
SC I ENCE ADVANCES | R E S EARCH ART I C L E
RESEARCH METHODS
1Department of Data Sciences and Operations, Marshall School of Business, Uni-
versity of Southern California, Los Angeles, CA 90089, USA. 2Department of Sta-
tistics, Columbia University, New York, NY 10027–5927, USA. 3Department of
Statistics, University of California, Los Angeles, CA 90095–1554, USA.
†These authors contributed equally to this work.
*Corresponding author. Email: xint@marshall.usc.edu (X.T.); jli@stat.ucla.edu (J.J.L.)

Tong, Feng, Li Sci. Adv. 2018;4 : eaao1659 2 February 2018
Copyright © 2018

The Authors, some

rights reserved;

exclusive licensee

American Association

for the Advancement

of Science. No claim to

originalU.S. Government

Works. Distributed

under a Creative

Commons Attribution

NonCommercial

License 4.0 (CC BY-NC).
D
ow

nloaded
Neyman-Pearson classification algorithms and NP
receiver operating characteristics
Xin Tong,1*† Yang Feng,2† Jingyi Jessica Li3*

Inmany binary classification applications, such as disease diagnosis and spam detection, practitioners commonly face
the need to limit type I error (that is, the conditional probability ofmisclassifying a class 0 observation as class 1) so that
it remains below a desired threshold. To address this need, the Neyman-Pearson (NP) classification paradigm is a
natural choice; it minimizes type II error (that is, the conditional probability of misclassifying a class 1 observation
as class 0) while enforcing an upper bound,a, on the type I error. Despite its century-long history in hypothesis testing,
the NP paradigm has not been well recognized and implemented in classification schemes. Common practices that
directly limit the empirical type I error to no more than a do not satisfy the type I error control objective because the
resulting classifiers are likely to have type I errors much larger than a, and the NP paradigm has not been properly
implemented in practice. We develop the first umbrella algorithm that implements the NP paradigm for all scoring-
type classificationmethods, such as logistic regression, support vectormachines, and random forests. Powered by this
algorithm, we propose a novel graphical tool for NP classification methods: NP receiver operating characteristic
(NP-ROC) bands motivated by the popular ROC curves. NP-ROC bands will help choose a in a data-adaptive way
and compare different NP classifiers. We demonstrate the use and properties of the NP umbrella algorithm and
NP-ROC bands, available in the R package nproc, through simulation and real data studies.
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INTRODUCTION

In statistics and machine learning, the purpose of classification is to
automatically predict discrete outcomes (that is, class labels) for new
observations on the basis of labeled training data. The development
of classification theory, methods, and applications has been a dynamic
area of research formore than half a century (1).Well-known examples
include disease diagnosis, email spam filters, and image classification.
Binary classification, in which the class labels are 0 and 1, is the most
common type. Most binary classifiers are constructed to minimize the
expected classification error (that is, risk), which is a weighted sum of
type I and II errors. We refer to this paradigm as the classical classifica-
tion paradigm in this paper. Type I error is defined as the conditional
probability of misclassifying a class 0 observation as a class 1 obser-
vation; it is also called the false-positive rate (that is, 1 − specificity).
Type II error is the conditional probability ofmisclassifying a class 1 ob-
servation as class 0; it is also called the false-negative rate (that is, 1 −
sensitivity). Note that in some specific scientific or medical contexts,
positiveness and negativeness have strict definitions, and their defi-
nition of “false-positive rate”may be different from the probability of
classifying an observation whose true label is 0 as class 1. Because the
binary class labels can be arbitrarily defined and switched, in the
following text, we refer to the prioritized type of error as the type I error.

In the risk, the weights of the type I and II errors are the marginal
probabilities of classes 0 and 1, respectively. In real-world applications,
however, users’ priorities for type I and II errors may differ from these
weights. For example, in cancer diagnosis, a type I error (that is, mis-
diagnosing a cancer patient as healthy) has more severe consequences
than a type II error (that is, misdiagnosing a healthy patient with cancer);
the latter may lead to extra medical costs and patient anxiety but will not
result in tragic loss of life (2–5). For these applications, a prioritized con-
trol of asymmetric classification errors is sorely needed. The Neyman-
Pearson (NP) classification paradigm was developed for this purpose
(6–9); it seeks a classifier that minimizes the type II error while main-
taining the type I error below a user-specified level a, usually a small
value (for example, 5%). In statistical learning theory, this target classi-
fier is called the oracle NP classifier; it achieves the minimum type II
error given an upper bound a on the type I error. It is different from
the cost-sensitive learning (10, 11) and the asymmetric support vector
machines (12), which also address asymmetric classification errors
but provide no probabilistic control on the errors. Previous studies
addressed NP classification using both empirical risk minimization
(6–8, 13–15) and plug-in approaches (9, 16). For a review of the current
status ofNP classification, we refer the readers to the study of Tong et al.
(17). A main advantage of the NP classification is that it is a general
framework that allows users to find classifiers with (population) type I
errors under a with high probability. In many biomedical, engineer-
ing, and social applications, users often have prespecified a values to
reflect their tolerance on the type I errors and use diverse classifica-
tion algorithms. Example applications include diagnosis of coronary
artery disease (18), cancer early warning system (19), network secu-
rity control (20, 21), Environmental Protection Agency water secu-
rity research (22), prediction of regional and international conflicts
(23, 24), and the EarlyWarning Project to identify countries at risk of
new mass atrocities (25). However, existing ad hoc use of classifica-
tion algorithms cannot control type I errors underawith high probabil-
ity. Although theNPparadigmcan address theneeds, how to implement
it with diverse classification algorithms remains a challenge.

Here, we address two important but unanswered questions regard-
ing the practicality of the NP classification paradigm and the evaluation
of NP classificationmethods. The first question is how to adapt popular
classification methods [for example, logistic regression (LR) (26), sup-
port vector machines (SVMs) (27), AdaBoost (28), and random forests
(RFs) (29)] to construct NP classifiers.We address this question by pro-
posing an umbrella algorithm to implement a broad class of classifica-
tion methods under the NP paradigm. The second question is how to
evaluate and compare the performance of different NP classification
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methods. We propose NP receiver operating characteristic (NP-ROC)
bands, a variant of ROC, as a newvisualization tool forNP classification.
Possible uses of NP-ROC bands for practitioners include but are not
limited to (i) choosing a in a data-adaptive way and (ii) comparing dif-
ferent NP classifiers. The NP umbrella algorithm and NP-ROC bands
together provide a flexible pipeline to implement binary classification in
broad applications where controlling the prioritized type of error is
needed, such as disease diagnosis in biomedical applications (18, 19)
and loan screening in financial applications (30). Other potential appli-
cations are described in detail in the Discussion section.
 on F
ebruary 4, 2018

http://advances.sciencem
ag.org/

D
ow

nloaded from
 

RESULTS
Mathematical formulation
To facilitate our discussion of technical details, we introduce the
followingmathematical notation and review our previous theoretic for-
mulation (8, 9, 16) to further explain the classical and NP classification
paradigms. Let (X, Y) be random variables where X∈X⊂Rd is a
vector of d features, and Y ∈ {0, 1} represents a binary class label. A
data set that contains independent observations fðxi; yiÞgni¼1 sampled
from the joint distribution of (X, Y) is often divided into training data
and test data. On the basis of training data, a classifier f(⋅) is a map-
pingf : X→f0; 1g that returns the predicted class label given X. Clas-
sification errors occur when f(X)≠Y and the binary loss is defined as
I(f(X) ≠ Y), where I(⋅) denotes the indicator function. The risk is defined
as RðfÞ ¼ E½IðfðXÞ≠YÞ� ¼ PðfðXÞ≠YÞ, which can be expressed as a
weighted sumof type I and II errors:R(f) =P(Y=0)R0(f) +P(Y=1)R1(f),
whereR0(f) =P(f(X)≠Y|Y=0) denotes the (population) type I error, and
R1(f) = P(f(X) ≠ Y|Y = 1) denotes the (population) type II error. The
classical classification paradigm aims to mimic the classical oracle
classifier f* that minimizes the risk

f* ¼ argminf RðfÞ:

In contrast, the NP classification paradigm aims to mimic the NP
oracle classifier f*a with respect to a prespecified upper bound on the
type I error, a

f*a ¼ argminf:R0ðaÞ≤aR1ðfÞ;

where a reflects users’ conservative attitude (that is, priority) toward
type I error. Figure 1 shows a toy example that demonstrates the
difference between a classical oracle classifier that minimizes the risk
and an NP oracle classifier that minimizes the type II error, given
that type I error ≤ a = 0.05.

In practice, R(·), R0(·), and R1(·) are unobservable because they
depend on the unknown joint distribution of (X, Y). Instead, their
estimates based on data (that is, the empirical risk, empirical type I
error, and empirical type II error) are often used in practice. Here, we
denote the empirical risk and type I and II errors based on training data
as R̂ð˙Þ, R̂0ð˙Þ, and R̂1ð˙Þ and the empirical risk and type I and II
errors based on test data as ~Rð:Þ, ~R0ð˙Þ, and ~R1ð˙Þ.

Because of the wide applications of classification in real-world prob-
lems, a vast array of classification methods have been developed to
construct “good” binary classifiers. Here, we focus on the scoring type
of classification methods, which first train a scoring function f : X→R
using the training data. The scoring function f(·) assigns a classification
score f(x) to an observation x∈Rd. By setting a threshold c∈R on the
Tong, Feng, Li Sci. Adv. 2018;4 : eaao1659 2 February 2018
classification scores, a classifier can be obtained. In otherwords, we con-
sider classifiers with the form fc(·) = I( f(·) > c). Most popular classifica-
tion methods are of this type (31). For example, LR, SVMs, naïve Bayes
(NB), and neural networks all output a numeric value (that is, a classi-
fication score) to represent the degree to which a test data point belongs
to class 1. The classification scores can be strict probabilities or un-
calibrated numeric values as long as a higher score indicates a higher
probability of an observation belonging to class 1. Another type of
classification algorithms (for example, RFs) uses bagging to generate
an ensemble of classifiers, each of which predicts a class label for a
test data point; in these scenarios, the proportion of predicted labels
being 1 serves as a classification score.

An umbrella algorithm for NP classification
Recent studies describe severalNP classifiers that respect the type I error
bound with high probability. They are built upon plug-in estimators of
density ratios (that is, class 1 density/class 0 density) (9, 16). However,
these classifiers are only applicable under a number of restricted sce-
narios, such as low feature dimension (9) and feature independence
(16). Many other statistical and machine learning algorithms have
been shown to be effective classification methods but not yet imple-
mented under the NP paradigm; these include but are not limited to
(penalized) LR, SVMs, AdaBoost, and RFs. To develop NP classifiers
that are diverse and adaptable to various practical scenarios and
avoid duplicating efforts, we choose to implement these popular classi-
fication algorithms under the NP paradigm rather than construct
numerous new NP classifiers based on complex models for density
ratios. Moreover, classifiers in the study of Tong (9) use the Vapnik-
Chervonenkis theory to guide an upper bound for empirical type I
error and require a sample size larger than available inmanymodern
applications, whereas classifiers in the study of Zhao et al. (16) resort
to concentration inequalities to get an explicit order at the expense of
possible overly conservatism in type I errors. Here, we develop an
alternative approach by calculating exact probabilities (under mild
continuity assumptions) based on order statistic distributions to find
thresholds on classification scores under the NP paradigm.

The first main contribution of this paper is our proposed umbrella
algorithm that adapts popular classification methods to the NP
Classical
classifier

Class 0 Class 1

III

X

NP
classifier

−2 0 2 41.65

III

Fig. 1. Classical versus NP oracle classifiers in a binary classification example.
In this toy example, the two classes have equal marginal probabilities, that is, PðY ¼
0Þ ¼ PðY ¼ 1Þ ¼ 0:5. Suppose that a user prefers a type I error of ≤0.05. The classical
classifier I(X > 1) that minimizes the risk would result in a type I error of 0.16. On the
other hand, the NP classifier I(X > 1.65) that minimizes the type II error under the type
I error constraint (a = 0.05) delivers a desirable type I error. This figure is adapted
from Tong et al. (17) and Li and Tong (52), with permissions.
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paradigm. These methods include LR and penalized LR (penLR),
SVMs, linear discriminant analysis (LDA), NB, AdaBoost, classifica-
tion trees, and RFs. Specifically, we seek an efficient way to choose a
threshold for the classification scores predicted by each algorithm so
that the threshold leads to classifiers with type I errors below the user-
specified upper bound awith high probability. This algorithm is needed
because the naïve approach, which simply picks a threshold by setting
the empirical type I error to no more than a, fails to satisfy the type I
error constraint, as demonstrated in the simulation study described
below.
Simulation 1
Data are generated from twoGaussian distributions: (X|Y = 0) ~N(0, 1)
and (X|Y= 1) ~N(2, 1), withP(Y= 0) =P(Y= 1) = 0.5.We denote a data
set from this distribution as fðxi; yiÞgNi¼1, where N = 1000. The classi-
fiers we consider are I(X > c), where c ∈R . Here, the classification
scoring function f(x) = x, the identity function, because in this one-
dimensional case, xi’s naturally serve as good classification scores.Hence,
no training for f is needed, andwe only rely on this data set to find c such
that the corresponding classifier has the population type I error below a
with high probability. Figure 2 illustrates this problem. The black curves
denote the oracle ROC curves, which trace the population type I error
and (1− population type II error) of these classifiers as c varies. To find a
value of c such that the corresponding classifier has type I error ≤ a =
0.05, a common and intuitive practice is to choose the smallest c such
that the empirical type I error is no greater than a, resulting in a clas-

sifier �fað˙Þ ¼ Ið⋅ > �caÞ, where�ca ¼ inf c :
∑Ni¼1Iðxi> c; yi ¼0Þ

∑Ni¼1Ið yi ¼0Þ
≤a

� �
. In

our simulation, we generateD = 1000 data sets; this procedure results

inD classifiers,�fð1Þa ;⋯; �fðDÞa , shown as red “×” on the oracle ROC curve

(Fig. 2A). However, only approximately half of these classifiers have
type I errors below a, which is far from achieving the users’ goal. There-
fore, this commonly used method does not work well in this case. We
also use another approach based on the fivefold cross-validation (CV),
although in this case, no training is needed to estimate the type I error of
the classifier I(X > c) for every c ∈R. Concretely, we randomly split the
class 0 data into fivefolds. On each fold, we calculate the empirical type I
error of the classifier, andwe take the average of the five empirical type I
errors as the CV type I error, denoted by R̂0

CVðcÞ. On the basis of
these CV type I errors of various c, we can construct a classifier~fað˙Þ ¼
Ið⋅ > ~caÞ, where ~ca ¼ inf c : R̂

CV
0 ðcÞ≤a

n o
. Applying this procedure

to the D = 1000 data sets, we obtain D classifiers, ~fað1Þ;⋯; ~faðDÞ,
shown as cyan “×” on the oracle ROC curve (Fig. 2B). However, still
only about half of these classifiers have type I errors belowa. Therefore,
this CV-based approach still does not work well in this case.

In view of this failure, we propose an umbrella algorithm to imple-
ment the NP paradigm, summarized as pseudocodes in Algorithm 1.

The essential idea is to choose the smallest threshold on the classi-
fication scores such that the violation rate (that is, the probability that
the population type I error exceedsa) is controlled under some prespec-
ified tolerance parameter d, that is,P[R0(fc) > a]≤ d. The threshold c is
to be chosen from an order statistic of classification scores of a left-out
class 0 sample, which is not used to train base algorithms (for example,
LR, SVMs, and RFs) to obtain f. Because we do not impose any assump-
tions on the underlying data-generating process, it is not feasible to es-
tablish oracle-type theoretical properties regarding type II errors under
this umbrella algorithm. However, because users may favor different
base algorithms, this umbrella algorithm is generally applicable in light
Tong, Feng, Li Sci. Adv. 2018;4 : eaao1659 2 February 2018
of the general preference toward conservatism with regard to type I er-
rors. The theoretical foundation of the umbrella algorithm is explained
by the following proposition.

Proposition 1. Suppose that we divide the training data into two
parts, one with data from both classes 0 and 1 for training a base
algorithm (for example, LR) to obtain f and the other as a left-out class
0 sample for choosing c. Applying the resulting f to the left-out class 0
sample of size n, we denote the resulting classification scores as T1,⋯,
Tn, which are real-valued random variables. Then, we denote by T(k)
the kth order statistic (that is, T(1) ≤⋯≤ T(n)). For a new observation,
if we denote its classification score based on f as T, then we can construct
a classifier f̂k ¼ ðT > TðkÞÞ. Then, the population type I error of f̂k,
Algorithm 1. An NP umbrella algorithm
1: Input:
Training data: A mixed i.i.d. sample S ¼ S0∪S1, where S0 and S1 are

class 0 and 1 samples, respectively
a: Type I error upper bound, 0 ≤ a ≤ 1; (default a = 0.05)
d: A small tolerance level, 0 < d < 1; (default d = 0.05)
M: Number of random splits on S0; (default M = 1)
2: Function RankThreshold(n, a, d)
3: For k in {1, ⋯, n} do
 ◃ For each rank threshold
candidate k
4: vðkÞ←∑
n

j¼k

�
n
j

�
ð1� aÞjan�j
 ◃ Calculate the violation rate

upper bound
5: k* ← min{k ∈ {1, ⋯, n} : v(k) ≤ d}
 ◃ Pick the rank threshold
6: Return k*
7: Procedure NPClassifier(S; a; d;M)
8: n ¼ jS0j=2 ◃
 Denote half of the size of jS0j
as n
9: k* ← RankThreshold(n, a, d)
 ◃ Find the rank threshold
10: For i in {1, ⋯, M} do ◃
 Randomly split S0 for M times
11: S0
i;1;S0

i;2 ← random split
on S0

◃
in
Each time randomly split S0

to two halves with equal sizes
12: Si ← S0
i;1∪S1
 ◃ Combine S0

i;1 and S1
13: S0
i;2 ¼ fx1;⋯; xng
 ◃ Write S0

i;2 as a set of n data
points
14: fi ← ClassificationAlgorithmðS iÞ
 ◃ Train a scoring function fi
on Si
15: T i ¼ fti;1;⋯; ti;ng
← ffiðx1Þ;⋯; fiðxnÞg

◃
 Apply the scoring function fi to
S0
i;2 to obtain a set of score
threshold candidates
16: fti,(1), ⋯, ti,(n)g ← sortðT iÞ
 ◃ Sort elements of T i in an
increasing order
17: t∗i ← ti;ðk∗Þ
 ◃ Find the score threshold
corresponding to the rank

threshold k∗
18: fiðXÞ ¼ IðfiðXÞ > t∗i Þ
 ◃ Construct an NP classifier
based on the scoring function fi

and the threshold t∗i
19: Output: an ensemble NP classifier
f̂aðXÞ ¼ I

�
1
M ∑i¼1

M
fiðXÞ≥ 1

2

�
 ◃ By majority vote
3 of 10
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denoted by R0ðf̂kÞ, is a function of T(k) and hence a random variable.
Assuming that the data used to train the base algorithm and the left-out
class 0 data are independent, we have

P½R0ðf̂kÞ > a�≤∑
n

j¼k

�
n
j

�
ð1� aÞjan�j: ð1Þ

That is, the probability that the type I error of f̂k exceeds a is under a
constant that only depends on k and a. We call this probability the “vi-
olation rate” of f̂k and denote its upper bound by vðkÞ ¼
∑
n

j¼k

� n
j

�
ð1� aÞ jan�j. When Ti’s are continuous, this bound is tight.

For the proof of Proposition 1, refer to the SupplementaryMaterials.
Note that Proposition 1 is general because it does not rely on any dis-
tributional assumptions or on base algorithm characteristics.

Note that v(k) decreases as k increases. If we would like to construct
an NP classifier based on an order statistic of the classification scores of
the left-out class 0 sample, the right order should be

k* ¼ minfk ∈ f1;⋯; ng : vðkÞ≤ dg: ð2Þ

To control the violation rate under d at least in the extreme case
when k= n, we need to have v(n) = (1− a)n≤ d. If the nth order statistic
cannot guarantee this violation rate control, then other order statistics
certainly cannot. Therefore, given a and d, we need to have the mini-
mum sample size requirement n ≥ log d/ log(1 − a) for type I error
violation rate control; otherwise, the control cannot be achieved, at least
by this order statistic approach.

Algorithm 1 describes our umbrella NP algorithm, which supports
popular classificationmethods such as LR and SVM. Proposition 1 pro-
vides the theoretical guarantee on type I error violation rate control for
one random split (M = 1 in the algorithm). Inmultiple (M > 1) random
splits, with each split dividing class 0 training data into two halves, an
ensemble classifier by majority voting is demonstrated to maintain the
type I error control and reduce the expectation and variance of the
type II error in numerical experiments (see Simulation S2 and tables S1
to S6 in the Supplementary Materials).

Applying this algorithm to the example in Simulation 1, with a =
0.05, d = 0.05, and the number of random splits M = 1, we construct
DNP classifiers f̂ð1Þa ;…; f̂ðDÞa based on theD = 1000 data sets.Wemark
these D NP classifiers on the oracle ROC curve (shown as blue “+” in
Fig. 2C). Unlike the classifiers constructed by the naïve approach (red “×”
in Fig. 2A) or the fivefoldCV (cyan “×” in Fig. 2B),we see that theseDNP
classifiers have type I errors below awith high (at least 1 − d) probability.
Tong, Feng, Li Sci. Adv. 2018;4 : eaao1659 2 February 2018
Empirical ROC curves
A popular tool to evaluate binary classification methods is the ROC
curve, which provides graphical illustration of the overall performance
of a classification method, by showing its all possible type I and II er-
rors. ROC curves have numerous applications in signal detection the-
ory, diagnostic systems and medical decision-making, among other
fields (32–34). For the scoring type of binary classificationmethods that
we focus on in this paper, ROC curves illustrate the overall performance
at all possible values of the threshold c on the output classification
scores. An ROC space is defined as a two dimensional [0, 1] × [0, 1]
spacewhose horizontal and vertical axes correspond to “type I error” (or
“false-positive rate”) and “1 − type II error” (or “true-positive rate”),
respectively. For a binary classification method, its scoring function
f (·) estimated from the training data corresponds to anROCcurve, with
every point on the curve having the coordinates (type I error, 1 − type II
error) for a given threshold c. The area under the ROC curve is a widely
used metric to evaluate a classification method and compare differ-
ent methods. In practice, the typical construction of empirical ROC
curves includes the following three approaches: by varying the
threshold value c, points on empirical ROC curves have horizontal
and vertical coordinates, respectively, (approach 1) defined as
R̂0ðfcÞ and 1� R̂1ðfcÞ on the training data; (approach 2) defined as
~R0ðfcÞ and 1� ~R1ðfcÞ on the test data; and (approach 3) empirical
type I error and (1 − empirical type II error) are estimated by CV on the
training data.

Because an empirical ROC curve constructed by any of the above
three approaches is an estimate of the unobserved oracle ROC curve,
there is literature on the construction of confidence bands of the oracle
ROC curve. For pointwise confidence intervals of points on the oracle
ROC curve, typical construction methods use a binomial distribution
(35) or binormal distribution (36) to model the distribution of the
given point’s corresponding points on empirical ROC curves. With
regard to constructing simultaneous confidence intervals to form a
confidence band of the oracle ROC curve, there are methods based
on bootstrapping (37) or theWorking-Hotelling method (36), among
others. For a review of existing methods and an empirical study
that compares them, see the study of Macskassy et al. (38). Although
these construction methods of empirical ROC curves and confi-
dence bands have many useful applications, none of them is appro-
priate for evaluating NP classification methods because the
empirical ROC curves and confidence bands do not provide users
with direct information to find the classifiers that satisfy their pre-
specified type I error upper bound a with high probability. Simula-
tion S1 in the Supplementary Materials and Fig. 3 demonstrate this
issue.
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NP-ROC bands
Motivated by theNP umbrella algorithm, we propose that the NP-ROC
bands, the second main contribution of this paper, serve as a new visu-
alization tool for classification methods under the NP paradigm. In the
NP-ROC space, the horizontal axis is defined as the type I error upper
bound (with high probability), and the vertical axis represents (1 −
conditional type II error), where we define the conditional type II error
of a classifier as its type II error conditioning on training data. An NP
classifier corresponds to a vertical line segment (that is, a blue dashed
line segment in Fig. 4A) in the NP-ROC space. The horizontal
coordinate of a line segment represents the type I error upper bound
of that classifier. The vertical coordinates of the upper and lower ends
of the segment represent the upper and lower high-probability
bounds of (1 − conditional type II error) of that classifier.

To createNP-ROCbands, the sample splitting scheme is slightly dif-
ferent from that of the umbrella algorithm.We still follow the umbrella
algorithm to divide the class 0 data into two halves, using the first half to
train the scoring function and the second half (size n) to estimate the
Tong, Feng, Li Sci. Adv. 2018;4 : eaao1659 2 February 2018
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score threshold. However, to calculate the high-probability (1 −
conditional type II error) bounds, we also need to divide the class 1 data
into two halves, using the first half to train the scoring function and the
second half to calculate the bounds. Therefore, in the construction of
NP-ROC bands, we refer to the class 0 data and the first half of the class
1 data as the training data. After we train a scoring function f and apply
it to the left-out class 0 data, we obtain n score thresholds and sort them
in an increasing order. For the classifier corresponding to the kth-
ordered score threshold, that is, f̂k , given a predefined tolerance level
d, we find the (1 − d) probability upper bound of R0ðf̂kÞ as

aðf̂kÞ ¼ inf

�
a∈ ½0;1� : ∑

n

j¼k

�
n
j

�
ð1� aÞjan�j≤ d

�
; ð3Þ

because we have ℙ½R0ðf̂kÞ≤aðf̂kÞ�≥1� ∑
n

j¼k

� n
j
�
ð1� aðf̂kÞÞjðaðf̂kÞÞn�j

≥1� d,where the first inequality follows fromEq. 1.Wenext derive the
(1− d) high-probability lower and upper bounds of the conditional type
II error, denoted byRc

1ðf̂kÞ, as bLðf̂kÞ and bUðf̂kÞ based on eqs. S9 and
S10. For every rank k ∈ {1,⋯, n}, we calculate ðaðf̂kÞ; 1� bUðf̂kÞÞ and
ðaðf̂kÞ; 1� bLðf̂kÞÞ for the classifier f̂k (shown as the lower and upper
ends of a blue dashed vertical line segment in Fig. 4A). Varying k from
1 to n, we obtain n vertical line segments in the NP-ROC space. For a
classifier f̂with a score threshold between two ranks of the left-out class
0 scores, say the (k − 1)-th and the kth, we have R0ðf̂kÞ≤R0ðf̂Þ≤
R0ðf̂k�1Þ and Rc

1ðf̂k�1Þ≤Rc
1ðf̂Þ≤Rc

1ðf̂kÞ . Hence, we set bLðf̂Þ ¼
bLðf̂k�1Þ and bUðf̂Þ ¼ bUðf̂kÞ. Because k increases from 1 to n, the
vertical line segment shifts from right to left, and we interpolate the n
upper ends of these segments using right-continuous step functions and
the n lower ends using left-continuous step functions. The band created
after the interpolation is called an NP-ROC band (between the two
black stepwise curves in Fig. 4A). This band has the interpretation that
every type I error upper bound a corresponds to a vertical line segment
and the achievable (1− conditional type II error) is sandwiched between
the lower and upper ends of the line segment with a probability of at
least 1 − 2d. When we randomly split the training data forM > 1 times
and repeat the above procedure, we obtainM NP-ROC bands. For the
M upper curves and M lower curves, respectively, we calculate the av-
erage of the vertical values for every horizontal value to obtain an aver-
age upper curve and an average lower curve, which form an NP-ROC
band for multiple random splits.

Applications of NP-ROC bands
By definition, the NP-ROC bands work naturally as a visualization
tool for NP classification methods. In practice, two issues remain to
be addressed in the implementation of classification methods under
the NP paradigm: (i) how to choose a reasonable type I error upper
bound a if users do not have a prespecified value in mind and (ii) how
to compare two classification methods under the NP paradigm. Below,
we use simulation and real data applications to demonstrate that the
NP-ROC bands serve as an effective tool to address these two
questions.
Simulation 2
We consider two independent predictors X1 and X2 with (X1|Y = 0) ~
N (0, 1), (X1|Y = 1) ~ N (1, 1), (X2|Y = 0) ~ N (0, 1), (X2|Y = 1) ~ N
(1, 6), and P(Y = 0) = P(Y = 1) = 0.5. We simulate a data set with
sample sizeN = 1000 and set the number of random splits toM = 11 and
the tolerance level to d = 0.1. We use the LDA with only X1 (referred
0
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Fig. 3. Illustration of choosing NP classifiers from empirical ROC curves and
NP-ROC lower curves in Simulation S1 (see the Supplementary Materials).
(A) Distributions of empirical type I errors and population type I errors of 1000
classifiers, with each classifier chosen from one empirical ROC curve
corresponding to the largest empirical type I error no greater than 0.05. (B) Dis-
tributions of empirical type I errors and population type I errors of 1000 classifiers,
with each classifier chosen from one NP-ROC lower curve (d = 0.05)
corresponding to a = 0.05.
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to as method 1) and only X2 (referred to as method 2). For each
classification method, we generate its corresponding NP-ROC bands
for comparison, as shown in Fig. 4B. At the horizontal axis, we mark
in black the a values for which the lower curve of method 1 is higher
than the upper curve of method 2, and similarly, we mark in red the a
values for which the lower curve of method 2 is higher than the upper
curve of method 1. Given a tolerance level d, users can read from these
colored regions and easily decide which method performs better at
any a values under the NP paradigm. Specifically, if users prefer a
small a under 0.05, then method 2 would be the choice between the
two methods. In a different situation, suppose a user wants to choose a
for method 1 and would like to have type II error no greater than 0.5;
the NP-ROC band suggests that a reasonable 90% probability upper
bound on the type I error should be greater than 0.2.
Real data application 1
We apply NP classification algorithms to a data set from the Early
Warning Project. Detailed information of this data set is described in
Materials and Methods. We formulated a binary classification problem
with a binary response variable, for which a value 0 indicates mass
killing and a value 1 indicates otherwise, and 32 predictors. Our goal
is to control the type I error (the conditional probability of misclassify-
ing a future mass killing) while optimizing the type II error. After data
processing and filtering, there are 6365 observations, amongwhich only
60 have responses as 0’s. This is a scenario with extremely imbalanced
classes, where the more important class 0 is the rare class. If we use the
classical classification paradigm to minimize the risk because of the
dominating marginal probability of class 1, then the resulting classifier
would prioritize the type II error and possibly result in a large type I error,
which is unacceptable in this application.On the other hand, theNP clas-
sification paradigm is specifically designed to control the type I error un-
der a prespecified level with high probability. We apply three NP
classificationmethods (RF, penLR, and SVM) to this data and summarize
the resulting NP-ROC bands in Fig. 5A. As a comparison, we also use
fivefold CV to calculate empirical ROC curves of each method and plot
the vertical average curve (for each horizontal value, we calculate the av-
erage of the five vertical values in the five empirical ROC curves), which
we denote by ROC-CV, in Fig. 5B. In this application, both NP-ROC
bands and ROC-CV curves indicate that RF is the best among the three
methods. For direct visual comparison, we plot the NP-ROC band and
Tong, Feng, Li Sci. Adv. 2018;4 : eaao1659 2 February 2018
the ROC-CV curve in one panel for RF (Fig. 5C) and SVM (Fig. 5D),
respectively. Here, we emphasize again that NP-ROC bands and ROC-
CV curves have different horizontal and vertical axes. From Fig. 5 (C and
D), it is obvious that ROC-CV curves do not provide guidance on how to
determine a in a data-adaptive way because the horizontal axis of
ROC-CV represents the empirical type I error, whereas NP-ROC
bands have a as the horizontal axis and allow users to decide a reason-
able a based on the corresponding (1 − d) high-probability lower and
upper bounds of the conditional type II errors. After RF is chosen as
the classification method, the NP-ROC band in Fig. 5C suggests that
a = 0.21 (black dashed vertical line) might be a reasonable 90% prob-
ability upper bound on the type I error if political scientists desire to
have the conditional type II error no greater than 0.4. We note that,
although the ROC-CV curve in Fig. 5C suggests that the classifier with
the empirical type I error of 0.2might be a reasonable choice because the
point on the ROC-CV curve corresponding to that classifier has the
smallest distance to the point (0,1), this conclusion is made from a per-
spective different from the type I error control, and the chosen classifier
is also different from the one corresponding to a = 0.2. Another note is
that, if users do not have a clear threshold on the conditional type II
error to choose a, then another possible way to choose a in a data-
adaptive way from the NP-ROC lower curve is to use the idea of the
Youden index (39): finda tomaximize (1− conditional type II error−a),
that is, the vertical distance from the lower curve to the diagonal line.
We finda = 0.249 by this criterion (green dashed vertical line in Fig. 5C).
Real data application 2
We also implement the NP umbrella algorithm andNP-ROC bands on
a neuroblastoma data set containing 43,827 gene expression measure-
ments of 498 neuroblastoma samples. Detailed information of this
data set is described inMaterials andMethods. These neuroblastoma
samples fall into two categories: 176high-risk (HR) samples or 322 non-
HR samples. It is commonly understood thatmisclassifying anHR sam-
ple as non-HR will have more severe consequences than the other way
around. Formulating this problem under the NP classification
framework, we denote the HR samples as class 0 and the non-HR
samples as class 1 and use the 43,827 gene expression measurements
as features to classify the samples. Setting the tolerance level as d =
0.1, we create NP-ROC bands for three classification methods: penLR,
RF, and NB. In Fig. 6A, we compare penLR and RF. At every a value,
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Fig. 4. Illustration of NP-ROC bands. (A) How to draw an NP-ROC band. Each blue dashed line represents one NP classifier, with horizontal coordinate a and vertical
coordinates 1 − bU (lower) and 1 − bL (upper). Right-continuous and left-continuous step functions are used to interpolate points on the upper and lower ends,
respectively. (B) Use of NP-ROC bands to compare the two LDA methods in Simulation 2.
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because neither band dominates the other, we cannot distinguish be-
tween these two methods with confidence across the whole domain.
In Fig. 6B, we compare penLR andNB. The long black bar at the bottom
of the plot indicates that penLR dominates NB for most of the type I
upper bound a values. In this application, if we choose penLR or RF,
then Fig. 6A shows that it is reasonable to seta= 0.1. Given thata= 0.1
and d = 0.1, after randomly splitting the data into training data with a
size of 374 (three-fourths of the observations) and test data with a size
of 124 (one-fourth of the observations) for 100 times, we also calculate
the empirical type I and II errors on the test data (table S8). Although
we can never observe the distribution of population type I and II er-
rors, the results show that the NP approach in practice also effectively
controls the empirical type I errors under a with high probability by
paying the price of having larger empirical type II errors.

Besides the three examples noted above, in Simulation S1 in the Sup-
plementaryMaterials, we further demonstrate that users cannot sim-
ply determine a classifier from an empirical ROC curve to control the
type I error under a with high probability, whereas our proposed
NP-ROC bands provide direct information for users to make such
a decision. We also show in Simulation S1 and prove in the Supple-
Tong, Feng, Li Sci. Adv. 2018;4 : eaao1659 2 February 2018
mentary Materials that the NP-ROC lower curve is a conservative
pointwise estimate of the oracle ROC curve.
DISCUSSION
Here, we propose an NP umbrella algorithm to implement scoring-
type classification methods under the NP paradigm. This algorithm
guarantees the desired high-probability control of type I error,
allowing us to construct NP classifiers in a wide range of application
contexts. We also propose NP-ROC bands, a new variant of the ROC
curves under the NP paradigm. NP-ROC bands provide direct
information on the population type I error bounds, a, and a range
of achievable type II errors for any given a.

TheNPumbrella algorithmandNP-ROCbandshavebroadapplication
potentials in fields where users often face asymmetric binary classification
problems and have some prespecified tolerance levels on the prioritized
type of error, which is regarded as the type I error under theNPparadigm.
TheNP-ROC lower curves have been successfully applied in a comparison
of similarity measures for gene expression samples, where the prioritized
type of error is mispredicting dissimilar samples as similar, because the
 on F
ebruary 4, 2018
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Fig. 5. NP-ROC bands and ROC-CV curves (generated by fivefold CV) of three classification methods in real data application 1. (A) NP-ROC bands of RFs versus
penLR versus SVMs. RF dominates the other two methods for a wide range of a values. (B) ROC-CV curves of RF, penLR, and SVM. Among the three methods, RF has the
largest area under the curve. (C) NP-ROC band and ROC-CV curve of RF. The black dashed vertical line marks a = 0.21, the smallest a such that the conditional type II
error is no greater than 0.4. The green dashed vertical line marks a = 0.249, the value that maximizes the vertical distance from the lower curve to the diagonal line, a
criterion motivated by the Youden index (39). (D) NP-ROC band and ROC-CV curve of SVM.
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samples, if predicted similar,will beused for furtherbiological interpretation
(40). Other potential applications include biomedical applications such
as disease diagnosis (18, 19), engineering applications such as network
security control (20, 21), financial applications such as loan screening
(30) and financial data forecasting (41–44), and social applications
such as prediction of regional and international conflicts (23–25).

Besides the advantage of enabling user-specific control on the priori-
tized type of classification error, another advantage of theNP classification
paradigm is that its resulting classifier will not be dominated by the ma-
jority class in imbalanced classification scenarios, whereas classifiers con-
structed by the classical paradigm, which seeks to minimize the
classification risk, might predict all observations to be the majority class
in an extremely imbalanced case. Moreover, in applications with imbal-
anced classes, down-sampling techniques or oversamplingmethods, such
as RandomOverSampling Examples (ROSE) (45) and SyntheticMinority
OversamplingTechnique (SMOTE) (46), that can potentially improve the
training of classification algorithms can be easily incorporated into theNP
umbrella algorithm (Step 14, the training step in Algorithm 1) to poten-
tially reduce the type II error given a.

We note that nmin = log d/ log(1 − a) is theminimum left-out class 0
sample size to ensure that the algorithmoutputs a classifier with the type
I error below a with probability at least (1 − d). Both the type I error
upper bounda and the tolerance level d are subject to user’s preferences.
In practice, if a user has a small class 0 sample size but would like to
achieve a type I error control with high probability using our umbrella
algorithm, then he or she must either increase a or d such that the left-
out class 0 sample size is above the corresponding nmin. For commonly
used a and d values, nmin is satisfied in most applications. For example,
nmin = 59 when a = 0.05 and d = 0.05, nmin = 45 when a = 0.1 and d =
0.05, andnmin=29whena =0.05 andd =0.1.Having large class 1 andclass
0 samples to train the scoring functionwill reduce the type II error, but it
will not affect the type I error control.

One limitation of the current umbrella algorithm is the requirement
of sample homogeneity, that is, the data points in each class are inde-
pendently and identically distributed. For future studies, we will gener-
alize the umbrella algorithm for dependent data and investigate the
optimality of the sample splitting ratio used in the umbrella algorithm
under specific model settings.

Note that optimality result cannot be established for the type II error
without assumptions on the data distributions. In contrast to our pre-
Tong, Feng, Li Sci. Adv. 2018;4 : eaao1659 2 February 2018
vious work (9, 16), the current work does not aim to construct an op-
timal classifier by estimating the two-class density ratio, which has the
optimality guaranteed by the Neyman-Pearson Lemma for hypothesis
testing. The reason is that the plug-in density ratio approach has diffi-
culty with density estimation in high dimensions without restrictive
assumptions, and in practice, multiple machine learning methods
have been widely applied to binary classification problems with
high-dimensional features. Therefore, in our current work, we devel-
oped the umbrella algorithm to integrate popular binary classification
methods into the NP paradigm. Given each method, its trained scoring
function, and a left-out class 0 sample, our umbrella algorithmoutputs a
classifier that satisfies the type I error control and has theminimum type
II error. In practice, users can use the NP umbrella algorithm with dif-
ferent classification methods and choose the method that dominates
other methods at a specific a value or in a range of a values based on
NP-ROC bands. Otherwise, if NP-ROC bands do not suggest clear
dominance of a classificationmethod at the users’ choice ofa, then users
can choose the method that gives the lowest type II error by CV.

It is possible to extend the NP umbrella algorithm to the multiclass
classification problem.Here, we describe a simple but common scenario
where users have three classes in a decreasing order of priority (for ex-
ample, class 0, cancer of a more dangerous subtype; class 1, cancer of a
less dangerous subtype; class 2, benign tumor) and would like to first
control the error of misclassifying class 0 and then the error of misclas-
sifying class 1. In this scenario, we can adopt our umbrella algorithm
to address the needs. A recent work provided that breaking a multi-
class classification problem into multiple binary classification pro-
blems may lead to poor performance (47). One advantage of our
umbrella algorithm is that it can be used with any good multiclass
classification algorithms, and it does not need to decompose the clas-
sification problem into multiple binary classification problems if the
algorithm does not do so. The basic idea of using the umbrella
algorithm in the multiclass case is as follows. Given a trained multi-
class classification algorithm, we first apply it to the left-out class 0
data to obtain the probabilities of assigning them to class 0. With a
prespecified (1 − d) probability upper bound a0 on the errorP(f(X) ≠
Y |Y = 0), where f(X) denotes the predicted class label, and Y denotes
the actual class label, we can use Proposition 1 to find a threshold c0 to
assign a new data point to class 0. Similarly, we can apply the trained
algorithm to the left-out class 1data to obtain theprobabilities of assigning
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Fig. 6. NP-ROC bands of three classification methods in real data application 2. (A) penLR versus RFs. No method dominates the other for any a values. (B) penLR
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them to class 1.With a prespecified (1− d) probability upper bounda1 on
the error P(f(X) ≠ Y |Y = 1), we can use Proposition 1 to find another
threshold c1 to assign a new data point to class 1. With these two thresh-
olds, we can construct the following classifier: Given a new data point,
we use the trained algorithm to estimate its probabilities of being as-
signed to classes 0 and 1, denoted as p̂0 and p̂1 , respectively. If
p̂0≥ c0, then we will assign this new data point to class 0. If p̂0 < c0 and
p̂1≥ c1, then wewill assign the new data point to class 1. Otherwise, we will
assign it to class 2.
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MATERIALS AND METHODS
Data
We used two real public data sets to demonstrate the use of our pro-
posed NP umbrella algorithm and NP-ROC bands. The first data set
was from the Early Warning Project (www.earlywarningproject.com/)
(25), which collected historical data over 50 years around the world
and aimed to produce risk assessments of the potential for mass atroci-
ties. The data set, which we provided in the Supplementary Materials
containing our R codes, contained 9496 observations and 243 variables.
We considered the binary variablemkl.start.1 as the response, which de-
noted the onset of state-ledmass killing episode in the next year, and we
used 32 variables as predictors, which are summarized in table S7. We
formulated the prediction of (1 −mkl.start.1), for which a value 0 indi-
cates mass killing and a value 1 indicates otherwise, as a binary classifi-
cation problem. After we removed the observations with NA (not
available) values in the response or any of the 32 variables, there re-
mained 6364 observations, among which only 60 had responses as 0’s.
The second data set contained 43,827 gene expression measurements
from Illumina RNA sequencing of 498 neuroblastoma samples (Gene
Expression Omnibus accession number GSE62564, with file name
GSE62564_SEQC_NB_RNA-Seq_log2RPM.txt.gz) generated by the
Sequencing Quality Control (SEQC) consortium (48–51). We also
provided this data set in the Supplementary Materials containing our
R codes. Each neuroblastoma sample was labeled as HR or non-HR,
indicating whether the sample belonged to a HR patient based on clin-
ical evidence. There were 176 HR samples and 322 non-HR samples.

R package implementation
In our nproc R package, we implemented the NP umbrella algorithm in
the npc function, which output a classifier given the input training data,
user-specified classification method, type I error upper bound a, and
tolerance level d. We implemented the NP-ROC bands in the nproc
function, which output an NP-ROC band given the input training data,
user-specified classification method, and tolerance level d. The detailed
input information is summarized in table S9.

Software
The R package nproc is available at https://cran.r-project.org/web/
packages/nproc/index.html. The Shiny version with graphical user
interface is available online at https://yangfeng.shinyapps.io/nproc/
and also available for use on local computers after users install the R
package. The R codes for generating figures and tables are available in
a supporting .zip file within the Supplementary Materials.
SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/4/2/eaao1659/DC1
Tong, Feng, Li Sci. Adv. 2018;4 : eaao1659 2 February 2018
Proof of Proposition 1
Conditional type II error bounds in NP-ROC bands
Empirical ROC curves versus NP-ROC bands in guiding users to choose classifiers to satisfy
type I error control
Effects of majority voting on the type I and II errors of the ensemble classifier
table S1. Results of LR in Simulation S2.
table S2. Results of SVMs in Simulation S2.
table S3. Results of RFs in Simulation S2.
table S4. Results of NB in Simulation S2.
table S5. Results of LDA in Simulation S2.
table S6. Results of AdaBoost in Simulation S2.
table S7. Description of variables used in real data application 1.
table S8. The performance of the NP umbrella algorithm in real data application 2.
table S9. Input information of the nproc package (version 2.0.9).
R codes and data sets
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