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Abstract

Background: We previously established that six sequence-specific transcription factors that initiate anterior/
posterior patterning in Drosophila bind to overlapping sets of thousands of genomic regions in blastoderm
embryos. While regions bound at high levels include known and probable functional targets, more poorly bound
regions are preferentially associated with housekeeping genes and/or genes not transcribed in the blastoderm,
and are frequently found in protein coding sequences or in less conserved non-coding DNA, suggesting that many
are likely non-functional.

Results: Here we show that an additional |5 transcription factors that regulate other aspects of embryo
patterning show a similar quantitative continuum of function and binding to thousands of genomic regions in vivo.
Collectively, the 21 regulators show a surprisingly high overlap in the regions they bind given that they belong to
Il DNA binding domain families, specify distinct developmental fates, and can act via different cis-regulatory
modules. We demonstrate, however, that quantitative differences in relative levels of binding to shared targets
correlate with the known biological and transcriptional regulatory specificities of these factors.

Conclusions: It is likely that the overlap in binding of biochemically and functionally unrelated transcription
factors arises from the high concentrations of these proteins in nuclei, which, coupled with their broad DNA
binding specificities, directs them to regions of open chromatin. We suggest that most animal transcription factors
will be found to show a similar broad overlapping pattern of binding in vivo, with specificity achieved by modulating
the amount, rather than the identity, of bound factor-.
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Background

Sequence-specific transcription factors regulate spatial and
temporal patterns of mRNA expression in animals by binding
in different combinations to cis-regulatory modules (CRMs)
located generally in the non-protein coding portions of the
genome (reviewed in [1-4]). Most of these factors recognize
short, degenerate DNA sequences that occur multiple times
in every gene locus. Yet only a subset of these recognition
sequences are thought to be functional targets [1,5,6].
Because we do not sufficiently understand the rules deter-
mining DNA binding in vivo or the transcriptional output
that results from particular combinations of bound factors,
we cannot at present predict the locations of CRMs or pat-
terns of gene expression from genome sequence and in vitro
DNA binding specificities alone.

To address this challenge, the Berkeley Drosophila Tran-
scription Network Project (BDTNP) has initiated an interdis-
ciplinary analysis of the network controlling transcription in
the Drosophila melanogaster blastoderm embryo [7-12].
Only 40 to 50 sequence-specific regulators provide the spatial
and temporal patterning information to the network, making
it particularly tractable for system-wide analyses [13-15].

The factors are arranged into several temporal cascades and
can be grouped into classes based on the aspect of patterning

Table |
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they control and their time of action (Table 1) [16-19]. Along
the anterior-posterior (A-P) axis, maternally provided Bicoid
(BCD) and Caudal (CAD) first establish the expression pat-
terns of gap and terminal class factors, such as Giant (GT) and
Tailless (TLL). These A-P early regulators then collectively
direct transcription of A-P pair-rule factors, such as Paired
(PRD) and Hairy (HRY), which in turn cross-regulate each
other and may redundantly repress gap gene expression [20].
A similar cascade of maternal and zygotic factors controls
patterning along the dorsal-ventral (D-V) axis [19]. Approxi-
mately 1 hour after zygotic transcription has commenced, the
expression of around 1,000 to 2,000 genes is directly or indi-
rectly regulated in complex three-dimensional patterns by
this collection of factors [12,21-23].

Tens of functional CRMs have been mapped within the net-
work (for example, [8,19,24-26]), which each drive distinct
subsets of target gene expression and which have generally
been assumed to be each directly controlled by only a limited
subset of the blastoderm factors. For example, the four stripe
CRMs in the even-skipped (eve) gene are each controlled by
various combinations of A-P early regulators, such as BCD
and Hunchback (HB), and a separate later activated autoreg-
ulatory CRM is controlled by A-P pair rule regulators, includ-
ing EVE and PRD [24,27-29].

The 21 sequence-specific transcription factors studied

Factor Symbol DNA binding domain Regulatory class
Bicoid BCD Homeodomain A-P early maternal
Caudal CAD Homeodomain A-P early maternal
Giant GT bZip domain A-P early gap
Hunchback HB C2H2 zinc finger A-P early gap
Knirps KNI Receptor zinc finger A-P early gap
Kruppel KR C2H2 zinc finger A-P early gap
Huckebein HKB C2H2 zinc finger A-P early terminal
Tailless TLL Receptor zinc finger A-P early terminal
Dichaete D HMG/SOX class A-P early gap-like
Ftz FTZ Homeodomain A-P pair rule
Hairy HRY bHLH A-P pair rule
Paired PRD Homeodomain/paired domain A-P pair rule
Runt RUN Runt domain A-P pair rule
Sloppy paired | SLPI Forkhead domain A-P pair rule
Daughterless DA bHLH D-V maternal
Dorsal DL NFkB/rel D-V maternal
Mad MAD SMAD-MH | D-V zygotic
Medea MED SMAD-MH | D-V zygotic
Schnurri SHN C2H2 zinc finger D-V zygotic

Snail SNA C2H2 zinc finger D-V zygotic
Twist TWI bHLH D-V zygotic

A-P, anterior-posterior; D-V, dorsal-ventral.
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The different transcriptional regulatory activities of these fac-
tors leads them to convey quite distinct developmental fates
and morphological behaviors on the cells in which they are
expressed. For example, the D-V factors Snail (SNA) and
Twist (TWTI) specify mesoderm, the pair rule factors EVE and
Fushi-Tarazu (FTZ) specify location along the trunk of the A-
P axis, and TLL and Huckebein (HKB) specify terminal cell
fates.

The blastoderm regulators include members of most major
animal transcription factor families (for example, Table 1)
and act by mechanisms common to all metazoans [1]. Thus,
the principles of transcription factor targeting and activity
elucidated by our studies should be generally applicable.

We previously used immunoprecipitation of in wvivo
crosslinked chromatin followed by microarray analysis
(ChIP/chip) to measure binding of the six gap and maternal
regulators involved in A-P patterning in developing embryos
(Table 1) [11]. These proteins were found to bind to overlap-
ping sets of several thousand genomic regions near a majority
of all genes. The levels of factor occupancy vary significantly
though, with the few hundred most highly bound regions
being known or probable CRMs near developmental control
genes or near genes whose expression is strongly patterned in
the early embryo. The thousands of poorly bound regions, in
contrast, are commonly in and around house keeping genes
and/or genes not transcribed in the blastoderm and are either
in protein coding regions or in non-coding regions that are
evolutionarily less well conserved than highly bound regions.
For five factors, their recognition sequences are no more con-
served than the immediate flanking DNA, even in known or
likely functional targets, making it difficult to identify func-
tional targets from comparative sequence data alone.

Here we extend our analysis to an additional 15 blastoderm
regulators belonging to four new regulatory classes: A-P ter-
minal, A-P gap-like, A-P pair rule and D-V (Table 1). We find
that these proteins, like the A-P maternal and gap factors,
bind to thousands of genomic regions and show similar rela-
tionships between binding strength and apparent function.
Remarkably, these structurally and functionally distinct fac-
tors bind to a highly overlapping set of genomic regions. Our
analyses of this uniquely comprehensive dataset suggest that
distinct developmental fates are specified not by which genes
are bound by a set of factors, but rather by quantitative differ-
ences in factor occupancy on a common set of bound regions.

Results and Discussion

We performed ChIP/chip experiments to map the genome-
wide binding of 15 transcription factors and analyzed these
data along with the six factors whose binding we have previ-
ously described. In addition to these 21 factors, we also deter-
mined the in vivo binding of the general transcription factor
TFIIB, which, together with previous data on the transcrip-
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tionally elongating, phosphorylated form of RNA polymerase
[11], provide markers for transcriptionally active genes and
proximal promoter regions.

ChlP/chip is a quantitative measure of relative DNA
occupancy in vivo

We applied stringent statistical criteria to identify the regions
bound by each factor with either a 1% or 25% expected false
discovery rate (FDR) [11]. While there was considerable vari-
ation in the number of bound regions identified for each fac-
tor, there were typically around 1,000 bound regions at a 1%
FDR and 5,000 at a 25% FDR (Table 2). We ranked bound
regions for each factor based on the maximum array hybridi-
zation intensity within the 500-bp "peak" window of maximal
binding within each region.

We carried out an extensive series of controls and analyses to
validate the antibodies and array data, and to ensure that our
array intensities could be interpreted as a quantitative meas-
ure of relative transcription factor occupancy on each
genomic region, that is, as a measure of the average numbers
of molecules of a particular factor occupying each region (see
[11] for further details).

For all but three factors, antisera were affinity-purified
against recombinant versions of the target protein from
which all regions of significant homology to other Drosophila
proteins were removed. Where practical, antisera were inde-
pendently purified against non-overlapping portions of the
factor. When this was done, the ChIP/chip data from these
different antisera gave strikingly similar array intensity pat-
terns (for example, Figure 1), strong overlap between the
bound regions identified (mean overlap = 91%; Table 2; Addi-
tional data file 1), and high correlation between peak window
intensity scores (mean r = 0.79; Table 2), all of which strongly
indicates that the antibodies significantly immunoprecipitate
only the specific factor and that our ChIP/chip assay is very
quantitatively reproducible. The specificity of the antibodies
used is further confirmed by immunostaining experiments
that show that they recognize proteins with the proper spatial
and temporal pattern of expression (Additional data file 1).

We used two different methods to estimate FDRs, one based
on precipitation with non-specific IgG, and the other based
on statistical properties of data from the specific antibody
alone. These estimates broadly agree (Additional data file 2).
Our previously published quantitative PCR analysis of immu-
noprecipitated chromatin for regions randomly selected from
the rank list of bound regions and also control BAC DNA
'spike in' experiments support the FDR estimates, suggest
that the false negative rate is very low for all but the most
poorly bound regions, and indicate that the array intensity
signals correlate with the relative amounts of genomic DNA
brought down in the immunoprecipitation [11].
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Table 2

The numbers of genomic regions bound in blastoderm embryos

Number of bound regions Overlap between antibodies for the same factor

Regulatory class Factor antibody =~ Amino acids recognized 1% FDR 25% FDR % overlap r
A-P early BCD I* 56-330 619 3,295 95 0.79
maternal BCD 2* 330-489 702 3,404 93 0.8l
CAD I* 1-240 1,591 6,326 NA NA
A-P early gap GT 2% 182-353 1,070 3,968 NA NA
HB I* 1-305 1,832 4,707 86 0.64
HB 2% 306-758 1,718 6,675 92 0.80
KNI I* 130-280 36 330 97 0.90
KNI 2% 281-425 197 5,167 83 0.86
KR I* 1-230 3,593 11,323 96 0.91
KR 2% 350-502 4,084 12,255 93 0.93
A-P early terminal HKB | I-100 1,012 5,339 99, 94 0.88, 0.64
HKB 2 101-200 614 4,241 99, 89 0.81,0.34
HKB 3 201-297 638 3,766 99, 99 0.92, 0.99
TLL | 110-259 429 2,650 NA NA
A-P early gap-like D | 1-103 6,452 16,501 NA NA
A-P pair rule FTZ3 All 403 3,721 NA NA
HRY 1 123-221 1,704 6,053 97 0.80
HRY 2 254-337 2,729 10,979 80 0.73
PRD | 355-450 2,061 7,145 96 0.93
PRD 2 450-613 1,273 5691 99 0.92
RUN | 24-127, 240-318 921 8,809 77 0.79
RUN 2 319-510 172 2,903 99 0.75
SLPI | I-119 1,171 6,974 NA NA
D-V maternal DA 2 511-693 5,534 14,144 NA NA
DL3 All 9,358 18,113 NA NA
D-V zygotic MAD 2 144-254 204 10,969 NA NA
MED 2 385-523, 630-713 5,458 9,273 NA NA
SHN 2 1617-1750 341 1,400 47 0.70
SHN 3 2115-2279 121 363 87 0.38
SNA | 75-166 596 4,868 100 0.87
SNA 2 167-258 2,800 15811 61 0.82
TWI | 1-178 6,686 17,486 99 0.98
TWI 2 259-363 7416 19,605 98 0.98
General Pol Il H14* CTD 3,108 7,991 NA NA
TFIIB All 1,943 6,002 NA NA

The number of bound regions at 1% and 25% false discovery rate (FDR) thresholds were determined by the symmetric null test [| 1]. The percentage
overlap is defined as the percentage of 1% FDR 500-bp peak windows for one antibody that completely overlap a 25% FDR bound region for the
other antibody/antibodies for the same factor. The Pearson correlation coefficient (r) is the correlation between the peak score from 1% FDR bound
regions for one antibody and the corresponding 500 bp window score for the second antibody. Asterisks indicate previously published data [11].
NA, not applicable.
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Similar patterns of in vivo DNA binding are detected by antibodies recognizing distinct epitopes on the same factor. The 675-bp window scores for ChIP/
chip experiments across the rhomboid (rho) gene locus. Data are shown for pairs of antibodies against non-contigous portions of PRD and TWI proteins

(Table 2). Nucleotide coordinates in the genome are given in base-pairs.

The enrichment of factor recognition DNA sequences in
ChIP/chip peaks shows a modest positive correlation with
peak array intensity score. Importantly, this is seen even in
the upper portion of the rank list where the percentages of
false positives are too few to significantly influence the analy-
sis (Figure 2; Additional data files 3 and 4) [11]. While the
presence of predicted binding sites is neither a necessary nor
sufficient determinant of binding, this correlation strongly
suggests that the number of factor molecules bound to a DNA
region in vivo significantly affects the amount of each DNA
region crosslinked and immunoprecipitated in the assay.

Finally, the relative array intensity scores from our formalde-
hyde crosslinking ChIP/chip experiments broadly agree with
the relative density of factor binding detected by earlier
Southern blot-based in vivo UV crosslinking [30,31] (Addi-
tional data file 5). For BCD, FTZ and PRD the Pearson corre-
lation coefficients are 0.79, 0.67, and 0.48, respectively,
comparing the data from these two assays on the same
genomic regions. This agreement is important because it
argues that the measured relative signals in both assays are
not powerfully influenced by differences in crosslinking effi-
ciency to various DNAs, indirect crosslinking of proteins to
DNA via intermediary proteins (which should not be detected
by UV crosslinking), or differences in epitope accessibility
during immunoprecipitation (which again should be much
lower for UV crosslinking). Instead, the correspondence indi-
cates that both these methods provide a reasonable estimate

of the relative number of factor molecules in direct contact
with different genomic regions in vivo.

Binding to thousands of genomic regions over a
relatively narrow range of occupancies

Like the 6 previously examined A-P factors, the 15 newly stud-
ied regulators are detectably bound to thousands of genomic
regions widely spread throughout the genome (Figure 3;
Table 2; Additional data files 2, 6 and 7). The median number
of 1% FDR bound regions detected by the antibody giving the
most efficient immunoprecipitation for each of the 21 factors
is 1,591 and the median number detected at the 25% FDR
level is 7,145. At a 1% FDR, 23 Mb of the euchromatic genome
is covered by a bound region for at least one factor, and of
this, 9.8 Mb is within 250 bp of a ChIP/chip peak. At a 25%
FDR, 32.2 Mb of the genome is within 250 bp of a ChIP/chip
peak, which is 27% of the 118.4 Mb euchromatic genome. This
binding is so extensive that, for each factor, on average, the
transcription start sites of 20% of Drosophila genes lie within
5,000 bp of its 1% FDR ChIP/chip peaks, and for its 25% FDR
peaks the equivalent figure is 54% of genes (Table 3).

For each factor, the numbers of regions bound at progres-
sively lower array intensity signals increases near exponen-
tially. At an array intensity of only 3- to 4-fold less than that
of the most highly bound 20 to 30 regions, typically several
thousand regions are bound by a protein (Figure 4; Addi-
tional data file 8). Because DNA amplification and array
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Figure 2

Recognition sequence enrichment correlates with ChlP/chip rank. Fold enrichment of matches to a position weight matrix (PVWM) in the 500-bp windows
around ChlP/chip peaks (+ 250 bp), in non-overlapping cohorts of 200-peaks down the ChIP-chip rank list to the 25% FDR cutoff. Matches to the PWM
below a P-value of < 0.001 were scored. The PWMs used are shown as sequence logo representations [67]. The most highly bound peaks are to the left
along the x-axis and the location of the 1% FDR threhold is indicated by a black, vertical dotted line. Shown are plots for the (a) HRY 2, (b) PRD I, (<)

SNA 2 and (d) TLL | antibodies.

hybridization and imaging methods compress the measured
differences in the amounts of DNA in an immunoprecipita-
tion, the actual differences in transcription factor occupancy
will be approximately three times greater than the differences
in ChIP/chip peak intensity scores [11]. Nevertheless, many
genes are bound over a surprisingly narrow range of tran-
scription factor occupancies.

A quantitative continuum of binding and function
Our earlier analyses of the six maternal and gap A-P factors
showed that although these proteins bind to large number of

regions, the most highly bound regions clearly differ in many
regards from the more poorly bound, many of which may not
be functional targets. Parallel analyses of the other 15 factors
demonstrate the same trends.

First, for those factors for which a significant number of tar-
get CRMs are known, the few hundred most highly bound
regions are enriched for these targets. Transgenic promoter,
genetic, in vitro DNA binding and other data have identified
a set of 44 CRMs as direct targets of subsets of the A-P early
factors and 16 CRMs as direct targets of particular combina-
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Percentage of genes whose transcription start site is within 5 kb of ChIP/chip peaks

Regulatory class Factor antibody

% genes close to 1% FDR peaks

% genes close to 25% FDR peaks

BCD 2
CAD |
GT2
HB |
KNI 2
KR 2
HKB |
TLL |
DI

A-P early

FTZ 3
HRY 2
PRD |
RUN |
SLPI |

A-P pair rule

D-v DA 2
DL3
MAD 2
MED 2
SHN 2
SNA 2

TWI 2

6.2 29.6
12.6 48.9
7.7 27.2
14.7 345
1.2 372
27.0 65.3
9.0 41.3
28 20.8
52.6 84.1
2.6 29.1
20.4 64.3
14.8 51.0
6.0 60.4
1.4 524
382 76.7
66.5 87.0
1.6 735
50.6 74.8
2.1 9.6
23.6 83.0
53.0 90.3

For those factors for which ChlP/chip data are available for more than one antibody, values shown are for the antibody that gave the most bound

regions above the 1% FDR threshold using the symmetric null test.

tions of D-V regulators [8,25,32]. Figure 4 and Additional
data file 8 show that the 500-bp ChIP/chip peaks that overlap
CRMs known to be targets of at least some members of a given
regulatory class are bound by all members of that class, on
average, at higher levels than the majority of genomic regions
at which these proteins are detected.

Second, the most highly bound regions, on average, are closer
to genes with developmental control functions, whereas
poorly bound regions are frequently closer to metabolic
enzymes and other 'house keeping' genes (Figure 5; Addi-
tional data files 4 and 9). For most of the 21 factors, this
enrichment reduces significantly between the top of the rank
list and the 1% FDR threshold, which, if our FDR estimates
are good, rules out the possibility that the presence of false
positives has influenced this result.

Third, for the majority of factors the more highly bound
regions tend to be closest to genes that are transcribed at the
blastoderm stage and whose spatial expression is patterned at
this stage (Figure 6; Additional data files 4 and 10). Poorly
bound regions, in contrast, are closest to genes that are tran-
scriptionally inactive or not patterned at this stage. For a
minority of factors this trend is not as pronounced. However,

this is probably because the regions bound highly by these
proteins are already further away from the transcription start
site of their known or likely target genes than are those of
other factors (for example, Runt (RUN) 1 in Figure 6; and
Sloppy paired (SLP)1 in Additional data file 10).

Fourth, poorly bound regions for a subset of factors show a
surprising preference to be located in protein coding regions.
This is particularly striking for FTZ, Knirps (KNI), Mad
(MAD), RUN and SNA, but a number of other factors show a
less dramatic but similar trend (see regions between the 1%
and 25% FDR thresholds in Figure 7 and Additional data file
11).

Fifth, for those bound regions in intergenic and intronic
sequences (that is, in non-protein coding sequences) the
more highly bound are significantly more conserved than
those poorly bound (Figure 8; Additional data files 4 and 12).
For most factors, however, their specific recognition
sequences are not particularly more conserved than the
remaining portion of the 500-bp peak windows ([11] and our
unpublished data). Thus, for most factors, it cannot be con-
cluded from this analysis alone that recognition sequences
are being conserved because they are functional targets. But
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Figure 3

Broad, overlapping patterns of binding of transcription factors to the genome in blastoderm embryos. Data are shown for eight early A-P factors (green),
six pair rule A-P factors (yellow), seven D-V factors (blue), and two general transcription factors (red). The 675-bp ChlIP/chip window scores are plotted
for regions bound above the 1% FDR threshold in a 500-kb portion of the genome. The locations of major RNA transcripts are shown below in grey for
both DNA strands. The genome coordinates are given in base-pairs. For those factors for which ChlP/chip data are available for more than one antibody,

data are shown for the antibody that gave the most bound regions above the 1% FDR threshold using the symmetric null test.

it can be concluded that the more highly bound regions likely
are, on average, more evolutionarily constrained function
than poorly bound regions.

Taking all of these five analyses into account, the few hundred
most highly bound regions have characteristics of likely func-
tional targets of the early embryo network. Although some
poorly bound regions are also likely to be functional targets at
this time, including ones weakly modulating transcription of
housekeeping genes (for example, [22]), many do not appear
to be classical CRMs that drive transcription in the blasto-
derm. A minority do become more highly bound in the later
embryo and may be active then (our unpublished data), but
the binding to many others we feel is likely to be non-func-
tional, including that to most of those in protein coding
regions.

Our analysis contrasts with the predominant qualitative
interpretation of in vivo crosslinking data by other groups
studying animal regulators [32-46]. Many of these groups
have also shown that factors bind to a large number of
genomic regions. They have not, however, noted the many

differences between highly bound and poorly bound regions
shown in Figures 4 to 8. In addition, with only a few excep-
tions [43,44,46], they have not seriously considered the pos-
sibility that some portion of the binding detected is non-
functional. We suspect that similar correlations between lev-
els of factor occupancy and likely function of bound regions
will be found for other factors once quantitative differences
amongst bound regions are considered.

Factors bind to highly overlapping regions

Another striking feature of our in vivo DNA binding data is
that there is considerable overlap in the genomic regions
bound by the 21 factors (Figures 3), even though they belong
to 11 DNA binding domain families and multiple regulatory
classes, often act via distinct CRMs, and clearly specify dis-
tinct developmental fates. To quantify this overlap, we scored
for each protein the percent of peaks that are overlapped by a
1% FDR region for each factor in turn (Figure 9a, b; Addi-
tional data file 13). This analysis shows, for example, that of
the 300 peaks most highly bound by the A-P early regulator
BCD, between 6% and 100% are co-bound by the other 20 fac-
tors, some of the highest overlap (>94%) being with the D-V
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Figure 4

Known CRMs tend to be among the regions more highly bound in vivo. The 1% FDR bound regions for (a) HKB |, (b) MED 2, (c) TLL | and (d) TWI
were each divided into cohorts based on peak window score (x-axis). The fraction of all bound regions in each cohort (red bars) are shown (y-axis). In (a,
c), the fraction of bound regions in each cohort in which the peak 500-bp window overlaps a CRM known to be regulated by at least some A-P early
factors is shown (green bars). In (b, d), the fraction of bound regions that overlap a CRM known to be regulated by at least some D-V factors are shown
(blue bars). The number of bound regions in each cohort is given above the bars.

regulators Medea (MED), Dorsal (DL) and TWI (Figure 9a,
top row). Peaks bound more poorly are overlapped to a lesser
degree, but there is still considerable cross-binding to these
regions (Figure gb; unpublished data).

To calculate the probability that this extensive co-binding
occurs by chance, we used the Genome Structure Correction
(GSC) statistic [43], which is a conservative measure that
takes into account the complex and often tightly clustered
organization of bound regions across the genome. For the
great majority of the pair-wise co-binding shown in Figures
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Figure 5

Genes that control development are enriched in highly bound regions. The five most enriched Gene Ontology terms [68] in the 1% FDR bound regions for
each factor were identified (enrichment measured by a hyper geometric test). The significance of the enrichment (-log(P-value)) of these five terms in non-
overlapping cohorts of 200 peaks are shown down to the rank list as far as the 25% FDR cutoff. The most highly bound regions are to the left along the x-
axis and the location of 1% FDR threshold is indicated by a black, vertical dotted line. Shown are the results for the (a) BCD 2, (b) DA 2, (c) HRY 2, and
(d) RUN | antibodies. Dev., development; periph., peripheral; RNA pol, RNA polymerase; txn, transcription.

9a, b, these probabilities have Bonferroni corrected P-values
< 0.05 (all instances with z scores >4 in Figure 9c, d) and,
thus, the overlap is highly unlikely to have occurred by
chance. With such extensive co-binding, it is not surprising
that some regions are bound by many factors. Averaged over
all regulators, 88% of their top 300 peak windows are bound
by 8 or more factors and 40% are bound by 15 or more factors
(Additional data file 13).

Several recent in vivo crosslinking studies have also noted
significant overlap in binding between some sequence-spe-
cific factors in animals [32,34,37,44,46]. In these other cases,
however, the overlapping factors are known to have related
functions and, thus, the co-binding is less surprising. Work
using the DamID method showed a high overlap in binding
when transcription factors with different functions and spe-
cificities were ectopically expressed in tissue culture cells
[47], and it was suggested that these binding 'hotspots' were
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Figure 6

Highly bound regions are preferentially associated with genes transcribed and patterned in the blastoderm. Shown are the median distance of non-
overlapping 200-peak cohorts to the closest gene belonging to each of three categories of gene: all genes (from genome release 4.3, March 2006; red
lines); genes with known patterned expression (hand annotated based on Berkeley Drosophila Genome Project in situ images [23]; blue lines); and
transcribed genes (defined by our RNA polymerase Il (pol Il) ChlIP/chip binding [I |]; green lines). Data are plotted down the ChlIP/chip rank list to the 25%
FDR threshold. The most highly bound regions are to the left along the x-axis and the location of 1% FDR threshold is indicated by a black, vertical dotted
line. Shown are the results for the (a) DA 2, (b) HRY 2, (c) RUN I, and (d) SNA 2 antibodies.

non-functional storage sites. In contrast to these other stud-
ies, we have found overlapping binding for a larger number of
regulators, many of which are well characterized as having
distinct biological and transcriptional regulatory specificities.
The binding we have measured is for endogenous factors, and
the greatest overlap in binding is at known and probable func-
tional targets. Thus, it does not seem that overlapping pat-

terns of binding reflect either shared functions or a lack of
function. Instead, we must ask how the undoubtedly distinct
specificities of the blastoderm factors arise despite the over-

lap.
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Figure 7

For some factors, poorly bound regions are preferentially found in protein coding sequences. The percentage of ChlP/chip peaks are plotted in non-
overlapping cohorts of 200 peaks that are in protein coding (red), intronic (blue), and intergenic (green) sequences. Results are shown for cohorts down
the rank lists to the 25% FDR cutoff. The percentages for each class of genomic feature are indicated as horizontal dotted lines in corresponding colors to
the solid data lines. The most highly bound regions are to the left along the x-axis and the location of 1% FDR threshold is indicated by a black, vertical
dotted line. Shown are the results for the (a) DL 3, (b) HRY 2, (c) RUN I, and (d) SNA 2 antibodies.

Quantitative differences in binding correlate with
biological and transcriptional regulatory specificity

To address this question, we first looked in detail at the pat-
tern of binding on the CRMs of two well-studied target genes.
The eve gene is expressed in a seven stripe pair-rule pattern
along the A-P axis and contains four stripe CRMs that are

known targets of the A-P early factors (Figure 10, S3/7, S2,
S4/6 and S1/5) and a later activated autoregulatory CRM
thought to be a target of the A-P pair rule factors EVE and
PRD (Figure 10, Auto) [24,28,29]. The sna gene is expressed
in a ventral stripe of expression and has two known CRMs
that are targets of the D-V regulators TWI or DL (Figure 10,
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Figure 8

Highly bound regions are preferentially conserved. Mean PhastCons scores in the 500-bp windows (+ 250 bp) around peaks, in non-overlapping cohorts of
200 peaks down the rank list towards the 25% FDR cutoff. The most highly bound peaks are to the left along the x-axis and the location of 1% FDR
threshold is indicated by a black, vertical dotted line. Shown are the results for the (a) DA 2, (b) HRY 2, (c) RUN I, and (d) SNA 2 antibodies.

AE and VA) [48]. Consistent with the analysis in Figure 9,
there is a high co-binding of members of all three major reg-
ulatory classes to each of these CRMs at a 1% FDR (Figure 10;
Additional data file 14), and even more extensive co-binding
is seen when lower level interactions detected at a 25% FDR
and in in vivo UV crosslinking experiments are taken into
account [31] and our unpublished data). However, the factors
show quantitative preferences in binding to the CRMs that
broadly correlates with their expected function: A-P early fac-
tors most strongly occupy the four eve stripe CRMs, A-P pair

rule factors most strongly occupy the eve autoregulatory ele-
ment, and the D-V factors TWI and SNA most strongly occupy
the two sna CRMs (Figure 10). Thus, differences in the levels
of occupancy on common genomic regions could be signifi-
cant determinants of regulatory specificity.

The fact that the higher levels of binding better reflect expec-
tations based on earlier molecular genetic experiments, how-
ever, does not necessarily indicate that only these interactions
are functional. For example, recent studies using image anal-
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Heat maps showing high overlap in binding among the blastoderm factors. (a, b) Each row shows the percentage of a cohort of 300 single nucleotide
position peaks for a factor that are overlapped by 1% FDR regions bound by each of the other factors in turn. (c, d) Each row shows the Genome
Structure Correction z scores for the likelihood that the overlap plotted in (a, b) occurs by chance given the proportion of the genome bound by each
factor. (a, c) Results for the most highly bound 300 peaks (1-300). (b, d) Results for the second most highly bound cohort of 300 peaks (301-600). Note
that the 1% FDR threshold does not lie within ranks | to 600 for 17 of the 21 factors shown, and, thus, for these proteins the bulk of the differences

observed between the 1-300 and the 301-600 cohorts are not attributable

to false positives.

ysis of three-dimensional cellular resolution data have shown
that there are modest quantitative affects of D-V regulators
on eve expression and of A-P regulators on sna expression
(Figure 11) [9-11], which could be due to the low-level occu-
pancy of D-V regulators on eve and of A-P regulators on sna.
Indeed, these quantitative methods show that the expression
patterns of most genes in the blastoderm are much more com-
plex than early low-resolution expression data implied
[9,10,12]. Thus, the regulation of blastoderm genes may
involve input from a broader range of factors than first

assumed, with the degree of transcriptional regulation corre-
lating with the degree of factor binding.

Other work, however, cautions against assuming that all of
the lower level interactions shown in Figure 10 result in tran-
scriptional regulation. In the case of the binding of A-P gap
factors to the eve autoregulatory element, transgenic pro-
moter analysis indicates that this binding is not sufficient to
detectably activate this CRM in early stage 5 embryos [24]. A
similar argument can be made for binding of A-P pair rule
factors to the eve stripe CRMs [24,27,28,49]. In these cases,
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Figure 10

In vivo DNA binding of 21 sequence-specific and 2 general transcription factors to the even skipped (eve) and snail (sna) loci. ChIP/chip scores are plotted
for 675-bp windows associated with all oligonucleotides on the array in the portions of the genome shown. In those regions bound above the 1% FDR
threshold, the plots are colored green (Early A-P factors), yellow (Pair rule A-P factors), blue (D-V factors) or red (General factors). The locations of
major RNA transcripts are shown below (blue) for both DNA strands together with the locations of CRMs active in blastoderm embryos (green) and later
stages of development (salmon). Nucleotide coordinates in the genome are given in base-pairs. At the bottom is show the mRNA expression patterns of
eve and sna in mid-stage 5 blastoderm embryos from the BDTNP's VirtualEmbryo using PointCloudXplore [12,69]. A more detailed plot comparing ChIP
scores for both factor and negative control immunoprecipitations is shown in Additional data file 14, including data for all antibodies shown in Table 2.
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Figure 11

The relative levels of eve and sna mRNA expression in mid-stage 5 blastoderm embryos at cellular resolution. Shown is a display from PointCloudXplore
of a two-dimensional cylindrical projection of a VirtualEmbryo (D_mel_wt__atlas_r2.vpc) [12,69,70], where the level of MRNA expression is shown by
height above a two-dimensional projection of the embryo surface. eve MRNA expression is shown in red and sna in green. The eve data are the average

from images of 368 embryos and the sna data from 12 embryos.

either this lower level binding is non-functional or it plays an
augmentary role only in the context of multiple promoter ele-
ments. It is not sufficient for regulation on its own.

To more fully explore if there is a correlation between the
level of factor occupancy on common sequences and func-
tional specificity, we next compared the binding of all 21 fac-
tors on the 44 A-P early CRMs and 16 D-V CRMs described
earlier. (There are too few known A-P pair rule CRMs to ana-
lyze in this way.) While most of these CRMs are each bound
above the 1% FDR threshold by members of all three of the
major regulatory classes (Figure 12a), the normalized levels of
factor occupancy can be seen to broadly meet expectations
(Figure 12b): the A-P early factors bind more highly to A-P
early CRMs, the D-V factors mostly bind more highly to D-V
CRMs, and the pair rule factors bind at lower levels to all of
these CRMs than they do to other regions of the genome.

There are a few instances where relatively high levels of bind-
ing are found to CRMs initially identified as targets of another
regulatory class, but these likely reflect the fact that some of
these CRMs show strong patterning along both the A-P and
D-V axes (for example, [32]). Averaged over all interactions
for members of each regulatory class, the levels of binding of
each class match the general expectations for their specificity
(Bonferroni corrected Mann Whitney test P-values all < 1 x
10-8; Additional data file 13).

Informative as the above analyses are, however, they are
restricted to previously identified CRMs. These CRMs were
identified experimentally using criteria that could well have
excluded some types of functional targets. To explore if levels
of occupancy correlate with functional specificity more
widely, therefore, we examined binding to genomic regions
without regard to any published information on which
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Figure 12

Heat maps showing the binding of blastoderm transcription factors to validated A-P early and D-V CRMs. (@) Each row shows if a factor is detected
binding or not to each CRM, where binding is defined as a 1% FDR region that overlaps the CRM by 500 bp or more. (b) Each row shows the ChlIP/chip
intensity of the highest 675-bp window for a factor on each of the 44 A-P early CRMs and |6 D-V CRMs. The intensities of all factors were placed on a
similar scale by normalizing the data such that the intensity score of the most highly bound region in the genome for each factor is set to 10.

sequences different factors might act on. In the absence of any
prior knowledge, we exploited our observation that, on
known CRMs, members of a regulatory class have more simi-
lar specificities than members of different classes and used
this to provide an expectation of specificity elsewhere in the
genome. We used two measures to compare binding for fac-
tors within and between classes (Figure 13).

First, we used the previously described GSC statistic for the
likelihood that two factors bind the same regions more fre-
quently than expected by chance, but this time focusing only
on the overlap between highly bound regions. All 441 pair-
wise comparisons of overlap were computed between the 300
regions bound most highly by each factor (Figure 13a) and
separately between the 300 next most highly bound regions
(Figure 13b). For both cohorts, not surprisingly given our ear-
lier analysis, co binding between most pair-wise combina-
tions of factors occurs far more frequently than expected by
chance, even where the proteins belong to different regula-
tory classes (z scores >4 in Figure 13a, b). However, for the top
300 bound regions, there is an obvious further preferential
overlap among A-P early regulators as well as a moderate
preference among the A-P pair rule factors and the D-V fac-
tors (Bonferroni corrected Mann Whitney tests suggest that,
taken collectively, the preferential co-binding among A-P
early regulators is highly significant (P < 9 x 10715), while that
among the A-P pair rule factors and the D-V factors is moder-
ately significant (P < 2 x 103) for both; Additional data file
13). The next most highly bound cohort shows reduced pref-

erential co-binding within regulatory classes, with only that
among A-P early regulators being significant (P = 7 x 10°9;
Figure 13b; Additional data file 13).

Second, because the above measure only partially takes into
account the different levels of occupancy on each bound
region, we sought a measure that better captures this infor-
mation. Scatter plots show that while ChIP/chip scores from
experiments using antibodies to distinct portions of the same
factor are highly correlated, pair-wise comparisons between
factors reveal marked differences in scores, suggesting that
correlation coefficients calculated in this way would be a use-
ful measure of binding specificity (Figure 14). Therefore, we
computed Pearson correlation coefficients for all pair-wise
comparisons between factors for the most highly bound 300
regions and separately for the next most highly bound 300
regions (Figure 13c, d). Visual inspection shows that A-P early
and D-V regulators generally show higher similarity in bind-
ing with members of their own regulatory class than they do
with other factors. Similarly, the highest correlations for the
A-P pair rule factors FTZ, HRY, RUN and SLP1 are with other
pair rule proteins, though in this case preferences are shared
with specific proteins rather than class-wide. Bonferroni cor-
rected Mann Whitney tests indicate that correlation coeffi-
cients generally show more significant distinctions in binding
preferences between the three regulatory classes than the z
score measure, both taken collectively (A-P early P < 10715, A-
P pair rule P = 1 x 10°%, D-V P = 1 x 109), and on a per factor
basis (Additional data file 13). They even detect moderate dis-
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Figure 13

Heat maps showing two measures for factor binding specificity in blastoderm embryos. (a, b) Each row shows the GSC z score of the likelihood that the
overlap between a cohort of ChIP/chip peaks for one factor and regions bound each factor in turn occurs by chance. (¢, d) Each row shows the Pearson
correlation coefficients between the intensity scores of a cohort of 300 peaks for a factor and the intensity scores of the equivalent 500-bp windows at the
same genomic locations for each of the other factors in turn. (a, c) Results for the most highly bound 300 peaks (1-300). (b, d) Results for the second most
highly bound cohort of 300 peaks (301-600). Note that the 1% FDR threshold does not lie within ranks | to 600 for |17 of the 21 factors (Table 2), and,
thus, for these proteins the differences observed between the 1-300 and the 301-600 cohorts are not attributable to false positives.

crimination between the classes in the 301 to 600 cohort (A-
Pearly P=1x 103, A-P pairrule P=1x 103, D-VP=2 x 102).

Thus, across a broad array of mostly uncharacterized genomic
regions the levels of binding of transcription factors correlate
with the expectation that factors with more similar functions
show more similar binding specificity. Consistent with our
previous observation that highly bound regions appear more

functionally significant, the distinctions in binding prefer-
ences between regulatory classes is larger on the most highly
bound regions. Just as on the known CRMs, however, the dis-
tinctions between the different classes are relatively modest,
suggesting that the regulatory specificity of transcription fac-
tors in general may be fuzzier than widely realized and per-
haps also suggesting a role for post-DNA-binding events to
increase the distinctions between factors.
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Figure 14

Scatter plots showing the correlation between 500-bp window scores. The 500-bp peak window scores for the top 300 regions detected by the SNA 2
antibody (x-axis) are compared against the score of the equivalent 500-bp windows detected in another Chip/chip experiment (y-axis) at the same
genomic locations. The comparison is made against ChlP/chip data from experiments using the (a) SNA 1, (b) TWI 2, (c) Kruppel (KR) 2, and (d) HRY 2
antibodies. The Pearson correlation coefficients (r) for each comparison are shown in the top right of each panel.

All of the preceding analyses consider binding to short
genomic regions. The target genes of blastoderm factors,
however, are often found associated with several such regions
(for example, Figure 10). Thus, while the above analyses
establish that regulators show quantitative preferences for
binding to individual genomic regions, they do not establish
if they exhibit preferences for different genes.

To determine whether these factors are targeting distinct sets
of genes, for each bound region we identified the Gene Ontol-

ogy (GO) term associated with the gene whose transcription
start site is closest to the peak of binding. The enrichment of
the GO terms associated with the 300 most highly bound
peaks and the next most highly bound cohorts of peaks were
then plotted as heat maps (Figure 15a, b). This shows that
there are clear differences between factors as to which GO
terms are associated with their top 300 peaks. In addition,
there is a broad within regulatory class preference for which
types of gene transcription factors bind to most strongly.
More fine-grained similarities between subsets of factors
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within the major regulatory classes are also apparent. Thus,  the clusters of regions associated with each gene and with dif-
the quantitative preferences apparent at the level of individ-  ferent gene types.
ual bound regions must extend to some degree to the level of
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Figure 15

Heat map showing GO terms enriched in genes closest to regions bound by each factor. The seven most highly enriched GO terms associated with the
closest genes to the 300 most highly bound peaks were determined for each of the 21 factors and the non-redundant set of all such terms identified. Each
row shows the enrichment of each of these GO terms for one factor expressed as a normalized z score. The columns (GO terms) were arranged into
three groups based on which of the three major regulatory classes of factor the GO terms are most enriched in, and are ranked from left to right based
on the degree of this relative enrichment. (a) Results for the most highly bound 300 peaks (1-300); (b) results for the second most highly bound cohort of
300 peaks (301-600).
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The GO terms associated with the 301 to 600 ranked peaks
show much less difference between each factor and regulatory
class, consistent again with these less highly bound regions
playing a lesser role in determining biological specificity and
function.

Some of the types of gene preferentially bound by the regula-
tory classes readily fit expectations; for example, the strong
association of genes involved in A-P axis specification, pat-
terning by pair rule genes, and trunk and head segmentation
with A-P early and A-P pair rule factors. Others are unex-
pected, such as the preference of D-V regulators for a series of
GO terms related to eye development. Most likely the differ-
ences between factors revealed in these heat maps reflect dif-
ferences due to target genes that are strongly patterned along
the A-P axis versus those strongly patterned along the D-V
axis. Because important effectors of blastoderm regulators'
functions are patterned along both body axes, because the
early factors both activate or repress target genes, and
because GO terms imperfectly capture and categorize the bio-
logical function of each gene, this analysis does not provide a
complete description of the different specificities of each fac-
tor at the target gene level.

A general model for animal transcription factor
binding and function

What mechanism, though, drives the extraordinarily exten-
sive, overlapping pattern of binding? We speculate that the
pattern is a natural consequence of these factors' intrinsic
DNA binding specificities (as measured in vitro), the rela-
tively high concentrations at which they are expressed in
nuclei in which they are active, chromatin structure, and the
law of mass action.

Most animal transcription factors recognize short degenerate
DNA sequences that occur frequently throughout the length
of most genes [1,5,6]. It has long been proposed on thermody-
namic grounds that the majority of transcription factor mole-
cules would be bound to DNA in the nucleus, rather than be
free in solution [50-52]. In eukaryotes, only a subset of the
genome is fully accessible to sequence-specific DNA binding
factors because of the presence of nucleosomes [53-60]. Any
several hundred base-pair segment of such accessible DNA
will likely contain moderate to high affinity recognition
sequences for a large proportion of transcription factors.
Since many of the blastoderm factors are present at concen-
trations of many tens of thousand of molecules per cell
[30,61], they may well be able to significantly occupy these
sites, generating a highly overlapping pattern of binding
focused at open chromatin regions.

In addition to the independent interactions of transcription
factors with their target DNA sequences in open chromatin,
some of the overlap in binding may likely arises from protein-
protein interactions in which a factor associates with an
accessible region as a result of direct interactions with protein
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molecules bound to the region. Such indirect binding -
whether between transcription factors, or mediated by the
large numbers of co-factors associated with CRMs - could
explain the frequent absence of high affinity DNA recognition
sequences for proteins bound to a given region. Like protein-
DNA interactions, protein-protein interactions are enhanced
when protein concentrations are high and, thus, in vivo could
also mediate low level binding at non-functional sites.

How is it possible to have so much binding that has no or little
effect on transcription? Natural selection clearly acts on
CRMs to preserve the proper number, arrangement and affin-
ity of recognition sequences for whichever factors are needed
for its activity. There is also evidence that selection acts
against sites that might interfere with activity [62]. Purifying
selection will remove any 'spurious’ binding that interferes
with the proper expression of a gene. But weak binding that
has only a small or no affect on transcription could well be tol-
erated in many cases. Just as there is a quantitative contin-
uum of binding, there may also be a continuum of effects on
transcription, and ultimately on phenotype.

Conclusions

We have mapped genome-wide in vivo DNA binding for the
largest group to date of animal transcription factors acting in
a given tissue at the same time. The work supports and
extends our previous studies indicating that animal
sequence-specific transcription factors bind in vivo across a
quantitative continuum to highly overlapping regions close to
a large percentage of genes [11,31]. Highly bound genes
include strongly regulated known and likely targets, moder-
ately bound genes include unexpected targets whose tran-
scription is regulated weakly, and poorly bound genes include
thousands of non-transcribed genes and likely non-func-
tional targets [9-11,22,31]. Factors with distinct biological
specificities have highly overlapping patterns of binding.
However, quantitative differences in binding to common tar-
gets generally correlate with each factor's known specificity,
though these specificities appear to be more fuzzy and less
distinct than commonly assumed, with a high proportion of
shared targets. We propose that the broad DNA recognition
properties of animal transcription factors and the relatively
high concentrations at which they are expressed in cells
focuses them to bind to highly overlapping sets of open chro-
matin regions. Our work illustrates that the qualitative analy-
ses of in vivo DNA binding data that have widely been
employed fail to reveal some of the most significant features
of how transcriptional regulators behave in cells, and high-
lights the importance of a detailed quantitative interpretation
of DNA binding patterns.
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Materials and methods

In vivo formaldehyde crosslinking of embryos and
chromatin purification

Embryos were collected in population cages for 1 hour, and
then allowed to develop to the required stage before being
harvested and fixed with formaldehyde [11]. Embryo aging
times were determined based on the transcription factor ana-
lyzed: for A-P maternal, gap, and terminal factors, as well as
D-V maternal and a subset of D-V zygotic factors, including
SNA and TWI, the embryos used were 2 to 3 hours old
(mainly between late stage 4 and early stage 5), while for A-P
pair rule, and the D-V zygotic factors, MED, MAD, and
Schnurri (SHN), the embryos were 2.5 to 3.5 hours old
(mainly at mid- to late stage 5). The chromatin used for
immunoprecipation was isolated from the fixed embryos by
CsCl gradient ultracentrifugation and then fragmented to an
average size of about 700 bp.

Affinity purified antibody production

All of the antibodies used were immunoaffinity purified from
rabbit antiserum. The two anti-PRD antibodies, PRD 1 and
PRD 2, were available from a previous study [31]. The MAD
and MED antisera were a generous gift from L Raftery [63],
the RUN antiserum from E Wieschaus, and the TFIIB anti-
body from R Tjian. For other factors, antibodies were pro-
duced in rabbits immunized with recombinant His-tagged
fusion proteins expressed and purified in Escherichia coli
using the Invitrogen Gateway system. Rabitts were immu-
nized with either the full length protein (Dichaete (D), HRY,
SLP1, Daughterless (DA), DL, SNA, and TWI) or portions of
the protein (TLL amino acids 110 to 259, SHN amino acids
1,617 to 1,750, and SHN amino acids 2115 to 2,279). Immu-
noaffinity purifications were performed using E. coli-
expressed purified recombinant His-tagged proteins. The
amino acid sequences used (listed in Table 2) were chosen to
exclude regions with any significant homology to other Dro-
sophila proteins, as previously described [11]. Additional
results demonstrating the specificity of the antibodies are
provided in Additional data file 1.

Chromatin immunoprecipitation and DNA
hybridization to high density microarrays

Chromatin was immunoprecipitated and the resulting DNA
was amplified and hybridized to Affymetrix Drosophila
Genomic Tiling Arrays as previously described [11]. For each
antibody, duplicate immunoprecipitations were performed
along with duplicate control IgG immunoprecipitations.
These were each hybridized to separate arrays as were dupli-
cate input DNA samples. All raw microarray data (CEL files)
have been deposited at Array Express [E-TABM-736] [64]. In
addition, these and more processed forms of the data are
available from the BDTNP's public web site, together with
more detailed information about antibodies used and so on
[65].
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Primary array analysis

The data from the complete set of six arrays from each ChIP/
chip experiment were processed using TiMAT [66] as
described previously [11] to derive peak window locations,
bound regions, 1% and 25% FDR thresholds for both the IgG
and Symmetric null tests, and so on. Bound regions were
associated with the gene (from release 4.3 of the D. mela-
nogaster genome) whose 5' end was closest to the array inten-
sity peak in the bound region. To identify the closest
transcribed gene, the subset of release 4.3 annotations that
completely overlap regions bound by RNA polymerase II in
our ChIP-chip experiments was used.

Correlation between ChlIP/chip and UV crosslinking
results

Relative percentages of UV crosslinking to defined restriction
fragments [31] and the corresponding mean oligo ChIP/chip
scores of the same genomic regions are plotted as scatter plots
in Additional data file 5. Pearson correlation coefficients were
calculated for each plot.

Analysis of enrichment down the rank lists of
recognition sequences, GO terms, distance to
transcribed genes, genomic locations, and PhastCons
scores

Enrichment of recognition sequences, GO terms, distance to
transcribed genes, genomic locations and phastcons scores
were determined essentially as described in [11]. A statistical
analysis of the significance of these plots is presented in Addi-
tional data file 4.

Distribution of ChIP/chip peak scores

In Figure 4, peaks were distributed by the mean ChIP/chip
peak scores in the 500-bp peak window. For A-P early factors,
a peak was associated with A-P early CRMs if the peak single
nucleotide position was contained within one of the CRMs
extended by 250-bp flanking regions. For D-V factors, a peak
was associated with D-V CRMs in the same way.

Overlap of bound regions between transcription
factors

Overlap of bound regions between two transcription factors
in Figure 9 was measured by the percentage of single nucle-
otide peak locations of one factor contained in 1% FDR bound
regions of the other factor. The top 300 peaks (1-300) and
separately peaks 301 to 600 of each factor were used in the
analysis. Overlap of one factor by multiple factors was meas-
ured by the percentage of peaks of that factor contained in 1%
FDR bound regions of a defined number of other factors
(Additional data file 13).

To calculate the liklihood z score that overlap occurs by
chance (Figures 9c, d and 13a, b), z-scores were computed
using the GSC statistics [43]. A null distribution of feature-
feature overlap was computed by selecting pair-wise block
samples from the genome, and in each block in the pair the
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annotations of one of the two features of interest were
swapped to yield artificial overlaps. The resulting null distri-
bution is more realistic than that derived from other methods
in that the complex and often tightly clustered organization of
each feature across the genome is preserved, resulting in a
much larger (conservative) estimate of standard deviation
than derived via other methods. Like most methods, includ-
ing feature start-site randomization, this null is Gaussian,
and hence after centering, the only quantity that needs to be
estimated is precisely the standard deviation.

Heat map analysis of binding of transcription factors to
CRMs

In Figure 12a a CRM is defined as being bound by a transcrip-
tion factor if it was overlapped by at least 300 bp by one of the
factor's 1% FDR bound regions, or for CRMs less than 300 bp
long, if the CRM was completely overlapped by a 1% FDR
region. In Figure 12b, the binding intensity of a transcription
factor to a CRM is defined by the highest 675-bp smoothed
window score in the CRM for that factor, without regard to
FDR threshold. The window scores for each factor were
placed on the same scale by setting the highest 675-bp win-
dow contained on the whole array data to 10.

Heat map analysis of correlation of scores of bound
regions between transcription factors

In Figure 13c, d, for each transcription factor, the score asso-
ciated with each 500-bp peak window was derived from the
mean score of oligos in the window. The scores for the equiv-
alent 500-bp windows for each of the other 20 factors were
then derived from the mean oligo scores from those datasets,
without regard to any FDR threshold. Scores for each pair-
wise comparison of factors were used to calculate the Pearson
correlation between the top 300 bound regions (1-300) and
separately for regions from 301 to 600 on the ChIP/chip rank
list. Because the original data for the PRD 1 antibody was
derived from a different array scanner than that used for the
other factors and because we found that a subtle scaling dif-
ference between the two scanners affected the correlation
coefficients, the PRD 1 data used in all of Figure 13 were from
areplica set (PRD 1*) that used the same Affymetrix G scan-
ner used to derive data for the other factors.

Mann-Whitney tests

Mann-Whitney tests were applied to the binding intensity
data of transcription factors to CRMs (Figure 12b), overlap
GSC Z scores between factors (Figure 13a, b), and Pearson
correlation of intensity scores of peak windows between fac-
tors (Figure 13c¢, d) and are reported in Additional data file 13.
Each data set was divided into two categories by factor regu-
latory classes. The Mann-Whitney test was one-sided, with
the null hypothesis that the two categories of data followed
the same distribution. Bonferonni corrected values are pro-
vided where stated.
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Heat map analyses of the association of bound regions
with GO terms

In Figure 15, each bound region is associated with the 'biolog-
ical process' GO term for the gene whose transcription start
site was closest to the array intensity peak in the bound
region. The non-redundant set of the 7 most enriched GO
terms associated with the top 300 bound regions of each fac-
tor were used in the analysis. Negative logged probabilities
from a hypergeometric distribution were used to measure the
association of the top 1to 300 and 301 to 600 bound regions
of each factor with a GO term. The scores of different factors
were put on the same scale by setting the most enriched value
to 10.

Abbreviations

A-P: anterior-posterior; BDTNP: Berkeley Drosophila Tran-
scription Network Project; ChIP/chip: chromatin immuno-
precipitation followed by microarray analysis; CRM: cis-
regulatory module; D-V: dorsal-ventral; FDR: false discovery
rate; GO: Gene Ontology; GSC: Genome Structure Correc-
tion.
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Additional data files

The following additional data are available with the online
version of this paper: further evidence that the antibodies
used specifically recognize the transcription factors they were
raised against in the embryo (Additional data file 1); a table
that shows for each factor the numbers of genomic regions
bound in blastoderm embryos determined by the symmetric
null FDR test and the IgG control FDR test (Additional data
file 2); figures plotting down the ChIP/chip rank list in 200-
peak cohorts the enrichment of factor recognition sequences
using the conventions shown in Figure 2 (Additional data file
3); a table that shows statistical evidence that the top 200
ChIP/chip peaks are significantly enriched over all peaks in
the 1% FDR set for the values plotted in Figures 2, 5, 6 and 8
(Additional data file 4); scatter plots comparing relative levels
of mean UV crosslinking and mean ChIP/chip scores across a
series of highly and poorly bound genomic regions (Addi-
tional data file 5); tables listing the genomic coordinates of
regions bound by each factor for the 1% FDR data set, and
information on the locations and scores of peak windows, and
on the closest gene and closest transcribed gene for each peak
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(Additional data file 6); tables listing the genomic coordinates
of regions bound by each factor for the 25% FDR data set, and
information on the locations and scores of peak windows, and
on the closest gene and closest transcribed gene for each peak
(Additional data file 7); figures showing the fraction of bound
regions in different cohorts distinguished by ChIP/chip score
and, for some factors, the fraction of those bound regions that
overlap known CRMs, using the conventions shown in Figure
4 (Additional data file 8); figures plotting down the ChIP/chip
rank list in 200-peak cohorts the five most highly enriched
GO terms of the closest gene using the conventions shown in
Figure 5 (Additional data file 9); figures plotting down the
ChIP/chip rank list in 200-peak cohorts the median distance
to the closest gene and the distances to closest genes tran-
scribed or patterned in blastoderm embryos using the con-
ventions shown in Figure 6 (Additional data file 10); figures
plotting down the ChIP/chip rank list in 200-peak cohorts the
percent of peaks found in intergenic, intronic and protein
coding regions using the conventions shown in Figure 7
(Additional data file 11); figures plotting down the ChIP/chip
rank list in 200-peak cohorts the PhastCons scores of 500-bp
peak windows using the conventions shown in Figure 8
(Additional data file 12); tables listing the values plotted in
the heat maps in Figures 9, 12 and 13, percentages of the top
300 1% FDR peaks bound by 1, 8 or more, 15 or more or 21
factors, and the results of Mann-Whitney tests applied to the
data in Figures 12 and 13 (Additional data file 13); a figure
showing the pattern of ChIP/chip scores on the eve gene for
both factor and negative control immunoprecipitations for all
antibodies shown in Table 2 (Additional data file 14).
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