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Abstract

Background: The advent of next-generation RNA sequencing (RNA-seq) has greatly advanced transcriptomic
studies, including system-wide identification and quantification of mRNA isoforms under various biological
conditions. A number of computational methods have been developed to systematically identify mRNA isoforms in a
high-throughput manner from RNA-seq data. However, a common drawback of these methods is that their identified
mRNA isoforms contain a high percentage of false positives, especially for genes with complex splicing structures, e.g.,
many exons and exon junctions.

Results: We have developed a preselection method called “Non-negative Matrix Factorization Preselection” (NMFP)
which is designed to improve the accuracy of computational methods in identifying mRNA isoforms from RNA-seq
data. We demonstrated through simulation and real data studies that NMFP can effectively shrink the search space of
isoform candidates and increase the accuracy of two mainstream computational methods, Cufflinks and SLIDE, in their
identification of mRNA isoforms.

Conclusion: NMFP is a useful tool to preselect mRNA isoform candidates for downstream isoform discovery
methods. It can greatly reduce the number of isoform candidates while maintaining a good coverage of unknown
true isoforms. Adding NMFP as an upstream step, computational methods are expected to achieve better accuracy in
identifying mRNA isoforms from RNA-seq data.

Keywords: mRNA isoform discovery, Next-generation RNA sequencing (RNA-seq), Non-negative matrix factorization
(NMF), Cufflinks, SLIDE

Background
In molecular biology and transcriptomics, an important
question is to understand the alternative splicing process,
a key step of gene transcription in diverse species, from
invertebrates to mammals. Alternative splicing generates
at least two mRNA isoforms (i.e., transcripts) for one
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gene, and these mRNA isoforms as well as their protein
products can play different roles in various biological phe-
nomena. For example, studies have found that aberrant
structures or abundance of mRNA isoforms can cause
various human diseases [1, 2]. Hence, systematic identifi-
cation and quantification of mRNA isoforms can greatly
help understand gene regulation mechanisms for both
basic biology and translational medicine. For decades,
mRNA isoforms of individual genes have been accurately
identified and quantified by low-throughput technolo-
gies such as cDNA cloning and qPCR. However, it was
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impossible to conduct this task on a system-wide scale for
thousands of genes simultaneously until the invention of
high-throughput technologies.
More than a decade ago, microarray technologies

established a high-throughput platform for identifying
and quantifying mRNA isoforms of genes with known
sequences. SPACE [3, 4] is a method using non-negative
matrix factorization (NMF) to predict mRNA isoforms
and estimate their abundance frommicroarray data. NMF
is a popular pattern recognition method and is distin-
guished from other matrix factorization methods by its
use of non-negativity constraints [5]. A main advantage of
NMF is its interpretable factorization results, which are
positive and sparse combinations of features. In the con-
text of mRNA isoform discovery, SPACE uses NMF to
find isoforms as combinations of exons and exon junc-
tions. SPACE was demonstrated to have good power in
detecting mRNA isoforms under ideal simulation set-
tings. However, many open questions remain about how
to use NMF to accurately find mRNA isoforms from real
microarray data. Reasons for these questions include the
following issues inherent with NMF and microarray. First,
in many scenarios NMF outputs non-unique factorization
results [6], making SPACE identify ambiguous mRNA iso-
forms. Second, NMF requires a pre-specified matrix rank
for factorization results, and how to determine this rank
remains a difficult question [7–9]. Third, microarray can
only detect exons and exon junctions with at least partially
known sequences, and thus it cannot provide information
on novel exons or exon junctions. This hinders SPACE
from discovering novel isoforms that contain novel exons
or exon junctions.
Compared to microarray, the more recent next-

generation RNA sequencing (RNA-seq) technologies yield
deeper and wider insights into transcriptomes at base
level resolution [10]. RNA-seq measures the expression
of genome-wide exons and exon junctions, regardless
of prior knowledge on their existence. Hence, unlike
microarray, RNA-seq enables the identification of novel
mRNA isoforms containing previously unknown exons
or exon junctions. Despite its many advantages, a major
drawback of Illumina RNA-seq, the most popular RNA-
seq platform, is that it can only generate RNA-seq reads
with short lengths (≤ 2 × 250 bp for paired-end reads).
Such short RNA-seq reads cannot cover a full-length
mRNA isoform, making isoform identification a diffi-
cult computational problem. Since the advent of RNA-
seq, various computational methods have been devel-
oped to discover mRNA isoforms from RNA-seq data.
For the species with good-quality reference genomes,
including human and model organisms, mainstream iso-
form discovery methods (e.g., Cufflinks [11], Scripture
[12], IsoLasso [13] and SLIDE [14]) use RNA-seq reads
first mapped to a reference genome. In this paper,

our discussion focuses on these so-called “refernece-
based methods”, which attempt to identify full-length
mRNA isoforms from mapped RNA-seq reads using var-
ious approaches. For example, Cufflinks, Scripture and
IsoLasso first build graphs of exonic regions containing
mapped reads, and then find mRNA isoforms as the max-
imal paths in the graph based on a parsimony assumption.
These three methods are also often referred to as “de novo
methods,” because their isoform identification approach
can completely rely on RNA-seq reads without using exist-
ing annotations. Another reference-based method SLIDE
uses a different approach. It constructs a search space of
possible isoforms by using known boundaries of genes
and exons from existing annotations, with the possible
addition of novel genes and exons inferred from RNA-seq
data. SLIDE then identifies isoforms from the search space
based on a regularized linear model, which accounts for
the RNA-seq read generating mechanism and read distri-
butions. Because of its use of annotations, SLIDE is also
called an “annotation aided method”, in contrast to the
previous “de novomethods.” Note that the recent versions
of Cufflinks also added an annotation aided option, which
can simulate RNA-seq reads from annotations and use the
simulated reads together with RNA-seq data for isoform
discovery [15]. Both de novo and annotation aided meth-
ods have advantages and drawbacks. The graph-based de
novo methods are more robust to RNA-seq data noise
thanks to their use of the parsimony assumption, which,
however, also prevents them from finding overlapping iso-
forms. SLIDE, on the other hand, is capable of finding
overlapping isoforms but is more sensitive to RNA-seq
data noise. Despite their differences, a common obsta-
cle for both types of methods is the large search space
of possible mRNA isoforms for genes with complex splic-
ing structures (i.e., many exons). For the graph-based de
novomethods, a gene with many exons will lead to a graph
with large numbers of nodes and edges, making it diffi-
cult to search for isoforms as maximal paths. For SLIDE,
a gene with n exons will give rise to a total of 2n − 1
possible isoforms, placing great difficulty on the regular-
ized linear model to find the correct isoforms. Although
SLIDE is coupled with a naïve preselection procedure
to filter out the isoform candidates with unsupported
exon junctions by RNA-seq reads, this procedure is not
ideal for lowly expressed isoforms, whose exon junctions
may not be supported by reads due to the low read
coverage.
Given the wide existence of RNA-seq noise and the

large search space of possible isoforms, existing compu-
tational methods for isoform discovery have unsatisfac-
tory performance in many cases. In an evaluation con-
ducted by the RGASP consortium [16], Cufflinks only
achieved precision rates of 23%, 50% and 47% and recall
rates of 18%, 40% and 39% for discovering full-length
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mRNA isoforms from H. sapiens, D. melanogaster, and
C. elegans RNA-seq data respectively. For SLIDE, the
corresponding precision rates were 37%, 80% and 63%,
and the corresponding recall rates were 7%, 49% and 59%.
This evaluation showed that both Cufflinks and SLIDE,
as well as other evaluated methods, have low accuracy
for discovering human isoforms, mainly because many
human genes have large numbers of exons and thus a huge
search space of possible isoforms. In statistical literature,
for high-dimensional linear models with far more features
than observations, it was found that adding a screening
procedure to filter out excessive features in the search
space can improve the feature identification performance
of Lasso [17]. Since Lasso was used in SLIDE to find iso-
forms as features, we are motivated to reduce the search
space of possible isoforms by designing a screening (or
preselection) procedure, so as to improve the performance
of SLIDE and hopefully other isoform identification
methods.
Also motivated by SPACE and the good properties of

NMF, we propose a preselection method “Non-negative
Matrix Factorization Preselection” (NMFP) to improve
the accuracy of reference-based isoform discovery meth-
ods. Our goal is to use NMFP to greatly reduce the search
space of isoforms, and have the selected isoform candi-
dates cover most of the true isoforms. NMFP employs
NMF to select isoform candidates for a given gene by
decomposing its RNA-seq read count matrix. We demon-
strate the performance of NMFP by simulation and real
data studies. In the simulation, we generate RNA-seq
reads fromD.melanogaster (fly) andM.musculus (mouse)
using Flux Simulator [18] and show that NMFP can greatly
improve the accuracy of Cufflinks and SLIDE in isoform
discovery. We also show the efficacy of NMFP on discov-
ering D. melanogaster isoforms from real RNA-seq data.
Moreover, we evaluate the robustness of NMFP to the
choice of NMF ranks, the number of input samples in the
read count matrix, and gene expression levels. In addition,
we show that NMFP can increase the robustness of SLIDE
to its regularization parameter choice.

Methods
Our proposed method NMFP shares the same root as
SPACE, because they both use NMF to identify mRNA
isoforms. However, unlike SPACE that aims to directly
identify isoforms via NMF, NMFP has a less ambitious
goal, which is to identify a set of good isoform candidates
for downstream isoform discovery methods. To achieve
this goal, in NMFP we use high-frequency filtering to
alleviate the non-uniqueness issue of NMF results, and
design a model selection approach to choose the NMF
rank. Moreover, we develop a new NMF algorithm to
penalize the isoforms that have conflicting exons or exon
junctions.

Data processing
Suppose there are m RNA-seq data sets (samples) and a
gene has n subexons, which were defined as the exonic
regions between two adjacent splicing sites in SLIDE
[14]. For this gene, we first categorize RNA-seq reads
in every sample into bins, which are defined as two-
dimensional vectors (k, l), representing the mapped reads
(single-end reads or two ends of paired-end reads) with
starting position in the k-th subexon and ending posi-
tion in the l-th subexon, 1 ≤ k ≤ l ≤ n. Hence, this gene
has a total number of p = n + (n

2
)
bins. We count the

numbers of reads in every bin in all samples and gener-
ate a read count matrix U with dimensions p × m, with
rows corresponding to bins and columns corresponding to
samples
Since samplesmay have different sequencing depths and

bins may have different lengths (due to different lengths
of exons), to prevent the NMF results from being dom-
inated by samples with more reads or bins with greater
lengths, we normalize U into a matrix V by removing the
sequencing depth and bin length effects. We conduct the
normalization based on the following model

Uij = Rj · Pi , (1)

where Uij is the (i, j)-th entry of U, representing the read
count of the i-th bin in the j-th sample, Rj is the total
number of reads mapped to this gene in the j-th sam-
ple, and Pi is the probability that a read falls into the i-th
bin (0 ≤ Pi ≤ 1 and

∑p
i=1 Pi = 1). We assume that

Pi is proportional to the length of the i-th bin. Although
this assumption can be violated by the non-uniformity of
read distribution due to alternative splicing and sequenc-
ing noise, it provides an approximate and simple solu-
tion to removing bin length effects from the read count
matrix.
We describe the normalization process as follows.

1. Scale the read counts of each sample inverse
proportionally with its total number of reads

U ′
ij = Uij · R̄

Rj
, i = 1, 2, . . . , p ; j = 1, 2, . . . ,m ,

where R̄ = 1
m

∑m
j=1 Rj .

2. Further scale the read counts of each bin inverse
proportionally with its bin length

Vij = U ′
ij ·

1
pPi

, i = 1, 2, . . . , p ; j = 1, 2, . . . ,m ,

and denote V = (Vij), where Vij represents the
normalized read count of the i -th bin in the j -th
sample.
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Matrix decomposition model
Li and Wong [19] proposed a model to describe the rela-
tionship between the probe intensity v and the transcript
abundance t for microarray data

v = a · t + e , (2)

where a is the affinity of the probe, and e is an error term.
SPACE revised the Model (2) into the following matrix
model for p probes and s transcripts

V = A · G · T + ε , (3)

where V is a p × m matrix representing the intensities of
p probes in m samples; A is a p × p diagonal matrix rep-
resenting the affinity of p probes; G is a p × s indicator
matrix with binary elements indicating the existence of
the p probes in s transcripts; T is an s × m matrix repre-
senting the abundance of s transcripts inm samples; ε is a
p × m error matrix.
Inspired by the Models (2) and (3), we write the follow-

ing model for the relationship between normalized reads
counts and unknown transcript (i.e., mRNA isoform)
abundance

V = W · H + ε , (4)

whereV is the p×m normalized reads count matrix (from
last section “Data processing”), and W is a p × s isoform
composition matrix, whose rows and columns are bins
and mRNA isoforms respectively. Each column of W is
a p-dimensional vector with elements ∈ [0, 1], indicating
the existence of bins in an isoform, with the values subject
to RNA-seq noise and biases. Theoretically, all the exist-
ing bins in an isoform should have the same read density
assuming that RNA-seq reads follow a uniform distribu-
tion in that isoform. However, due to RNA-seq noise and
biases, the uniformity assumption is often violated, and
non-existing bins may contain erroneously mapped reads.
To account for these issues, wemodel the existence of bins
in an isoform as values between 0 and 1, where 1 indicates
a bin having themaximal read intensity among all the bins,
and 0 indicates a bin containing no mapped reads. H is a
s×m isoform abundancematrix, whose rows and columns
are mRNA isoforms and samples respectively. Each row of
H is an m-dimensional vector representing the isoform’s
abundance levels in the m samples. Based on our defini-
tion of W, hij (the abundance value of the i-th isoform
in the j-th sample) should be equal to the maximum bin
abundance of the i-th isoform in the j-th sample. ε is an
error matrix.
We can further decomposeW as

W = A · G (5)

where A is a p × p diagonal matrix with elements
∈ [0, 1], representing the biases of read counts in dif-
ferent bins. Such biases are attributable to the fea-
tures of the bins, such as GC contents and the
bins’ positions in transcripts. G is a p × s indica-
tor matrix with binary values to describe the existence
of bins in isoforms. Each column of G represents an
isoform.

Modified NMF approach
With the normalized read count matrix V, our goal is to
estimate G, whose columns will be regarded as isoform
candidates. To achieve this goal, we have to first estimate
W and A. We adopt the SPACE approach to estimate G.
In the SPACE method [4], given an estimate Ŵ = (Ŵik),
A was estimated as

Â = diag
(
Â11, . . . , Âpp

)
, where Âii = max

k=1,··· ,s
(Ŵik) .

(6)

In other words, Âii, the bias factor of read counts in the
i-th bin, is considered as maxk(Ŵik), the largest “adjusted
existence” of the i-th bin in all isoforms.
With Â and Ŵ, G is estimated as

Ĝ = (Ĝij), with Ĝij = I
(
(Â−1 · Ŵ)ij ≥ c

)
, (7)

where I(·) is an indicator function, and c ∈ IR is a thresh-
old to make Ĝ a binary matrix. We used c = 0.4 in this
paper.
Prior to that, we estimate W by decomposing V using

NMF. There exist many available NMF algorithms [5, 20–
22], which have different preferences over the factoriza-
tion results. Since our goal is to find isoform candidates
by decomposing V, one constraint we need is the com-
patibility of bins in every column of Ŵ, i.e., every isoform
found by NMF. For example, Bin (1, 3) and Bin (2, 2) are
conflicting and should not co-exist in an isoform, because
the former indicates that Subexon 2 is skipped, while the
latter implies the existence of Subexon 2.
To realize this constraint in NMF, we add a penalty term

to the standard NMF objective function as follows

D(V, WH) =
p∑

i=1

m∑
j=1

(
Vij log

Vij

(WH)ij
− Vij + (WH)ij

)

+ α
∑
i⊥j

(
WWT

)
ij

(8)

where p is the number of bins, m is the number of sam-
ples, and α is a regularization parameter controlling the
weight of the penalty term (e.g., α = 0.1). i ⊥ j denotes
that Bin i and Bin j are conflicting (See Section 1 in
the Additional file 1 for more detail). We estimate W by
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minimizing the objective function D(V,WH) subject to
a pre-specified s = rank(W), which is equivalent to the
number of columns of W. How to determine the rank
remains an open question. In NMFP, we choose the rank
by gap statistic, which was originally designed to select the
number of clusters in k-means clustering [23] (See Section
2 in the Additional file 1 for more detail). After obtaining
Ŵ, we use Eqs. (6) and (7) to find Ĝ, which indicates a set
of isoform candidates.
The penalty term in the objective function (8) can-

not fully prevent the co-existence of conflicting bins in
every isoform (i.e, column in Ĝ). To resolve this issue and
recover potentially true isoforms, we consider both the
existing and skipped statuses of the ambiguous subexons
that lead to conflicting bins. For example, if both Bin (1,3)
and Bin (2,2) exist, Subexon 2 is ambiguous. We will con-
sider the cases of Subexon 2 being existing and skipped
as two different isoforms. If there are n ambiguous subex-
ons in an isoform candidate, 2n isforms will be considered,
but only those whose subexons and subexon junctions
are supported by RNA-seq reads will be kept as isoform
candidates.

Aggregation of multiple NMF runs
To address the issue of non-unique NMF results, we
use a high-frequency filtering approach to find isoform
candidates identified in a number of NMF runs. Specif-
ically, we implement the NMF estimation procedure
described in the previous two subsections for N times
(e.g. N = 100) and aggregated the identified isoform
candidates into a candidate pool. In the filtering step,
we first remove the isoform candidates, which contain
subexon junctions not supported by reads, from the pool.
Then among the rest of candidates in the pool, we only
retain the high-frequency ones, which are selected in
at least r NMF runs (e.g., r = 20), as final isoform
candidates.
The NMFP method is illustrated in Fig. 1.

Results
We conduct simulations and real-data analyses in many
scenarios to demonstrate the effectiveness of NMFP in
improving the performance of downstream isoform dis-
covery methods. The following results show that NMFP
can help Cufflinks and SLIDE achieve better isoform dis-
covery accuracy. We also study the robustness of NMFP
to the choice of NMF rank, the number of input sam-
ples in the read count matrix, and the gene expression
levels.

Simulation results in D.melanogaster
We use Flux Simulator [18] to simulate RNA-seq reads
of D. melanogaster (with reference genome dm6 and

Ensembl annotation BDGP6 of release 80). We focus
on 4125 genes on chr3R, in accordance with the SLIDE
paper [14], which showed good performance of SLIDE
on genes with 3 to 10 subexons. We simulate 50 sam-
ples, each with 10,000,000 RNAmolecules and 50,000,000
paired-end reads with length 2 × 76 bp, from these
genes’ isoforms in the annotation. The isoform abundance
is randomly assigned by Flux Simulator. Based on the
way we define subexons (Additional file 1: Figure S1),
51.7% (2132) genes contain 3 to 10 subexons (Table 1).
Among these genes, 44.6% (951) have more than one iso-
forms in the annotation. We apply NMFP to these 951
genes.
To check the effects of NMFP on improving the isoform

discovery performance of SLIDE, we define a new pro-
cedure called “NMFP+SLIDE”, which combines NMFP
and SLIDE by inputting the isoform candidates found by
NMFP into SLIDE. In the original SLIDE method, 2n − 1
possible isoforms are enumerated for an n-subexon gene,
and SLIDE uses a simple preselection to filter out the iso-
forms with subexons or subexon junctions not supported
by reads. NMFP+SLIDE replaces this preselection step by
NMFP.
Similarly, we define “NMFP+Cufflinks”, which inputs

the isoform candidates found by NMFP as a GTF file into
Cufflinks and uses Cufflinks with the “–GTF” option to
estimate the abundance of these candidates. The candi-
dates with non-zero estimated abundance are kept as the
isoforms identified by NMFP+Cufflinks. This is differ-
ent from the original Cufflinks, because it does not rely
on a connectivity graph or the parsimony assumption as
Cufflinks does.
To compare SLIDE with NMFP+SLIDE, and Cufflinks

with NMFP+Cufflinks, we evaluate their isoform discov-
ery performance at three different levels: the nucleotide,
exon and transcript levels, similar to the RGASP eval-
uation [16]. In this comparison, we also evaluate the
performance of NMFP alone, because it is important to
check whether the isoform candidates found by NMFP
have a good coverage of the true isoforms. Since SLIDE
has two default values for its regularization parameter λ

in the Lasso regression (λ = 0.2 for fewer isoforms and
λ = 0.01 for more isoforms), we include two versions of
SLIDE in this comparison: “SLIDE(fewer)” for λ = 0.2 and
“SLIDE(more)” for λ = 0.01. This results in a comparison
of seven methods in total:

• Cufflinks
• NMFP+Cufflinks
• SLIDE(fewer)
• NMFP+SLIDE(fewer)
• SLIDE(more)
• NMFP+SLIDE(more)
• NMFP
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Fig. 1 a Diagram of the NMFP method. b Illustration of the NMF approach in NMFP

Evaluation at nucleotide level
We first compare the seven methods at the nucleotide
level, that is, how many nucleotides are shared by the
identified isoforms of each method and the true iso-
forms in the annotation. For each identified isoform,
we match it to the annotated isoform that shares the

most nucleotides with it. We rank the identified iso-
forms by their percentages of overlapping nucleotides
with their matched annotated isoforms, from the high-
est percentage to the lowest. If there are k identified
isoforms and r annotated isoforms and k > r, only
the top r identified isoforms would be paired with an

Table 1 Profiles of 4125 genes in chr3R of D. melanogaster

# of subexons n n ≤ 2 3 ≤ n ≤ 10 11 ≤ n ≤ 15 16 ≤ n ≤ 20 n > 20 Sum

1618 (39.2%) 2132 (51.7%) 232 (5.6%) 79 (1.9%) 64 (1.6%) 4125

# of annotated isoforms q q = 1 q = 2 q = 3 q = 4 q > 4 Sum

2450 (59.4%) 878 (21.3%) 356 (8.6%) 180 (4.4%) 261 (6.3%) 4125
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annotated isoform, and the rest k − r identified iso-
forms would be counted as false positives with zero
precision rates. For each identified isoform paired with
an annotated isoform, we calculate its precision rate as
#overlapping nucleotides with the paired annotated isoform

#nucleotides in the identified isoform . The preci-
sion rate of a gene was defined as the average of the
individual precision rates of its identified isoforms.
Similarly, we match each annotated isoform with

an identified isoform. We calculate the recall rate of
each annotated isoform with a paired identified isoform
as # overlapping nucleotides with the paired identified isoform

#nucleotides in the annotated isoform . If there
are more annotated isoforms than identified ones, the
unpaired annotated isoforms would have zero recall rates.
For a given gene, its recall rate is defined as the average
of the individual recall rates of its annotated isoforms.
Given the precision and recall rates of a gene, we calculate
the F score as the their harmonic mean. That is, F score
= 2

1/precision+1/recall .
We calculate the precision and recall rates of every

method in each of the 50 samples by taking the average of
951 genes. In the results, all methods except NMFP have
precision rates above 0.76 in all samples. Although NMFP
has low precision rates, its recall rates are as high as 0.96,
implying that its identified isoform candidates has a good
coverage of annotated isoforms (Fig. 2). NMFP+Cufflinks
has lower precision rates but much higher recall rates
than Cufflinks, because the latter identifies fewer isoforms
given its parsimony assumption. SLIDE has opposite
results, which show that NMFP+SLIDE have higher
precision rates but lower recall rates than SLIDE, for both

SLIDE(fewer) and SLIDE(more). The reason is that the
original versions of SLIDE have a larger search space than
NMFP+SLIDE, and thus they are likely to find more iso-
forms and thus cover more nucleotides given the same
Lasso regularization parameter.
In terms of F scores, which combine precision and

recall rates, NMFP is shown to have greatly improved
the performance of Cufflinks, by increasing the F scores
of approximately 0.6 for Cufflinks to more than 0.8
for NMFP+Cufflinks. Strikingly, with the addition of
NMFP, Cufflinks outperforms SLIDE, which originally
had better F scores than Cufflinks without NMFP [14].
NMFP+Cufflinks becomes the top performer in F scores.
On the other hand, NMFP does not much improve the
performance SLIDE(more) and even slightly deproves the
performance SLIDE(fewer) at the nucleotide level. The
reason is that the original SLIDE has reasonably good
performance at the nucleotide level, though its identified
isoforms are often similar to but not exactly the annotated
isoforms (see the subsection “Evaluation at transcript
level”).

Evaluation at exon level
We next evaluate the performance of these seven meth-
ods at the exon level. If an exon in an identified isoform
overlaps at least 50% of an annotated exon, we call the two
exons “overlapping”. Similar to ourmatching scheme at the
nucleotide level, we match identified isoforms with anno-
tated isoforms at the exon level. Then for each identified
isoform, its precision rate at the exon level is defined as

Fig. 2 Isoform discovery performance at the nucleotide level. a Precision rates, b Recall rates, and c F scores of the identified isoforms by seven
methods (Cufflinks, NMFP+Cufflinks, SLIDE(fewer), NMFP+SLIDE(fewer), SLIDE(more), NMFP+SLIDE(more), and NMFP) on 50 simulated RNA-seq
data sets of D. melanogaster
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# overlapping exons with the paired annotated isoform
# exons in the identified isoform . Similarly for

each annotated isoform, its recall rate is defined as
# overlapping exons with the paired identified isoform

# exons in the annotated isoform . Then for every
gene, its precision and recall rates are calculated as the
average precision rate of its identified isoforms and the
average recall rate of its annotated isoforms. Its F score is
the harmonic mean of its precision and recall rates. For
every method in every sample, the precision, recall and F
score are calculated by taking the average of 951 genes.
Similar to the performance at nucleotide level, NMFP

significantly improves the F scores of Cufflinks from
approximately 0.6 to over 0.8, yet it does not improve
the performance SLIDE (Fig. 3). The reason is that the
original SLIDE has reasonably good performance at the
exon level, though its identified isoforms are often sim-
ilar to but not exactly the annotated isoforms (see the
subsection “Evaluation at transcript level”).

Evaluation at transcript level
Compared to the previous evaluation at nucleotide and
exon levels, the evaluation at the transcript level is more
important, as the ultimate goal of isoform discovery
methods is to correctly identify full-length mRNA iso-
forms. At the transcript level, if an identified isoform and
an annotated isoform have every exon matched by the
criterion we defined for matching at the exon level, we
called these two isoforms “matched”. Then for every gene,
its precision and recall rates at the transcript level are
defined as # identified isoforms matched with annotated isoforms

# identified isoform and
# annotated isoforms matched with identified isoforms

# annotated isoform respectively.
Its F-score is the harmonic mean of its precision and

recall rates. For every method in every sample, the pre-
cision, recall and F score are calculated by taking the
average of 951 genes.
In the results, NMFP has high recall rates greater than

0.85, indicating that the isoform candidates found by
NMFP have a good coverage of annotated transcripts
(Fig. 4). Meanwhile, NMFP has precision rates above
0.4, implying that the number of isoform candidates is
less than 2.5 times the number of annotated isoform.
This demonstrates the effectiveness of NMFP in reduc-
ing the search space of possible isoforms. In terms of F
scores at the transcript level, NMFP greatly improves the
performance of both Cufflinks and SLIDE. Specifically,
NMFP+Cufflinks has F scores above 0.6, while Cufflinks
has F scores only below 0.5. The reason is that NMFP
greatly improves the recall rates of Cufflinks. NMFP
also increases the F scores of SLIDE(more) from 0.5 to
approximately 0.6, because NMFP helps SLIDE(more)
achieve better precision rates. These results illustrate the
effectiveness of NMFP in reducing the search space for
SLIDE (thus increasing the precision of SLIDE) and in
removing the parsimony assumption for Cufflinks (thus
increasing the recall of Cufflinks). To explain why NMFP
can improve SLIDE’s performance at the transcript level
but not at the nucleotide or exon level, we find the rea-
son as the unidentifiability issue of SLIDE with a large
search space of possible isoforms. Due to the short RNA-
seq read lengths, there may exist multiple sets of iso-
forms (as combinations of exons) that can well explain
the observed RNA-seq reads. Hence with a large search
space of isoforms, SLIDE are likely to miss the true

Fig. 3 Isoform discovery performance at the exon level. a Precision rates, b Recall rates, and c F scores of the identified isoforms by seven methods
(Cufflinks, NMFP+Cufflinks, SLIDE(fewer), NMFP+SLIDE(fewer), SLIDE(more), NMFP+SLIDE(more), and NMFP) on 50 simulated RNA-seq data sets of
D. melanogaster
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Fig. 4 Isoform discovery performance at the transcript level. a Precision rates, b Recall rates, and c F scores of the identified isoforms by seven
methods (Cufflinks, NMFP+Cufflinks, SLIDE(fewer), NMFP+SLIDE(fewer), SLIDE(more), NMFP+SLIDE(more), and NMFP) on 50 simulated RNA-seq
data sets of D. melanogaster

isoforms, but it still can detect nucleotides and exons rea-
sonably well. Since NMFP can shrink the search space to
have a higher concentration of true isoforms (i.e., anno-
tated isoforms in the simulation), SLIDE would become
more likely to identify the true isoforms and thus achieve
better isoform discovery accuracy at the transcript
level.

Robustness of NMFP to the choice of NMF rank
How to determine the matrix rank of factorization results
is a difficult and open question in NMF [3, 4, 7–9]. In
NMFP, the NMF rank determines the number of iso-
form candidates to be found after each NMF run. Our
aggregation of multiple NMF runs and the subsequent
high-frequency filtering can increase the robustness of
NMFP to the choices of NMF rank. To illustrate this point,
we use D. melanogaster gene FBgn0039955 as an example
and apply NMFP with different NMF ranks to the simu-
lated RNA-seq data. This gene has 4 annotated isoforms
(in Ensembl BDGP6 of release 80) and 10 subexons. In
the result (Fig. 5), NMFP has a good recall rate of 0.9
for ranks ranging from 3 to 9. The precision rate and F
score are also stable in this range. This result and other
examples in the Additional file 1 show the robustness of
NMFP to the choices of NMF rank. In practice, NMFP
selects the rank based on gap statistic (See Section 2 in
the Additional file 1 for more detail). Nevertheless, we
note that the NMF rank cannot be too much smaller or
larger than the number of true isoforms. If too small, the
rank will lead to too few isoform candidates to cover the
true isoforms. If too large, the identified isoform candi-

dates will be mostly individual bins but not full-length
isoforms.

Simulation results inM.musculus
We also evaluate the performance of NMFP in M.
musculus (mouse) (reference genome mm10 and annota-
tion GRCm38 of release 81), a mammalian model organism
with more complex gene structures than D. melanogaster.

Fig. 5 Robustness of NMFP performance to NMF rank choices.
Precision (blue), recall (orange) and F scores (red) of the identified
isoform candidates by NMFP are evaluated at 9 different NMF ranks
on simulated data from D. melanogaster gene FBgn0039955, which
has 10 subexons and 4 annotated isoforms
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We generate 100 RNA-seq samples from mouse chr1
using Flux Simulator, with paired-end reads of length
2 × 76 bp. The 100 samples have 10 different numbers
of RNA molecules and 10 different numbers of reads.
The numbers of RNA molecules range from 4,200,000 to
6,000,000, increasing in steps of 200,000. The number of
reads range from 11,000,000 to 20,000,000, increasing in
steps of 1,000,000. More detail on the 100 samples is sum-
marized in Section 3.2 and Table S1 of the Additional
file 1. On chr1, there are 3432 genes, among which we
are interested in 852 genes with 3-10 subexons and 2-17
annotated isoforms (more detail in Additional file 1: Table
S2). In this simulation, we calculate precision and recall
rates and F scores at the transcript level for every method,
same as what we did in the simulation in D. melanogaster.

Increased robustness of NMFP+SLIDE to the choices of
parameter λ
By shrinking the searching space of possible isoforms,
NMFP can effectively increase the robustness of SLIDE
to its regularization parameter λ in the Lasso estimation.
We conduct case studies on three mouse genes, for which
we apply NMFP+SLIDE and SLIDE with 150 λ values,
ranging from 0.001 to 0.15 by 0.001. The results show
that NMFP+SLIDE has better isoform discovery accuracy
than SLIDE for smaller λ values (Fig. 6 and Additional
file 1: Figure S3). This finding is expected because a
smaller search space does not need a large regularization
parameter in the Lasso estimation. It indicates that NMFP
can reduce the difficulty of choosing λ in the use of SLIDE,
as users can simply choose a small λ value to obtain good
isoform discovery results.

Robustness of NMFP to the number of samples
In practice, the number of RNA-seq data sets under the
same biological condition can be quite small, though this
issue has become less of a concern given the rapid accu-
mulation of RNA-seq data sets in public repositories. To
make NMFP a practically useful tool, it is important to
evaluate its robustness to m, the number of input sam-
ples in the read count matrix V. We apply NMFP to
different numbers of simulated mouse samples, from 20
to 100 samples, following the sample order with increas-
ing sequencing depths (for the sample order, please see
Section 3.2 in the Additional file 1). As shown in Fig. 7, the
NMFP results are robust to the number of samples and
differences in sequencing depths.

Simulation study on the effects of expression levels
We use another simulation study to demonstrate that
NMFP is capable of increasing the isoform discovery
accuracy for a lowly expressed gene in a sample by
leveraging other samples (Fig. 8). In this simulation,
we construct a gene with 8 exons and 3 true isoforms
(10111111), (10011111) and (01111111), which indicate
the skipping of Exon 2, Exons 2 and 3, and Exon 1
respectively. The exon lengths are randomly sampled from
{100, 150, 200, . . . , 500}. We simulate 10 samples. In each
sample, the proportions of the three isoforms are ran-
domly simulated from U [0, 1], and the three proportions
are normalized to sum up to 1. Given an isoform, single-
end reads with length 76 bp are assumed to follow a
uniform distribution on this isoform. We fix the gene
expression level in Sample 1 as 3 RPKM (Reads Per Kilo-
base of transcript per Million mapped reads) and vary the
gene expression levels in the other nine samples from 0.5,

Fig. 6 NMFP increases the robustness of SLIDE to the choices of regularization parameter λ, from 0.001 to 0.15 by 0.001. F scores of NMFP+SLIDE
(orange) and SLIDE (blue) were calculated at 150 values of λ used in the Lasso regression in SLIDE. NMFP used an NMF rank = 3. RNA-seq data were
simulated from mouse gene ENSMUSG00000025940, which has 7 subexons and 4 annotated isoforms
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Fig. 7 Robustness of NMFP to the number of input RNA-seq samples

1, 2 to 10 RPKM in 11 different settings. In each setting,
we calculate a read count matrix U from the gene expres-
sion levels, the isoform proportions, and the uniformity
assumption. Then we add white Gaussian noise N(0, 1) to
U, and normalize the resulting matrix as V, for which we
apply NMFP. Figure 8 depicts the relationship between the
gene expression level in Samples 2–10 and the minimum
number of isoform candidates found by NMFP to cover
the three true isoforms. When the gene expression level is
below 3 RPKM, the number of isoform candidates needed
to cover the true isoforms is more than 60 with a large
variance.
Once the gene expression level goes above 3 RPKM, the

number of needed candidates decreases to approximately
30 and has a reduced variance. This result demonstrates
that for a gene with low expression in a sample, NMFP
can take advantage of other samples to help reduce the

Fig. 8 Numbers of isoform candidates found by NMFP to cover true
isoforms vs. gene expression levels in additional samples other than
the sample of interest

number of isoform candidates of this gene. This prop-
erty makes it possible for downstream isoform discovery
methods to explore isoform structures of lowly expressed
genes in a sample given the availability of other samples
where the genes are more highly expressed.

Real data case study
We further demonstrate the performance of NMFP and
compare the seven methods on 74 real RNA-seq data sets
of D. melanogaster (reference genome dm5 and annota-
tion BDGP5 of release 66). Description of the 74 data sets
is in Section 5 of the Additional file 1. Since we have no
knowledge on the true isoforms existing in real RNA-seq
data sets, we interpret the results by studying a few genes
in Integrative Genomics Viewer (IGV) [24, 25], where
we plot the read distribution in an RNA-seq data set (D.
melanogaster pupae 3 days) and the isoforms identified by
the seven methods.
For D. melanogaster gene FBgn0037643, which has 11

subexons and 6 annotated isoforms, NMFP finds 20 iso-
form candidates, which contain 4 annotated isoforms and
miss the other two by a very short subexon (of only 3 bp).
Cufflinks only identifies one annotated isoform, which
cannot explain the observed read distribution in the last
subexon. In contrast, NMFP+Cufflinks successfully iden-
tifies four annotated isoforms, which successfully capture
the last subexon. NMFP also helps SLIDE discover full-
length annotated isoforms instead of isofrom fragments
(Fig. 9). More real data case studies are in Section 3.4 of
the Additional file 1.

Conclusion and discussions
NMF is inherently capable of providing interpretable
results for the problem of mRNA isoform discovery. From
an input matrix of RNA-seq read counts, NMF can find
a sparse structure to indicate which bins are likely to
form one isoform. However, NMF alone is not compe-
tent for recovering isoforms from RNA-seq data because
of several reasons: (i) inaccurate read coverages and miss-
ing junction reads due to RNA-seq biases and mapping
difficulties, (ii) non-uniqueness of NMF solutions lead-
ing to ambiguous isoform discovered, (iii) conflicting bins
co-existing in discovered isoforms making the results bio-
logically invalid, and (iv) difficulty in determining the
NMF rank. Those issues can be largely alleviated or
resolved when NMF is used as a method to pre-select iso-
form candidates rather than determining final isoforms.
For (i), (ii) and (iv), since each non-unique NMF solu-
tion provides isoform candidates that may include some
true isoforms among many false positives, aggregating
multiple NMF solutions to find the high-frequency iso-
forms will increase the chance of discovering the true
isoforms. We demonstrate in the simulation study of M.
musculus, that the NMFP results are not sensitive to the



Ye and Li BMCGenomics 2016, 17(Suppl 1):11 Page 138 of 192

Fig. 9 RNA-seq read coverage, annotation and isoform discovery results of FBgn0037643

choice of NMF ranks. We address (iii) by adding a penalty
term to NMF and decomposing the invalid isoform
candidates with conflicting bins into biologically valid
isoforms.
We propose NMFP as a preselection method for

improving the accuracy of downstream isoform discov-
ery methods. NMFP takes input from annotated genes
and exon boundaries (e.g. UCSC and Ensemble anno-
tations) and/or de novo assemblies (e.g. Cufflinks out-
put). It outputs a small pool of isoform candidates,
which are expected to well cover true isoforms and can
form a reduced search space for downstream methods.
From a general perspective, combination of methods with
opposing advantages and drawbacks may improve over

individual methods. NMFP and SLIDE are both built on
the idea of selecting isoforms from all possibilities, while
Cufflinks assembles transcripts directly via an overlap
graph. A possible reason for NMFP+Cufflinks to become
the top performer is that it combines the strengths
of two different approaches: selection and assembly.
This may also explain why NMFP+SLIDE, which com-
bines two selection based methods, is outperformed by
NMFP+Cufflinks, though SLIDE alone outperforms Cuf-
flinks without NMFP. However compared to SLIDE itself,
NMFP+SLIDE still has improved performance at the
transcript level, and even becomes more robust to the reg-
ularization parameter choices. Overall, we demonstrate by
simulation and real data studies that NMFP is a useful tool
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for improving isoform discovery accuracy and robustness
in many aspects.
Nevertheless, NMFP still encounters several problems

and there remains substantial room for improvement. The
noise and bias generated during RNA-seq still has large
influence on NMFP results. Some methods for denos-
ing and debiasing may help the performance of NMFP
[26, 27]. In addition, NMFP requires enough samples to
implement NMF, for which normalization is important
but difficult for samples generated by different platforms
or from different sources. Normalization methods for
RNA-seq data (e.g., [28]) may improve the performance
of NMFP. Moreover, the current NMFP algorithm has
high computational complexity, and optimizing the algo-
rithm is one of our top priority. We also intend to build
a database of isoform candidates found by NMFP for
different species, so that researchers can conveniently
use them for downstream analysis without aggregating
multiple samples and going through the whole NMFP
pipeline.

Additional file

Additional file 1: More detail on the methods and results; more
simulation and real data results. (PDF 606 kb)
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