introns in the gene that have
been spliced out in isoforms. Adjacent splicing sites in these isoforms define four nonoverlapping
subexons: the first exon is divided into subexon 1 and 2, and the second exon is divided into subexon
3and4.

Due to the presence of numerous isoforms in existing annotations, inference on
their abundance from RNA-seq reads has been an active field of research since
2009 [Jiang and Wong (2009), Trapnell et al. (2010), Li et al. (2011), Zhang, Kuo
and Chen (2014)]. A necessary step is to first map (or align) reads to reference
genomes so that researchers know the numbers of reads generated from each exon.
Then a common approach to summarize RNA-seq reads is to categorize the reads
by the genomic regions to which they map so that the number of reads in differ-
ent genomic regions can be used to distinguish the abundance of various isoforms.
As different isoforms may consist of overlapping but not identical exons, many
methods divide exons into subexons, which are defined as transcribed regions be-
tween every two adjacent splicing sites in annotations [Li et al. (2011), Zhang, Kuo
and Chen (2014), Ye and Li (2016)]. By this definition, every gene is composed
of nonoverlapping subexons and introns (i.e., nontranscribed genomic regions). In
Figure 1, we illustrate a toy example of a gene with three annotated isoforms and
four subexons. Because combinations of subexons form a superset of all the anno-
tated isoforms, it is reasonable to categorize RNA-seq reads based on the sets of
subexons to which they map. For the ease of terminology, we will refer to subexons
as exons for the remainder of this paper. For more details regarding categorizing
RNA-seq reads, see Section 2.2.

How to infer isoform abundance from observed RNA-seq reads is a statistical
problem, as reads are generated from a mixture of isoforms. We illustrate this using
a toy example in Figure 2. A hypothetical gene is composed of four nonoverlap-
ping exons. Suppose that the gene is transcribed into two mRNA isoforms: 60% of
the transcripts are isoform 1, which consists of exons 1, 2 and 4, and 40% of the
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FI1G. 2. [llustration of RNA-seq read generation from a hypothetical gene. The four exons of this
gene are represented as boxes of different lengths and colors. The starting and ending positions of
the four exons are marked on top of the gene. In a RNA-seq experiment, multiple reads are generated
and the number of reads coming from each isoform is proportional to the isoform’s abundance. Each
read has a 5'-end and a 3'-end, as shown in read 1. These reads are mapped to the reference genome
and their overlapping exons are key information for estimating isoform abundance.
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transcripts are isoform 2, which consists of all four exons. In reality, the isoform
proportions, though of great interest to biologists, remain unobservable under the
current experimental settings. Our aim is to estimate the relative abundance of an-
notated isoforms based on reads generated in RNA-seq experiments. Suppose that
n paired-end reads are generated from mRNA transcripts of the gene, and they
are mapped (or aligned) to the reference genome. Some of the mapped reads have
obvious isoform origins. For example, read 3 is compatible only with isoform 2,
and thus must have isoform 2 as its origin. On the other hand, many mapped reads
can have ambiguous origins. For example, read 1 is compatible with both isoforms
1 and 2, and thus we cannot determine its origin isoform. The much more com-
plex structures of real genes complicate the situation even further; human genes
have nine exons on average [Sakharkar, Chow and Kangueane (2004)], and a large
proportion of human genes have more than ten annotated isoforms [see Supple-
mentary Figure S2B, Li et al. (2018)]. Therefore, this problem requires powerful
statistical methods to provide good estimates of isoform proportions.

A number of isoform quantification methods have been developed to estimate
the abundance of specific isoforms. These methods perform isoform quantifica-
tion using either direct computation or model-based approaches [Wang, Gerstein
and Snyder (2009), Steijger et al. (2013), Kanitz et al. (2015)]. Direct computa-
tion approaches use a variety of methods to count the number of reads compatible
with each isoform and then normalize the counts by isoform lengths and the total
number of reads to generate estimates of isoform abundance. The most commonly
used unit is reads per kilobase of transcript per million mapped reads (RPKM)
[Mortazavi et al. (2008)]. However, for complex gene structures, counts of RNA-
seq reads compatible with isoforms may not be proportional to isoform abundance,
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as multiple isoforms can share exons and some reads cannot be assigned unequiv-
ocally to only one isoform. To address this issue, model-based approaches are
needed to assess the likelihood of a read coming from different isoforms. In the
first model-based isoform quantification method [Jiang and Wong (2009)], read
counts in genomic regions are modeled as Poisson variables (with isoform abun-
dance as the mean parameter), under the assumption that reads are uniformly sam-
pled within each isoform. Isoform abundance is estimated by maximum likelihood
estimates. Cufflinks [Trapnell et al. (2010)], the most widely used method for dis-
covering novel isoforms from RNA-seq data, also has the functionality to estimate
isoform abundance. Its approach is similar to the likelihood-based approach in
Jiang and Wong (2009), and it proposed a new unit for isoform abundance based
on paired-end RNA-seq data: fragments per kilobase of transcript per million
mapped reads (FPKM), which accounts for the dependency between paired-end
reads. MISO [Katz et al. (2010)] is another model-based method constructed un-
der a Bayesian framework, and it provides maximum-a-posteriori estimates and
confidence intervals of isoform abundance. There are other isoform quantification
methods with different features [Pachter (2011)]. For example, SLIDE [Li et al.
(2011)] uses a linear model and can be used with various data types; iReckon
[Mezlini et al. (2013)] utilizes a regularized Expectation-Maximization algorithm;
WemlQ [Zhang, Kuo and Chen (2014)] replaces the Poisson distribution with a
more general and realistic generalized Poisson distribution; eXpress [Roberts and
Pachter (2013)] is an efficient streaming method based on an online-EM algorithm
and is considered to be a faster version of Cufflinks with comparable performance;
and Sailfish [Patro, Mount and Kingsford (2014)] is a fast alignment-free method
that saves the read mapping step.

However, there remains much space to improve the accuracy of isoform quan-
tification due to noise and biases in RNA-seq data. Because of the accumulation
of RNA-seq samples in public databases, multiple RNA-seq data sets are now of-
ten available for the same biological condition (e.g., the same cell or tissue type),
and they provide more information than a single RNA-seq data set. For example,
the GTEx (Genotype-Tissue Expression) study comprises 9662 samples from 54
tissues, and the Cancer Genome Atlas (TCGA) study comprises 11,350 samples
from 33 cancer types [Collado-Torres et al. (2017)]. Here, the concept of multiple
samples includes both technical replicates-different aliquots of the same sample
measured multiple times [Hansen et al. (2011)], and biological replicates, repli-
cates obtained from multiple samples of the same material, type of cells, or tissue.
The availability of multiple RNA-seq samples from the same biological condition
(e.g., human embryonic stem cells) in public databases (e.g., NIH Gene Expression
Omnibus [Barrett et al. (2013)]) motivated us to develop a new statistical method
for better isoform quantification by taking advantage of the common, and thus
more reliable information provided by multiple samples. The necessity of such a
method is two-fold. First, the number of RNA-seq samples produced by a single
lab is limited since experimental costs increase each time an additional replicate
is added. A statistical method that allows for multiple samples enables researchers
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to combine their own data with public data to obtain more accurate and robust iso-
form abundance estimates. Second, such a method supports better reuse of public
data for both new biological findings and method development.

Several methods have been developed to use multiple RNA-seq samples from
the same biological condition for isoform quantification. For example, CLIIQ [Lin
et al. (2012)] uses integer linear programming to jointly model RNA-seq data from
multiple samples. MITIE [Behr et al. (2013)] assumes that the same isoforms are
expressed in all samples but may have different abundances, and it then reduces
the problem to solving systems of linear equations. FlipFlop [Bernard et al. (2014)]
uses a convex formulation and introduces the group-lasso penalty to ensure spar-
sity in estimation. However, none of these methods considers the quality variation
of different RNA-seq samples or how such variation might affect the inference of
isoform abundance. It is commonly recognized that RNA-seq samples generated
by different protocols or different labs can vary greatly with respect to the signal-
to-noise ratios, biases, etc. For example, Figure 3 shows the RNA-seq read cov-
erage profiles of the human gene 7PR in six human embryonic stem cell (hESC)
samples. There is obvious variation in the read coverage profiles of these six sam-
ples. For example, sample 2 has little signal in the last exon while the other samples
have obviously stronger signals in the last exon. Thus, it is inappropriate to treat
all the samples equally during isoform quantification by assuming that they come
from the same population (i.e., the same tissue or cell of interest). Hence, results
from these methods may be sensitive to the heterogeneity of samples or even, in
some cases, be dominated by biased samples, which do not accurately reflect the
transcriptome information of the given tissue type.
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FI1G. 3. Reads in six hESC RNA-seq samples mapped to the human gene TPR. Detailed information
on these samples is listed in Supplementary Table S2 [Li et al. (2018)]. The counts of RNA-seq reads
are summarized in the histograms. The annotation of the gene and isoform structures is shown in the
bottom row. We mark four example sites where the six samples are obviously inconsistent with gray
shaded rectangles.
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In this paper, we propose a robust quantification method for isoform expression:
joint modeling of Multiple RNA-seq Samples for accurate /soform Quantification
(MSIQ). MSIQ is a model-based approach for estimating isoform abundance by
discerning and using multiple RNA-seq samples that share similar transcriptome
information, which we define as the consistent group in this paper. Our modeling
consists of two components: (1) estimating the probability of each sample being in
the consistent group via evaluating the sample similarities, and (2) estimating iso-
form abundance from reweighted samples, with greater weights given to the sam-
ples that are more likely to be consistent. These two components enable the method
to distinguish between the large variation stemming from experimental factors and
the reasonable biological variation. In Section 2, we describe the Bayesian hierar-
chical model used in MSIQ to bridge unknown isoform proportions and observed
read counts mapped to a gene in multiple RNA-seq samples. Our model allows for
different isoform proportions of RNA-seq samples inside and outside the consis-
tent group; a main parameter of interest relates to the isoform proportions in the
consistent group. This approach reduces the probability that the estimated isoform
abundance is biased by samples of poor quality. We conduct parameter inference
by Gibbs sampling and prove the consistency of the MSIQ estimator. We show
that the isoform proportions estimated by MSIQ are consistent with the unknown
isoform proportions in the consistent group, while the estimates based on the as-
sumption that all samples have equal weights are not. In Section 3, we apply MSIQ
to both simulated and real data sets to illustrate the efficiency and robustness of
MSIQ under various parameter settings and with different parameter estimation
procedures. We also compare MSIQ with the oracle estimators and other widely
used estimation methods. In Section 4, we discuss the advantages and limitations
of MSIQ and its possible extensions.

2. Methods. For a given gene, our proposed MSIQ method aims to achieve
two goals with respect to isoform expression quantification. First, we want to iden-
tify the samples that represent the tissue or cell type of interest. We refer to these
samples as the consistent group and assume that the group contains at least one
sample. We identify samples in the consistent group under the assumption that
these samples share the most similar read distributions among all the samples.
Second, we would also like to estimate the proportion of reads coming from each
mRNA isoform in the given tissue or cell type, with larger weights given to the
samples in the consistent group. We focus our efforts on RNA-seq data with paired-
end reads, but the model can easily be extended for single-end reads.

2.1. Ideal and practical parameters of interest. Suppose we are studying a
gene with N exons, J annotated mRNA isoforms and D RNA-seq samples. Ide-
ally, we are interested in the true proportion of each isoform

pj = P(an mRNA transcript is of isoform j), j=12,...,J.



ISOFORM QUANTIFICATION ON MULTIPLE RNA-SEQ SAMPLES 517

However, these hidden parameters are not observable in RNA-seq experiments,
which do not directly measure full-length mRNA transcripts. Instead of directly
estimating p;, we aim to estimate the practical parameters

aj = P(an RNA-seq read is from isoform j), j=12,...,J,

which we refer to as isoform proportions in our discussion.

2.2. Observed data. We denote the observed data, D independent samples of

reads mapped to the given gene, by
RO={r"n® /D), d=12,..D,

where ny and ri(d), respectively, denote the total number of reads and the ith read
(i=1,2,...,ng4) in sample d. To use the read information, an efficient data sum-
mary is needed to preserve the most relevant information for isoform quantification
while limiting the computational complexity to a manageable level [Rossell et al.
(2014)]. We write each read as

(d) @ () @ (@ (d) (d)
r = {sy s i ’yC(d)’y,(c<d>+1)’yl(26(d))}}

( D and szl , respectively, denote the index set of exons overlapping with the

where s,
read’s left end and right end; yi(,‘j) denotes the kth genomic position of read i; and
¢D is the read length in sample d. Please refer to the supplementary information
for a more detailed discussion on the advantages of this summarizing approach

over other existing approaches [Li et al. (2018)].

2.3. Assumptions and prior. In addition to the observed data, we consider the
hidden data, which are the isoform origins of the reads:

2D = (2", 2, Y,

where Zi(d) e {l,2,...,J} indicates the isoform origin of read i, and Zi(d) =jif
read ri(d) actually comes from isoform j.

The differences between RNA-seq samples are reflected in their isoform propor-
tion 7@, d =1,2,..., D. In RNA-seq sample d, we denote the true probability

of reads from 1sof0rm j as r(d) P(Z; @ _ = j) and the isoform proportion vector

as

t@ =5l
with ZJJ-ZI ‘L’;d) = 1. We define a hidden state variable E; for each sample such
that

E; = 1{sample d belongs to the consistent group}.
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FI1G. 4. Joint modeling of multiple RNA-seq samples. In this framework, Eg (d =1,2,...,D)isa
binary hidden state variable indicating whether RNA-seq sample d is in the consistent group, while
a, b and y are hyper-parameters (priors) in Eg’s distribution. Depending on E 4, the isoform propor-
tion vector 9 takes either the consistent group’s isoform proportion vector o or sample-specific
B @) Given the isoform proportions, RNA-seq reads are generated in each sample, and our observed
data are summarized as R‘@ (see Section 2.2).

We assume samples in the consistent group all have the same proportion vec-
tor ¢ = (otq, o2, ..., 0y) with Z,J':1 aj = 1, while samples not in the consistent

group can each have different isoform proportions S @ — (,de), ﬁéd), e, ,Bgd))’ ,

Z,J':1 ﬂ](-d) = 1. Thus the isoform proportions can be expressed as
D =E; a4 (1—Eg) -9

e if Eg=1,
|9 ifE;=0.

The isoform proportion vector a of the consistent group is our parameter of inter-
est.

We assume o and ,B(d) are a priori Dirichlet(X), and E; is a priori Bernoulli(y):
E4ly ~ Bernoulli(y), where y ~ Beta(a, b). Intuitively, A controls the distance
between the isoform proportions of samples inside and outside the consistent
group, while y controls the tendency of assigning a sample to the consistent group.
We describe the relationship between observed RNA-seq reads and hidden isoform
proportions in multiple samples under a Bayesian framework (Figure 4).

2.4. The MSIQ model. We introduce Ii(,‘;) as a short notation of binary variable
1{Zz l.(d) = j}. Then given a sample with isoform proportion 7@, the probability of
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read ri(d) and origin Z l.(d) can be written as follows:

J ) _ .
P(I"l-(d), Zi(d)h-(d)) — 1_[ P(I"i(d), Zi(d) — j|T(d))]l{Zi =j}
j=1

1@

2.1) [ ((d)lz(d) ) (d)]

Il
£:1~

N d B@ <d> 19
_H lJJ ’

where P (ri(d), Zi(d)|r(d)) refers to the joint density of read ri(d) and its isoform
origin Z; (@) given the model parameters, and hg’dj) is the generating probability of

@

read r;”" given isoform j. If read rl-(d) and isoform j are incompatible (e.g., read

2 in Figure 2 cannot come from isoform 1), hg’dj) = 0. Otherwise, hgflj) depends on

the model for the read generation mechanism. We adopt the following model from
Zhang, Kuo and Chen (2014):

WO =4 x PLE),
J

where E/ is the effective length (i.e., the number of possible starting positions
on the fragment) of isoform j and can be calculated as ¢ = ¢; — L@D: ¢; is
the length of isoform j and L(d) 1s the mean fragment length in sample d. L(d)
denotes the fragment length of r ) if it comes from isoform Jj. Note that the same
read may correspond to dlfferent fragment lengths if they come from different
isoforms. For example, read 1 in Figure 2 corresponds to fragments of different
lengths in isoforms 1 and 2. L( ) is assumed to be a Gaussian random variable
and its mean L@ = IE(L( )) and variance Var(L( )) can be estimated from single-
isoform genes, whose mapped reads directly determlne fragment lengths.

Let E = (Ey, E», ..., Ep)’ be the hidden state vector indicating whether each
sample is among the consistent group or not, and let R = {R(d)}le, Z =
{Z(d)}le, and T = {t(”’)}fi):1 represent the reads, origins of reads, and isoform
proportions in all the samples, respectively. To simplify the notation, we also intro-
@ Z?" 1 l(i) to represent the total number of reads coming from isoform
jin sample d. Given equation (2.1), the joint probability of all reads in the MSIQ
model is as follows:

duce n;

PR, Z,t,E,y|A,a,b)=P(R,Z|t,E)P(z|A, E)P(E|y)P(y|a,b),



520 LI, ZHAO, ZHANG AND LI

where

e il o] fiforon ] |

d=1lLi=1j=1 i=1j=1

L 4 (@)1 e
P(zx, E) « [ o] ]_[ ]—[ﬁ J ,

j=1 d=1

P(Ely) oc yXi=1 Bl - y)D—Zﬁ’:l Ea,
P(yla,by oy~ (1 =p)*7".

As a result, the joint probability can be simplified as

P(R,Z,t,E,y|A,a,b)

J D (d) D J
Ai—14+3D  Egn _ 1@
[ ij] > g=1 Ean; ][1—[ H(ﬁ;d))(l Eq)(hj—14n] )}
(2.2) d=1 j=1

l—l

D J nyg 4 I(d) b b
H 1—[ l—[ h( N yzd:lEd—i-a—l(l _ y)D—Zd:1 Eq+b—1

2.5. Markov chain Monte Carlo. In the MSIQ model (2.2), the reads R are
the observed data, the isoform origins Z and the consistent group indicator E
are the hidden data, while isoform proportions «, { B 5:1, and consistent group
proportion y are the parameters. To estimate the parameters, a useful approach is
to implement a Gibbs sampler to iteratively draw posterior samples of hidden data
and parameters from their conditional distributions. Since our ultimate parameter
of interest is a2, whose inference becomes obvious given Z and E, we integrate out
T (i.e., ¢ and {B (d)} le) in model (2.2) to achieve better computational efficiency.
This step is based on a property of the Dirichlet distribution:

J
i o/ dv-du =By Vi >0,
..... Vs

J
m/_,r6.)

where B(A) = S

. Hence,

D D ng @
P(R,Z,E,y|\,a,b) x Bi(Z,E) - [| B{" (29, Ey) []‘[]‘[]‘[ R }

d=1 d=1i=1j=1

. yZ[?ZI Ed+a*1(1 _ V)szﬁ?:l Ed+b71’
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where
J D d
=1 F(Aj+> -1 Ea nS ))
L) A+ X1 Ea-na)

B (2D, Eq=1)=1,

Bi(Z,E) =

[T, TG +n'?)
F(ij'zl Aj+ng) ‘

B\ (29D, Eq=0) =

We denote ® = {Z, E, y}. The distribution of each parameter or hidden vari-
able conditional on everything else can thus be estimated by Gibbs sampling as
follows.

(1) E,; follows a Bernoulli distribution:

2.3) Eq|©/{Eg) ~ Bern( 0dds(Ed: A, 7) )

1+ odds(Eg; A, T)

where

P(Eq=1|®/{Eq})) P(R,Z,E_q,Eq=1,y|A,a,D)

P(E;=0|®/{Eq})  P(R.Z,E_4.E;=0,y|\,a,b)

_BIUZ.E_g.Ea=1) B’ (2. E;=1)
B\(Z,E_4,E;=0) Béd)(Z(d), E;=0) l—y

odds(Eg; A, 1) =

) Zl.(d) follows a multinomial distribution:

d d . . d d d
(2.4) 2?10 /{z{"} ~ Multinomial(,7, ¢4 . ... 4\9).
where
d . d
D _ Pz = jlo/(z")
i,j —

i P = j10/(Z{")

P(R.Z5". Z\" = j E.y\.a.b)
B —d d . .
I P(R, Z5 ), 2D = j' E,y|\,a,b)

(3) y follows a Beta distribution:

D D
(2.5) y|®/{y}~Beta<ZEd+a,D—ZEd—i—b).
d=1 d=1
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2.6. Estimators of isoform proportions. With the above posterior distribution
of the hidden variables and parameters, we can draw samples iteratively to estimate
the hidden state of each RNA-seq sample and the true isoform proportions in the
consistent group. Suppose we have T iterations available after discarding the burn-
in period of Gibbs sampling. In each iteration, we denote the sampled hidden state

vector as E) = = (E, @) VE, (’) ..., E g))/ and the hidden origin vector in sample d as
(d.1) (d D/
Zy, .. )

To estimate 1soform proportions in each iteration, we pool the reads from sample
d whose state variable Eg) =1 to calculate o™, where

26 S0 _ At Sl (B S UZE = )
! Y1+ X0 Efna

Overall, the MSIQ estimator of the isoform proportions becomes

1 I
GMsiQ _ 1 Za(t)’
and the relative estimation error is calculated as
A MSIQ GMSIQ
REE(& Zu &0 a.

We prove the consistency property of the MSIQ estimator aMS1Q in the following

lemma. Please refer to the supplementary information for the complete proof [Li
et al. (2018)].

LEMMA 2.1. &"S1Q
E(x|R, A, a, b):

converges to the posterior mean of isoform proportion

lim ¢MS1Q = E(a|R, A, a,b).

T—o00

We can also estimate the posterior probability of each sample belonging to the
consistent group: @ = (61,65, ...,0p)’, where 6; = P(E; = 1|R, A, a, b), and the
estimator is

Based on this posterior probability, we predict the state variable of each sample:
=1{60" > 1/2}.

To further evaluate the biological variation within the consistent group, we esti-

mate the standard error of the MSIQ estimator given the posterior samples drawn
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by the Gibbs sampling. For isoform j, the standard error of the respective entry in
aM31Q i estimated as

1 T
2.7 Gj= J T Z(O[;O _ &?’[SIQ)Z.
t=1

Note that the consistent group is automatically selected by the MSIQ model given
the overall heterogeneity among samples. Even though the consistent group is as-
sumed to have a consensus isoform proportion, it is useful to account for the bio-
logical variation, especially when the overall heterogeneity is nonnegligible.

We also consider six competing estimators to demonstrate the effectiveness of
MSIQ in accurate isoform quantification. From what has been derived in Sec-
tion 2.4, we know that the log likelihood of all reads in sample d is

d d d
i=1j=1

Then the EM algorithm can be implemented to estimate 7@ by maximizing the
log likelihood. The six competing estimators are calculated using the EM algo-
rithm based on different sets of samples:

AVG (averaging): We calculate the isoform proportion in each sample and take
the average of them as the estimator of isoform proportion,

1 D
&AVG - Z i\_(d)
d=1
AVG* (oracle averaging): We calculate the isoform proportion in each sample

in the true consistent group and take the average of them as the estimator of
isoform proportion,

GG _ X T UE =1)
Y1 UEa=1)
POOL (pooling): We pool the reads in all samples together, then we use the EM
algorithm to estimate the isoform proportion 7 as aPooL.
POOL* (oracle pooling): We pool the reads in samples in the true consistent
group together, then we use the EM algorithm to estimate 7 as aPooL”,
MSIQa (MSIQ averaging): We calculate the isoform proportion in each sample
in the consistent group (identified by MSIQ) and take the average of them as the
estimator of isoform proportion,

A ~MS
GMsIQa _ Y2 D1a)™ > 1/2)
Y2 1) > 1/2)
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MSIQp (MSIQ pooling): We pool the reads of the given gene in the samples in the
consistent group (identified by MSIQ) together, then we use the EM algorithm
to estimate T as @ >IP

AVG ~POOL*

Among these estimators, & and o are oracle estimators that we take
as gold standards in simulations but are unknown in real data; aMSIQa pq gMSIQP

are MSIQ-dependent and rely on 0 estimated by MSIQ.
3. Results.

3.1. Performance of MSIQ in simulations. To show that MSIQ provides more
accurate estimates of isoform expression than the current averaging or pooling
method, we compare the relative estimation errors (REE) of aMSIQ with those of
the six competing estimators: VO gMSIQa G AVG GPOOL™ GMSIQp 4 gPOOL
It is difficult to compare these methods on real data because true isoform abun-
dances in samples are unknown. Although the quantitative polymerase chain reac-
tion (QPCR) technology can accurately measure the abundance of mRNA isoforms
and produce “gold standard” isoform abundance, qPCR data sets are scarce and un-
available for most biological conditions [Li and Dewey (2011)]. We use simulated
data to compare the performances of these estimators under various scenarios and
parameter settings.

We simulate RNA-seq reads from 3421 D.melanogaster (fly) genes that have
multiple isoforms in the annotation (September 2010) available in the UCSC
Genome Browser. Among these genes, 221 have 3 exons, 330 have 4 exons, 365
have 5 exons, 370 have 6 exons, 320 have 7 exons, 311 have 8 exons, 256 have 9
exons, 292 have 10 exons and 956 genes have more than 10 exons. The isoform
numbers increase at a roughly exponential rate as the exon numbers increase [see
Supplementary Figure S2A, Li et al. (2018)]. We simulate ten samples and 500
paired-end reads from each gene in every sample. To fully evaluate the perfor-
mances of the seven estimators, we consider five different scenarios with different
numbers of samples in the consistent group.

For each gene, we first independently generate the isoform proportion vector
a for the samples in the consistent group and the isoform proportion vectors 8,
B1. B3, B4 and B5 for the other five samples. The five scenarios are designed as
follows (see Table 1):

e In scenario 1, all ten samples are in the consistent group.

e In scenario 2, five samples are in the consistent group, and the other five samples
have individual isoform proportions 81, 8,, B3, B4 and Bs.

e In scenario 3, seven samples are in the consistent group, and the other three
samples have individual isoform proportions 8, 8, and f5.
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TABLE 1
Four parameter settings and five scenarios in the simulation study

Setting Average fragment length (bp) Read length (bp)
1 150 50

2 250 50

3 150 100

4 250 100
Scenario % samples in the consistent group Isoform proportions

1 100 {o, 0,0, 00,00, 00,00, 00,0, 0t}

2 50 {o, o, 0,00, By, B2, B3, Ba. Bs)
3 70 (0,0, 0, 0,0,0,a, 81, B2, B3}
4 70 {0, 0,0, 0,0, B, B, Bo)
5 70 {o,a,a,0,a,a,a 87,87, B7)

e In scenario 4, seven samples are in the consistent group, and the other three
samples have the same isoform proportion vector as

2
Be = argmax |[|B; —ell3,
B;.i=1,..5
which is the isoform proportion vector most different from c.
e In scenario 5, seven samples are in the consistent group, and the other three
samples have the same isoform proportion vector as

: 2
B7 = argmin [|B; — a3,
ﬂ,«,i:l,...,S

which is the isoform proportion vector most similar to «.

We also consider four settings of fragment and read length (Table 1) to examine
how these parameters affect the performances of the seven estimators on isoform
quantification. Under each setting, we first determine the origin of a fragment ac-
cording to the designated isoform proportion, and then the starting position and the
fragment length can be simulated from a uniform distribution and a normal distri-
bution, respectively (with a standard deviation of 10 bp). Once the starting and
ending positions of the fragments are determined, the corresponding paired-end
reads are also obtained.

For each scenario and parameter setting, we calculate the seven estimators, and
then evaluate their estimation accuracy by calculating the REE of these estimates
against the true isoform proportions. When calculating aM1Q we set the hyper-
parameters in model (2.2) as a =7 and b = 2. We have also included a sensitivity
analysis of the MSIQ method on these two parameters in the supplementary infor-
mation [Li et al. (2018)].
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FIG. 5. Relative estimation error (REE) rates of the seven estimators in scenarios 1-5. REE rates
are calculated on 2465 fly genes with 3—10 exons. In each boxplot, the REE rates of MSIQ, AVG*
(oracle averaging), MSIQa, AVG (averaging), POOL* (oracle pooling), MSIQp, and POOL (pool-
ing) are plotted side by side under each scenario (with the order of methods listed under scenario 5
of the bottom left panel) and the whiskers extend to the most extreme REE rates. The top-right legend
of each plot displays the parameter setting: the mean fragment length (F) and the read length (R).

3.1.1. MSIQ achieves the lowest error rates in different scenarios. We calcu-
late the error rates of the seven estimators for the 2465 fly genes with no more
than ten exons in different scenarios and parameter settings, and illustrate the re-
sults in Figure 5. The results suggest that given the samples not in the consistent
group (scenarios 2-5), especially when these samples constitute a large proportion
or are vastly different from the consistent group, MSIQ (&™) and MSIQ-based
methods (&MSIQa and &MSIQP) achieve much smaller error rates than the averag-
ing or pooling methods (@Y and &"°°Y). Compared with @51, &AVC results
in a 17.3-fold increase in the REE rates on average, and aPO% results in a 17.6-
fold increase. We also summarize the REE of the seven estimators (see Appendix
Figure A1) when we include the 956 fly genes with more than ten exons. The iso-
form quantification task is much more challenging for these 956 genes since they
have many more annotated isoforms [see Supplementary Figure S2A, Li et al.
(2018)]. As expected, both the largest and the average REE rates increase with
the addition of these 956 genes, because their complicated isoform structures in-
troduce more difficulty and complexity in model fitting and computation. These
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scenario 1 scenario 2 scenario 3 scenario 4 scenario 5

MSIQ 0.261 0.352 0.288 0.462 0.337 0.336 0.447 0.371 0.545 0.446
AVE*  0.283 0.323 0.295 0.295 0.295 0.372 0.399 0.382 0.382 0.382
MSIQa 0.285 0.353 0.311 0.510 0.364 0.367 0.459 0.404 0.610 0.475
POOL* 0.291 0.329 0.304 0.304 0.304 0.362 0.404 0.374 0.374 0.374
MSIQp 0.293 0.361 0.315 0.480 0.360 0.360 0.459 0.404 0.573 0.465

FI1G. 6. Median REE rates of the MSIQ-based and oracle estimators in scenarios 1-5. MSIQ out-
performs MSIQa and MSIQp and gives error rates close to those of the oracle estimators. The param-
eter setting: the mean fragment length (F) and the read length (R) are listed on the top of each panel.
The standard errors of MSIQ’s REE rates are given under each scenario. The smallest standard error
in each scenario is marked in bold italic font.

results suggest that, compared with the direct averaging or pooling method, the
MSIQ methods, which take the quality of samples into consideration, can lead to
more accurate isoform quantification when multiple RNA-seq samples are avail-
able. Figure 5 also shows that MSIQ can constrain the estimation error to a much
narrower range compared with direct averaging and pooling. MSIQ is able to con-
trol the REE rate below 1.33 for 90% of the 2465 genes, while direct averaging
and pooling give rise to REE rates larger than 2.00 for more than 15% of these
genes. We conclude that MSIQ is a more robust method than direct averaging and
pooling.

We also summarize the median REE of these estimators under different sce-
narios in Figure 6 and Table 2. The results show that MSIQ not only outper-
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TABLE 2
Median REE rates of five estimators under the five scenarios. The values are averaged over the four
parameter settings and rounded to three decimal places. Differences in REE rates between MSIQ
and the four other estimators are listed in parentheses

Estimator Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5
MSIQ 0.157 0.236 0.194 0.208 0.211
AVG* 0.158 0.215 0.179 0.179 0.179
(—0.001) (0.021) (0.014) (0.029) (0.031)
MSIQa 0.164 0.244 0.202 0.222 0.217
(—0.007) (—0.009) (—0.009) (—=0.014) (—0.006)
POOL* 0.152 0.212 0.175 0.175 0.175
(0.005) (0.023) (0.019) (0.033) (0.036)
MSIQp 0.157 0.242 0.200 0.217 0.215
(—0.000) (—0.006) (—0.007) (—0.009) (—0.005)

forms direct averaging and pooling, as we have seen, but also achieves more ac-
curate abundance estimation than MSIQa and MSIQp. Compared with MSIQ’s
median REE rate, MSIQa and MSIQp have average REE rates that are greater
by 0.009 and 0.007, respectively. From Figure 6 and Table 2, we also conclude
that the estimation results of MSIQ are similar to those of AVG* and POOL*,
the two oracle estimators that are impossible to calculate on real data. On aver-
age, the REE rate of MSIQ is only 0.019 larger than AVG™* and 0.058 larger than
POOL*.

3.1.2. Different scenarios influence estimators’ performance. Since AVG and
POOL are observed to have much poorer accuracy than the other five estimation
methods, we remove them from the comparison for a more detailed evaluation
of the other five methods. From Figure 6, it is obvious that the proportion of
samples in the consistent group and the difference between the consistent group
and other samples have large effects on the performances of all five estimating
methods: MSIQ, AVG*, MISQa, POOL*, and MISQp. In scenario 1 when all the
samples are in the consistent group, the five methods exhibit their lowest median
REE rates for the 2465 genes. In scenario 2, which has the smallest proportion
of samples in the consistent group, all five methods have the largest median REE
rates among all scenarios. This phenomenon can be explained by the fact that hav-
ing fewer samples in the consistent group leads to more error-prone identification
of these samples and less accurate estimates of the isoform proportions. In sce-
narios 3, 4 and 5, in which 70% of the samples are in the consistent group, the
REE rates of the five methods lie between those of scenarios 1 and 2. Among
all three nonoracle estimation methods (MSIQ, MSIQa, and MSIQp), MSIQ has
the best performance in all five scenarios. Unlike MSIQa and MSIQp, which dis-
card the samples outside of the identified consistent group, MSIQ partially bor-
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FI1G. 7. REE rates of MSIQ for RNA-seq samples with different fragments and read lengths. The
median, the 1st quartile and the 3rd quartile of the REE rates in different scenarios are illustrated in
the boxplots, respectively. The top left legend of each plot displays the parameter setting: the mean
fragment length (F) and the read length (R).

rows information from these samples through the Bayesian hierarchical frame-
work.

3.1.3. More accurate isoform quantification with longer fragments. We also
evaluate the REE rates of MSIQ with different fragment lengths and read lengths in
simulated RNA-seq experiments. The 1st quartile, median, and 3rd quartile of the
REE errors in each of the five scenarios are illustrated in Figure 7. It is obvious that
longer fragment lengths would improve the estimation accuracy, especially when
read lengths are short. Specifically, when read lengths are set to 50 bp, increasing
fragment lengths from 150 to 250 bp leads to a 22.5% decrease in the median REE
rate and a 31.8% decrease in the inter-quartile range of REE; when read lengths are
set to 100 bp, the increase of fragment lengths does not make as much difference.

3.2. Performance of MSIQ on real data.

3.2.1. MSIQ has the highest estimation accuracy in a pseudo real data study.
Although the true isoform proportions are mostly unknown in real data, we are
still able to evaluate multi-sample isoform abundance estimation methods by cre-
ating a set of samples with the majority from one tissue of interest (the consistent
group) and other samples from a different tissue. Even though this setup is not a
realistic scenario in biological studies, it provides a good opportunity to evaluate
different estimation methods. In this setup, we know the true states of the hidden
state variables, that is, which samples belong to the consistent group. If our MSIQ
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TABLE 3
Description of RNA-seq samples inside and outside the consistent
group in five sets

Set ID Consistent group Other samples Sample IDs

1 hESC / 1-6
2 hESC brain 1-9
3 hESC Flux Simulator 1-6, 10-14
4 hESC Flux Simulator 1-6, 15-19
5 hESC Flux Simulator 1-6, 2024

method performs well, its estimated isoform proportions on all the samples should
be close to its estimates on the samples in the consistent group only. We use six
public RNA-seq data sets of human embryonic stem cells (hESC) and consider
these samples to be the consistent group. We mix these samples with three sam-
ples of human brain tissues or three samples simulated by Flux Simulator [Griebel
et al. (2012)]. Please see Supplementary Table S2 for detailed description [Li et al.
(2018)].

We obtain five sets of RNA-seq samples by mixing the six hESC samples in
the consistent group with other samples in different combinations (Table 3). Be-
cause MSIQ has the best performance among all the three nonoracle MSIQ-based
estimation methods (i.e., MSIQ, MSIQa, and MSIQp) in the simulation studies in
Section 3.1, we only consider MSIQ and not MSIQa or MSIQp in the real data
studies. We compare MSIQ with direct averaging (AVG) and pooling (POOL) on
these five sets of real RNA-seq samples to estimate the isoform proportions in the
consistent group (hESC). We also consider three previously developed methods
for single RNA-seq samples (i.e., Cufflinks, MISO, and iReckon) in this compar-
ison. For Cufflinks, we use both the averaging (Cuffa) and the pooling (Cuffp)
approach to calculate the isoform proportions. For MISO and iReckon, pooling
is not a feasible approach due to the extremely large memory requirements when
analyzing a merged RNA-seq sample with a huge size, so we only consider the
averaging approach. When evaluating the above seven methods, we consider each
method’s estimates on set 1 as the standards, because set 1 only contains the six
hESC samples (i.e., the consistent group). The estimation results of MSIQ, AVG,
POOL, Cufta, Cuffp, MISO, and iReckon on sets 2 through 5 are compared with
their own standard on set 1, and REE rates are calculated accordingly.

In our study, the true mRNA isoform structures are extracted from the Homo
sapiens annotation (February 2009) of the UCSC Genome Browser [Rosenbloom
et al. (2015)]. According to the annotation, there are 15,268 human genes with
multiple isoforms. Supplementary Figure S2B [Li et al. (2018)] summarizes the
distribution of the numbers of exons and isoforms of these genes. We can see that
the isoform structures of humans are much more complex than those of simple
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FI1G. 8. REE rates of MSIQ, AVG (averaging), POOL (pooling), Cuffa (Cufflinks averaging), Cuffp
(Cufflinks pooling), MISO and iReckon on sets 2 to 5. We use these seven estimators to perform
isoform quantification on sets 2 to 5 and calculate the REE rates by treating their correpsonding
estimates on set 1 as the standards.

model organisms like fruit flies. For each sample set, we only perform estimation
for genes that have reads in all the samples. As a result, isoform proportions are
calculated for 11,091 genes in set 1, 9753 genes in set 2, 460 genes in set 3, 404
genes in set 4 and 497 genes in set 5.

Comparing the REE rates of MSIQ and the other six methods in Figure 8, we
clearly see that MSIQ generally achieves the lowest median error rates and the
smallest inter-quantile ranges in all the four comparison cases. This result is strong
evidence supporting the effectiveness of MSIQ in identifying the consistent group
and estimating its isoform proportions. Note that even though iReckon also leads to
relatively accurate results, especially in set 2 versus set 1, the number of genes for
which iReckon can provide estimation is much smaller compared with other meth-
ods. In the four cases, iReckon obtains estimates only for 1065, 255, 377 and 374
genes. This comparison also suggests that pooling is not an ideal approach when
the depths of sequencing coverage in multiple RNA-seq samples vary greatly.
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FI1G. 9. MSIQ’s estimated isoform proportions and standard errors for gene THTPA (6 isoforms)

and gene PIGH (12 isoforms). The left plots give the estimated proportions by isoform. The intervals

denote the respective MSIQ estimator £ one standard error: MR 4 5 j- The right plots give the

estimated isoform proportions by sample. The numbers denote the isoform indices and the horizontal
axis denotes whether the corresponding sample is identified as being within the consistent group or
not.

We also use set 1 (i.e., the 6 hESC samples) in this study to illustrate why the
consistent group represents more reliable transcriptome landscapes and how the
standard deviation defined in formula (2.7) can be used to assess the biological
variation within the consistent group. Shown in Figure 9 are two example genes
THTPA (6 isoforms) and PIGH (12 isoforms). We use these two examples to il-
lustrate that (1) MSIQ is bale to identify consistent groups that have comparably
more consistent isoform abundances, and (2) the biological variation within the
consistent group is much smaller compared to the overall variation among all the
samples, and this variation is well captured by the estimated standard errors.

3.2.2. MSIQ leads to the highest correlation with NanoString counts. We
present a second real data example to evaluate different methods by comparing
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their reported isoform abundances (in FPKM values) with NanoString counts on
the same data sets. The NanoString nCounter technology is considered to be a
highly reproducible and robust method for detecting gene and isoform expression
[Kulkarni (2011)]. As a consequence, the NanoString measurements are widely
used as a benchmark for isoform expression [Germain et al. (2016), Steijger et al.
(2013)]. We compare our MSIQ method with three other estimation methods, Cuf-
flinks, iReckon, and MISO, based on their performances on six samples of the
human HepG2 (liver hepatocellular carcinoma) immortalized cell line [see Sup-
plementary Table S3 for detailed description, Li et al. (2018)].

Even though genome-wide isoform abundances are not available for these
HepG2 data, the NanoString counts are available for a small set of genes [Steijger
etal. (2013)]. These NanoString measurements include 140 probes that correspond
to 470 isoforms in 107 genes. We apply MSIQ, Cufflinks, iReckon, and MISO on
the six HepG2 samples and use each method to estimate isoform abundances for
this set of genes. Cufflinks and iReckon directly report the FPKM values of the
relevant isoforms. MSIQ and MISO estimate isoform proportions, and the FPKM
values can be calculated accordingly. For each sample, we calculate the Pearson
correlation coefficient between each method’s estimated isoform expression and
the benchmark NanoString counts. Since the NanoString probe counts do not have
a one-to-one correspondence with isoform expression, for each NanoString probe
we either use the isoform with the largest expression (Figure 10A) or add up the
expression of all the isoforms (Figure 10B). Overall, the estimated expression of
MSIQ has the highest correlation with the NanoString counts and achieves the best
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F1G. 10. Correlation between NanoString counts and the estimated isoform expression. A: For
each NanoString probe, the corresponding isoform with the largest estimated FPKM value is used
to calculate the correlation. The standard error of the calculated correlation coefficients is between
0.069 and 0.099. B: For each NanoString probe, the sum of all the corresponding isoforms’ estimated
FPKM values is used to calculate the correlation. The standard error of the calculated correlation
coefficients is between 0.065 and 0.085.
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consistency with this benchmark measurement, compared with Cufflinks, iReckon,
and MISO. Please note that samples 5 and 6 are found not belonging to the con-
sistent group by MSIQ, and that is why MSIQ does not have the highest corre-
lations on them. This observation is coherent with the definition of a consistent
group by MSIQ. This result again suggests that MSIQ leads to more accurate iso-
form quantification by incorporating the information in multiple RNA-seq sam-
ples.

4. Discussion and conclusion. In this paper, we propose a new method,
MSIQ, to more accurately estimate isoform expression levels associated with bi-
ological conditions of interest using multiple RNA-seq data sets. Accurate iso-
form quantification from RNA-seq data has long been a challenge because the
existence of multiple isoforms makes it impossible to uniquely assign many reads
and determine the reads’ isoform origins. MSIQ tackles this challenge by utiliz-
ing data from multiple RNA-seq samples derived from the same biological con-
dition; we reason that aggregating more information can improve accuracy in
isoform abundance estimation. Unlike previous work that treats all the samples
equally, MSIQ identifies a consistent group of samples that are most representa-
tive of the biological condition and estimates isoform proportions of the consistent
group.

Applications of MSIQ to both simulated and real data demonstrate that MSIQ
yields more accurate isoform quantification than direct averaging or pooling meth-
ods given the existence of poor quality or mislabeled samples. These results sug-
gest MSIQ’s potential as a powerful and robust transcriptomic tool for isoform
expression quantification. MSIQ’s estimation results provide robust and accurate
transcriptome profiles, which can be used to construct co-expression networks,
investigate cell-type-specific isoform expression, and identify differentially ex-
pressed transcripts between two biological conditions. The MSIQ method also
provides standard error estimates to measure the variability of isoform abundance
within the consistent group. This information can be especially useful when users
need to compare multiple tissue or cell types. We currently estimate the standard
errors using the posterior samples of isoform proportions, and our method can be
extended to directly model the variability parameters at the cost of increased com-
plexity in the model and computations. In addition to isoform abundance estima-
tion, MSIQ can also be applied to evaluate the quality of multiple RNA-seq sam-
ples of the same tissue or cell type. This application can help researchers evaluate
the reproducibility of RNA-seq samples and determine which samples to include
in downstream analyses.

An important step in our MSIQ method is the identification of the consis-
tent group, which depends on posterior draws of the hidden state variables. We
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currently use a Beta-Bernoulli model to describe the probability of each sam-
ple belonging to the consistent group. However, it is possible to improve the
model once gold standard data (i.e., qPCR) for the biological condition of in-
terest become available [Adamski, Gumann and Baird (2014), Li and Dewey
(2011)]. We can extend our MSIQ model to account for the heterogeneous qual-
ity of multiple RNA-seq samples based on the similarity of the isoform abun-
dance estimates between each sample and the gold standard. Such quality as-
sessment can be integrated with the inter-sample similarity to better identify the
consistent group. As a result, the samples that have higher agreement with gold
standards and high similarity with each other will be more likely to be con-
sidered a part of the consistent group. This procedure is supposed to identify
more reliable samples and can potentially increase the reuse of public RNA-
seq data as it will provide an interpretable measure of the quality of multi-
ple RNA-seq data sets. We would also like to point out that biological knowl-
edge can be incorporated into MSIQ modeling to further improve isoform abun-
dance estimation. For example, mRNA fragments are, in fact, not uniformly dis-
tributed within the isoforms [Zhang, Kuo and Chen (2014)], and a high corre-
lation was observed between read coverage and genome GC content [Li et al.
(2011)]. Our proposed hierarchical model can be considered an umbrella frame-
work that can be easily extended to incorporate more detailed modeling proce-
dures as long as these procedures use likelihoods to describe read generating pro-
cesses. Such extension might help MSIQ achieve better performance on complex
genes.

Another interesting extension of our MSIQ method is to model single-cell RNA-
seq (scRNA-seq) data, which contain information on the technical and biological
noise of isoform abundance at the single-cell level [Wu et al. (2014), Macaulay
and Voet (2014)]. scRNA-seq data are needed for the analysis of (1) subpopu-
lations of cells from a larger heterogeneous population and (2) rare cell types,
for which sufficient material cannot be obtained for conventional RNA-seq ex-
periments [Mortazavi et al. (2008)]. Given scRNA-seq data on multiple cells
from the same population, MSIQ can be iteratively utilized to evaluate the tran-
scriptional heterogeneity and detect subpopulations (i.e., consistent groups) in the
set of samples. Meanwhile, MSIQ can also reveal the principal isoform expres-
sion pattern in a given cell population. An alternative approach is to allow for
multiple consistent groups as subpopulations of single cells in statistical model-
ing.

The RNA-seq data sets used in the paper are all publicly available. Their acces-
sion numbers are provided in the supplementary information [Li et al. (2018)]. The
MSIQ method is implemented in the R package MSTIQ, which is freely available at
https://github.com/Vivianstats/MSIQ.
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APPENDIX: FIGURE APPENDIX
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FIG. A1l. Relative estimation error (REE) rates of the seven estimators in scenarios 1-5. REE rate
are calculated on 3421 fly genes with 3-98 exons. In each boxplot, the REE rates of MSIQ, AVG*,
MSIQa, AVG, POOL*, MSIQp and POOL are plotted side by side under each scenario (with the
order of methods listed under the scenario 5 of the bottom left panel) and the whiskers extend to the
most extreme REE rates. The top-right legend of each plot displays the parameter setting: the mean
[fragment length (F) and the read length (R).
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